1
|
Stinchfield MJ, Weasner BP, Weasner BM, Zhitomersky D, Kumar JP, O’Connor MB, Newfeld SJ. Fourth Chromosome Resource Project: a comprehensive resource for genetic analysis in Drosophila that includes humanized stocks. Genetics 2024; 226:iyad201. [PMID: 37981656 PMCID: PMC10847715 DOI: 10.1093/genetics/iyad201] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023] Open
Abstract
The fourth chromosome is the final frontier for genetic analysis in Drosophila. Small, heterochromatic, and devoid of recombination the fourth has long been ignored. Nevertheless, its long arm contains 79 protein-coding genes. The Fourth Chromosome Resource Project (FCRP) has a goal of facilitating the investigation of genes on this neglected chromosome. The project has 446 stocks publicly available at the Bloomington and Kyoto stock centers with phenotypic data curated by the FlyBase and FlyPush resources. Four of the five stock sets are nearly complete: (1) UAS.fly cDNAs, (2) UAS.human homolog cDNAs, (3) gene trap mutants and protein traps, and (4) stocks promoting meiotic and mitotic recombination on the fourth. Ongoing is mutagenesis of each fourth gene on a new FRT-bearing chromosome for marked single-cell clones. Beyond flies, FCRP facilitates the creation and analysis of humanized fly stocks. These provide opportunities to apply Drosophila genetics to the analysis of human gene interaction and function. In addition, the FCRP provides investigators with confidence through stock validation and an incentive via phenotyping to tackle genes on the fourth that have never been studied. Taken together, FCRP stocks will facilitate all manner of genetic and molecular studies. The resource is readily available to researchers to enhance our understanding of metazoan biology, including conserved molecular mechanisms underlying health and disease.
Collapse
Affiliation(s)
| | | | - Bonnie M Weasner
- Department Biology, Indiana University, Bloomington, IN 47405, USA
| | - David Zhitomersky
- Department Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Justin P Kumar
- Department Biology, Indiana University, Bloomington, IN 47405, USA
| | - Michael B O’Connor
- Department Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stuart J Newfeld
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| |
Collapse
|
2
|
Sluimer LM, Bullock E, Rätze MAK, Enserink L, Overbeeke C, Hornsveld M, Brunton VG, Derksen PWB, Tavares S. SKOR1 mediates FER kinase-dependent invasive growth of breast cancer cells. J Cell Sci 2023; 136:286925. [PMID: 36620935 DOI: 10.1242/jcs.260243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 12/22/2022] [Indexed: 01/10/2023] Open
Abstract
High expression of the non-receptor tyrosine kinase FER is an independent prognostic factor that correlates with poor survival in breast cancer patients. To investigate whether the kinase activity of FER is essential for its oncogenic properties, we developed an ATP analogue-sensitive knock-in allele (FERASKI). Specific FER kinase inhibition in MDA-MB-231 cells reduces migration and invasion, as well as metastasis when xenografted into a mouse model of breast cancer. Using the FERASKI system, we identified Ski family transcriptional corepressor 1 (SKOR1) as a direct FER kinase substrate. SKOR1 loss phenocopies FER inhibition, leading to impaired proliferation, migration and invasion, and inhibition of breast cancer growth and metastasis formation in mice. We show that SKOR1 Y234, a candidate FER phosphorylation site, is essential for FER-dependent tumor progression. Finally, our work suggests that the SKOR1 Y234 residue promotes Smad2/3 signaling through SKOR1 binding to Smad3. Our study thus identifies SKOR1 as a mediator of FER-dependent progression of high-risk breast cancers.
Collapse
Affiliation(s)
- Lilian M Sluimer
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Esme Bullock
- Edinburgh Cancer Research UK Centre, University of Edinburgh, Crewe Road South, EH4 2XR Edinburgh, UK
| | - Max A K Rätze
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Lotte Enserink
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Celine Overbeeke
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Marten Hornsveld
- Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands and Centre for Biomedical Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Valerie G Brunton
- Edinburgh Cancer Research UK Centre, University of Edinburgh, Crewe Road South, EH4 2XR Edinburgh, UK
| | - Patrick W B Derksen
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Sandra Tavares
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.,IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| |
Collapse
|
3
|
Goldsmith SL, Newfeld SJ. dSmad2 differentially regulates dILP2 and dILP5 in insulin producing and circadian pacemaker cells in unmated adult females. PLoS One 2023; 18:e0280529. [PMID: 36689407 PMCID: PMC9870127 DOI: 10.1371/journal.pone.0280529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/29/2022] [Indexed: 01/24/2023] Open
Abstract
Much is known about environmental influences on metabolism and systemic insulin levels. Less is known about how those influences are translated into molecular mechanisms regulating insulin production. To better understand the molecular mechanisms we generated marked cells homozygous for a null mutation in the Drosophila TGF-β signal transducer dSmad2 in unmated adult females. We then conducted side-by-side single cell comparisons of the pixel intensity of two Drosophila insulin-like peptides (dILP2 and dILP5) in dSmad2- mutant and wild type insulin producing cells (IPCs). The analysis revealed multiple features of dSmad2 regulation of dILPs. In addition, we discovered that dILP5 is expressed and regulated by dSmad2 in circadian pacemaker cells (CPCs). Outcomes of regulation by dSmad2 differ between dILP2 and dILP5 within IPCs and differ for dILP5 between IPCs and CPCs. Modes of dSmad2 regulation differ between dILP2 and dILP5. dSmad2 antagonism of dILP2 in IPCs is robust but dSmad2 regulation of dILP5 in IPCs and CPCs toggles between antagonism and agonism depending upon dSmad2 dosage. Companion studies of dILP2 and dILP5 in the IPCs of dCORL mutant (fussel in Flybase and SKOR in mammals) and upd2 mutant unmated adult females showed no significant difference from wild type. Taken together, the data suggest that dSmad2 regulates dILP2 and dILP5 via distinct mechanisms in IPCs (antagonist) and CPCs (agonist) and in unmated adult females that dSmad2 acts independently of dCORL and upd2.
Collapse
Affiliation(s)
- Samuel L. Goldsmith
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| | - Stuart J. Newfeld
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| |
Collapse
|
4
|
Lin S. The making of the Drosophila mushroom body. Front Physiol 2023; 14:1091248. [PMID: 36711013 PMCID: PMC9880076 DOI: 10.3389/fphys.2023.1091248] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/02/2023] [Indexed: 01/14/2023] Open
Abstract
The mushroom body (MB) is a computational center in the Drosophila brain. The intricate neural circuits of the mushroom body enable it to store associative memories and process sensory and internal state information. The mushroom body is composed of diverse types of neurons that are precisely assembled during development. Tremendous efforts have been made to unravel the molecular and cellular mechanisms that build the mushroom body. However, we are still at the beginning of this challenging quest, with many key aspects of mushroom body assembly remaining unexplored. In this review, I provide an in-depth overview of our current understanding of mushroom body development and pertinent knowledge gaps.
Collapse
|
5
|
Goldsmith SL, Shimell M, Tauscher P, Daly SM, Shimmi O, O’Connor MB, Newfeld SJ. New resources for the Drosophila 4th chromosome: FRT101F enabled mitotic clones and Bloom syndrome helicase enabled meiotic recombination. G3 GENES|GENOMES|GENETICS 2022; 12:6516016. [PMID: 35084488 PMCID: PMC8982423 DOI: 10.1093/g3journal/jkac019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 11/14/2022]
Abstract
Genes on the long arm of the Drosophila melanogaster 4th chromosome are difficult to study because the chromosome lacks mitotic and meiotic recombination. Without recombination numerous standard methods of genetic analysis are impossible. Here, we report new resources for the 4th. For mitotic recombination, we generated a chromosome with an FRT very near the centromere in 101F and a derivative that carries FRT101F with a distal ubiquitously expressed GAL80 transgene. This pair of chromosomes enables both unmarked and MARCM clones. For meiotic recombination, we demonstrate that a Bloom syndrome helicase and recombination defective double mutant genotype can create recombinant 4th chromosomes via female meiosis. All strains will be available to the community via the Bloomington Drosophila Stock Center. Additional resources for studies of the 4th are in preparation and will also be made available. The goal of the 4th Chromosome Resource Project is to accelerate the genetic analysis of protein-coding genes on the 4th, including the 44 genes with no demonstrated function. Studies of these previously inaccessible but largely conserved genes will close longstanding gaps in our knowledge of metazoan development and physiology.
Collapse
Affiliation(s)
- Samuel L Goldsmith
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - MaryJane Shimell
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Petra Tauscher
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| | - Samantha M Daly
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Osamu Shimmi
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
- Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia
| | - Michael B O’Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stuart J Newfeld
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| |
Collapse
|
6
|
Rass M, Gizler L, Bayersdorfer F, Irlbeck C, Schramm M, Schneuwly S. The Drosophila functional Smad suppressing element fuss, a homologue of the human Skor genes, retains pro-oncogenic properties of the Ski/Sno family. PLoS One 2022; 17:e0262360. [PMID: 35030229 PMCID: PMC8759651 DOI: 10.1371/journal.pone.0262360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 12/21/2021] [Indexed: 11/19/2022] Open
Abstract
Over the years Ski and Sno have been found to be involved in cancer progression e.g. in oesophageal squamous cell carcinoma, melanoma, oestrogen receptor-positive breast carcinoma, colorectal carcinoma, and leukaemia. Often, their prooncogenic features have been linked to their ability of inhibiting the anti-proliferative action of TGF-ß signalling. Recently, not only pro-oncogenic but also anti-oncogenic functions of Ski/Sno proteins have been revealed. Besides Ski and Sno, which are ubiquitously expressed other members of Ski/Sno proteins exist which show highly specific neuronal expression, the SKI Family Transcriptional Corepressors (Skor). Among others Skor1 and Skor2 are involved in the development of Purkinje neurons and a mutation of Skor1 has been found to be associated with restless legs syndrome. But neither Skor1 nor Skor2 have been reported to be involved in cancer progression. Using overexpression studies in the Drosophila eye imaginal disc, we analysed if the Drosophila Skor homologue Fuss has retained the potential to inhibit differentiation and induce increased proliferation. Fuss expressed in cells posterior to the morphogenetic furrow, impairs photoreceptor axon pathfinding and inhibits differentiation of accessory cells. However, if its expression is induced prior to eye differentiation, Fuss might inhibit the differentiating function of Dpp signalling and might maintain proliferative action of Wg signalling, which is reminiscent of the Ski/Sno protein function in cancer.
Collapse
Affiliation(s)
- Mathias Rass
- Department of Developmental Biology, Institute of Zoology, University of Regensburg, Regensburg, Germany
- * E-mail:
| | - Laura Gizler
- Department of Developmental Biology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Florian Bayersdorfer
- Department of Developmental Biology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Christoph Irlbeck
- Department of Developmental Biology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Matthias Schramm
- Department of Developmental Biology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Stephan Schneuwly
- Department of Developmental Biology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
7
|
Adult Movement Defects Associated with a CORL Mutation in Drosophila Display Behavioral Plasticity. G3-GENES GENOMES GENETICS 2020; 10:1697-1706. [PMID: 32161085 PMCID: PMC7202012 DOI: 10.1534/g3.120.400648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The CORL family of CNS-specific proteins share a Smad-binding region with mammalian SnoN and c-Ski protooncogenes. In this family Drosophila CORL has two mouse and two human relatives. Roles for the mouse and human CORL proteins are largely unknown. Based on genome-wide association studies linking the human CORL proteins Fussel15 and Fussel18 with ataxia, we tested the hypothesis that dCORL mutations will cause adult movement disorders. For our initial tests, we conducted side by side studies of adults with the small deletion Df(4)dCORL and eight control strains. We found that deletion mutants exhibit three types of behavioral plasticity. First, significant climbing defects attributable to loss of dCORL are eliminated by age. Second, significant phototaxis defects due to loss of dCORL are partially ameliorated by age and are not due to faulty photoreceptors. Third, Df(4)dCORL males raised in groups have a lower courtship index than males raised as singles though this defect is not due to loss of dCORL. Subsequent tests showed that the climbing and phototaxis defects were phenocpied by dCORL21B and dCORL23C two CRISPR generated mutations. Overall, the finding that adult movement defects due to loss of dCORL are subject to age-dependent plasticity suggests new hypotheses for CORL functions in flies and mammals.
Collapse
|
8
|
Transgenic Analyses in Drosophila Reveal That mCORL1 Is Functionally Distinct from mCORL2 and dCORL. G3-GENES GENOMES GENETICS 2019; 9:3781-3789. [PMID: 31530634 PMCID: PMC6829133 DOI: 10.1534/g3.119.400647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Uncovering how new members of multigene families acquire new functions is an important topic in evolutionary and developmental genetics. CORL proteins (SKOR in mice, Fussel in humans and fussel in Flybase) are a family of CNS specific proteins related to mammalian Sno/Ski oncogenes. Drosophila CORL (dCORL) participates in TGF-β and insulin signaling during development and in adult homeostasis but roles for the two mouse CORL proteins (mCORL) are essentially unknown. A series of studies were conducted to test the hypothesis based on previous results that mCORL1 is more similar to dCORL than mCORL2. Neither an updated alignment nor ectopic expression in adult wings were able to distinguish mCORL1 or mCORL2 from dCORL. Transgene experiments employing a dCORL endogenous function in mushroom body neurons showed that mCORL1 is distinct from mCORL2 and dCORL. mCORL1 and mCORL2 are also distinct in biochemical assays of Smad-binding and BMP signaling. Taken together, the data suggests testable new hypotheses for mCORL2 function in mammalian TGF-β and insulin signaling based on known roles for dCORL. Overall, the study reiterates the value of transgenic methods in Drosophila to provide new information on multigene family evolution and the function of family members in other species.
Collapse
|
9
|
Rass M, Oestreich S, Guetter S, Fischer S, Schneuwly S. The Drosophila fussel gene is required for bitter gustatory neuron differentiation acting within an Rpd3 dependent chromatin modifying complex. PLoS Genet 2019; 15:e1007940. [PMID: 30730884 PMCID: PMC6382215 DOI: 10.1371/journal.pgen.1007940] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 02/20/2019] [Accepted: 01/07/2019] [Indexed: 01/14/2023] Open
Abstract
Members of the Ski/Sno protein family are classified as proto-oncogenes and act as negative regulators of the TGF-ß/BMP-pathways in vertebrates and invertebrates. A newly identified member of this protein family is fussel (fuss), the Drosophila homologue of the human functional Smad suppressing elements (fussel-15 and fussel-18). We and others have shown that Fuss interacts with SMAD4 and that overexpression leads to a strong inhibition of Dpp signaling. However, to be able to characterize the endogenous Fuss function in Drosophila melanogaster, we have generated a number of state of the art tools including anti-Fuss antibodies, specific fuss-Gal4 lines and fuss mutant fly lines via the CRISPR/Cas9 system. Fuss is a predominantly nuclear, postmitotic protein, mainly expressed in interneurons and fuss mutants are fully viable without any obvious developmental phenotype. To identify potential target genes or cells affected in fuss mutants, we conducted targeted DamID experiments in adult flies, which revealed the function of fuss in bitter gustatory neurons. We fully characterized fuss expression in the adult proboscis and by using food choice assays we were able to show that fuss mutants display defects in detecting bitter compounds. This correlated with a reduction of gustatory receptor gene expression (Gr33a, Gr66a, Gr93a) providing a molecular link to the behavioral phenotype. In addition, Fuss interacts with Rpd3, and downregulation of rpd3 in gustatory neurons phenocopies the loss of Fuss expression. Surprisingly, there is no colocalization of Fuss with phosphorylated Mad in the larval central nervous system, excluding a direct involvement of Fuss in Dpp/BMP signaling. Here we provide a first and exciting link of Fuss function in gustatory bitter neurons. Although gustatory receptors have been well characterized, little is known regarding the differentiation and maturation of gustatory neurons. This work therefore reveals Fuss as a pivotal element for the proper differentiation of bitter gustatory neurons acting within a chromatin modifying complex.
Collapse
Affiliation(s)
- Mathias Rass
- Department of Developmental Biology, Institute of Zoology, University of Regensburg, Regensburg, Bavaria, Germany
| | - Svenja Oestreich
- Department of Developmental Biology, Institute of Zoology, University of Regensburg, Regensburg, Bavaria, Germany
| | - Severin Guetter
- Department of Developmental Biology, Institute of Zoology, University of Regensburg, Regensburg, Bavaria, Germany
| | - Susanne Fischer
- Department of Developmental Biology, Institute of Zoology, University of Regensburg, Regensburg, Bavaria, Germany
| | - Stephan Schneuwly
- Department of Developmental Biology, Institute of Zoology, University of Regensburg, Regensburg, Bavaria, Germany
| |
Collapse
|
10
|
CORL Expression and Function in Insulin Producing Neurons Reversibly Influences Adult Longevity in Drosophila. G3-GENES GENOMES GENETICS 2018; 8:2979-2990. [PMID: 30006413 PMCID: PMC6118311 DOI: 10.1534/g3.118.200572] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
CORL proteins (known as SKOR in mice, Fussel in humans and fussel in Flybase) are a family of CNS specific proteins related to Sno/Ski oncogenes. Their developmental and adult roles are largely unknown. A Drosophila CORL (dCORL) reporter gene is expressed in all Drosophila insulin-like peptide 2 (dILP2) neurons of the pars intercerebralis (PI) of the larval and adult brain. The transcription factor Drifter is also expressed in the PI in a subset of dCORL and dILP2 expressing neurons and in several non-dILP2 neurons. dCORL mutant virgin adult brains are missing all dILP2 neurons that do not also express Drifter. This phenotype is also seen when expressing dCORL-RNAi in neurosecretory cells of the PI. dCORL mutant virgin adults of both sexes have a significantly shorter lifespan than their parental strain. This longevity defect is completely reversed by mating (lifespan increases over 50% for males and females). Analyses of dCORL mutant mated adult brains revealed a complete rescue of dILP2 neurons without Drifter. Taken together, the data suggest that dCORL participates in a neural network connecting the insulin signaling pathway, longevity and mating. The conserved sequence and CNS specificity of all CORL proteins imply that this network may be operating in mammals.
Collapse
|
11
|
CORL Expression in the Drosophila Central Nervous System Is Regulated by Stage Specific Interactions of Intertwined Activators and Repressors. G3-GENES GENOMES GENETICS 2018; 8:2527-2536. [PMID: 29848623 PMCID: PMC6027887 DOI: 10.1534/g3.118.200282] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
CORL proteins (SKOR in mice and Fussel in humans) are a subfamily of central nervous system (CNS) specific proteins related to Sno/Ski oncogenes. Their developmental and homeostatic roles are largely unknown. We previously showed that Drosophila CORL (dCORL; fussel in Flybase) functions between the Activin receptor Baboon and Ecdysone Receptor-B1 (EcR-B1) activation in mushroom body neurons of third instar larval brains. To better understand dCORL regulation and function we generated a series of reporter genes. We examined the embryonic and larval CNS and found that dCORL is regulated by stage specific interactions between intertwined activators and repressors spanning numerous reporters. The reporter AH.lacZ, which contains sequences 7-11kb upstream of dCORL exon1, reflects dCORL brain expression at all stages. Surprisingly, AH.lacZ was not detected in EcR-B1 expressing mushroom body neurons. In larvae AH.lacZ is coexpressed with Elav and the transcription factor Drifter in dILP2 insulin producing cells of the pars intercerebralis. The presence of dCORL in insulin producing cells suggests that dCORL functions non-autonomously in the regulation of EcR-B1 mushroom body activation via the modulation of insulin signaling. Overall, the high level of sequence conservation seen in all CORL/SKOR/Fussel family members and their common CNS specificity suggest that similarly complex regulation and a potential function in insulin signaling are associated with SKOR/Fussel proteins in mammals.
Collapse
|
12
|
Tecalco-Cruz AC, Ríos-López DG, Vázquez-Victorio G, Rosales-Alvarez RE, Macías-Silva M. Transcriptional cofactors Ski and SnoN are major regulators of the TGF-β/Smad signaling pathway in health and disease. Signal Transduct Target Ther 2018; 3:15. [PMID: 29892481 PMCID: PMC5992185 DOI: 10.1038/s41392-018-0015-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 02/16/2018] [Accepted: 03/15/2018] [Indexed: 12/19/2022] Open
Abstract
The transforming growth factor-β (TGF-β) family plays major pleiotropic roles by regulating many physiological processes in development and tissue homeostasis. The TGF-β signaling pathway outcome relies on the control of the spatial and temporal expression of >500 genes, which depend on the functions of the Smad protein along with those of diverse modulators of this signaling pathway, such as transcriptional factors and cofactors. Ski (Sloan-Kettering Institute) and SnoN (Ski novel) are Smad-interacting proteins that negatively regulate the TGF-β signaling pathway by disrupting the formation of R-Smad/Smad4 complexes, as well as by inhibiting Smad association with the p300/CBP coactivators. The Ski and SnoN transcriptional cofactors recruit diverse corepressors and histone deacetylases to repress gene transcription. The TGF-β/Smad pathway and coregulators Ski and SnoN clearly regulate each other through several positive and negative feedback mechanisms. Thus, these cross-regulatory processes finely modify the TGF-β signaling outcome as they control the magnitude and duration of the TGF-β signals. As a result, any alteration in these regulatory mechanisms may lead to disease development. Therefore, the design of targeted therapies to exert tight control of the levels of negative modulators of the TGF-β pathway, such as Ski and SnoN, is critical to restore cell homeostasis under the specific pathological conditions in which these cofactors are deregulated, such as fibrosis and cancer. Proteins that repress molecular signaling through the transforming growth factor-beta (TGF-β) pathway offer promising targets for treating cancer and fibrosis. Marina Macías-Silva and colleagues from the National Autonomous University of Mexico in Mexico City review the ways in which a pair of proteins, called Ski and SnoN, interact with downstream mediators of TGF-β to inhibit the effects of this master growth factor. Aberrant levels of Ski and SnoN have been linked to diverse range of diseases involving cell proliferation run amok, and therapies that regulate the expression of these proteins could help normalize TGF-β signaling to healthier physiological levels. For decades, drug companies have tried to target the TGF-β pathway, with limited success. Altering the activity of these repressors instead could provide a roundabout way of remedying pathogenic TGF-β activity in fibrosis and oncology.
Collapse
Affiliation(s)
- Angeles C Tecalco-Cruz
- 1Instituto de Investigaciones Biomédicas at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | - Diana G Ríos-López
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | | | - Reyna E Rosales-Alvarez
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | - Marina Macías-Silva
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| |
Collapse
|