1
|
Amiri EE, Tenger-Trolander A, Li M, Thomas Julian A, Kasan K, Sanders SA, Blythe S, Schmidt-Ott U. Conservation of symmetry breaking at the level of chromatin accessibility between fly species with unrelated anterior determinants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632851. [PMID: 39868093 PMCID: PMC11760685 DOI: 10.1101/2025.01.13.632851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Establishing the anterior-posterior body axis is a fundamental process during embryogenesis, and the fruit fly, Drosophila melanogaster, provides one of the best-known case studies of this process. In Drosophila, localized mRNA of bicoid serves as anterior determinant (AD). Bicoid engages in a concentration-dependent competition with nucleosomes and initiates symmetry-breaking along the AP axis by promoting chromatin accessibility at the loci of transcription factor (TF) genes that are expressed in the anterior of the embryo. However, ADs of other fly species are unrelated and structurally distinct, and little is known about how they function. We addressed this question in the moth fly, Clogmia albipunctata, in which a maternally expressed transcript isoform of the pair-rule segmentation gene odd-paired is localized in the anterior egg and has been co-opted as AD. We provide a de novo assembly and annotation of the Clogmia genome and describe how knockdown of zelda and maternal odd-paired transcript affect chromatin accessibility and expression of TF-encoding loci. The results of these experiments suggest direct roles of Cal-Zld in opening and closing chromatin during nuclear cleavage cycles and show that Clogmia's maternal odd-paired activity promotes chromatin accessibility and anterior expression during the early phase of zygotic genome activation at Clogmia's homeobrain and sloppy-paired loci. We conclude that unrelated dipteran ADs initiate anterior-posterior axis-specification at the level of enhancer accessibility and that homeobrain and sloppy-paired homologs may serve a more widely conserved role in the initiation of anterior pattern formation given their early anterior expression and function in head development in other insects.
Collapse
Affiliation(s)
- Ezra E. Amiri
- The University of Chicago, Department of Organismal Biology and Anatomy, 1027 East 57 Street, Chicago, Illinois 60637, USA
| | - Ayse Tenger-Trolander
- The University of Chicago, Department of Organismal Biology and Anatomy, 1027 East 57 Street, Chicago, Illinois 60637, USA
| | - Muzi Li
- The University of Chicago, Department of Organismal Biology and Anatomy, 1027 East 57 Street, Chicago, Illinois 60637, USA
| | - Alexander Thomas Julian
- Illinois Institute of Technology, Department of Biology, 3105 South Dearborn Street, Chicago, Illinois 60616, USA
| | - Koray Kasan
- The University of Chicago, Department of Organismal Biology and Anatomy, 1027 East 57 Street, Chicago, Illinois 60637, USA
| | - Sheri A. Sanders
- Notre Dame University, 252 Galvin Life Science Center/Freimann Life Science Center, Notre Dame, Indiana 46556, USA
| | - Shelby Blythe
- Northwestern University, Department of Molecular Biosciences, 2205 Tech Drive, Evanston, Illinois 60208, USA
- Northwestern University and The University of Chicago, National Institute for Theory and Mathematics in Biology, 875 North Michigan Avenue, Suite 3500, Chicago, Illinois 60611, USA
| | - Urs Schmidt-Ott
- The University of Chicago, Department of Organismal Biology and Anatomy, 1027 East 57 Street, Chicago, Illinois 60637, USA
| |
Collapse
|
2
|
Prpic NM, Pechmann M. Extraembryonic tissue in chelicerates: a review and outlook. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210269. [PMID: 36252223 PMCID: PMC9574639 DOI: 10.1098/rstb.2021.0269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/16/2022] [Indexed: 01/03/2023] Open
Abstract
The formation of extraembryonic membranes (EEMs) contributes to the proper development of many animals. In arthropods, the formation and function of EEMs have been studied best in insects. Regarding the development of extraembryonic tissue in chelicerates (spiders and relatives), most information is available for spiders (Araneae). Especially two populations of cells have been considered to represent EEMs in spiders. The first of these potential EEMs develops shortly after egg deposition, opposite to a radially symmetrical germ disc that forms in one hemisphere of the egg and encloses the yolk. The second tissue, which has been described as being extraembryonic is the so-called dorsal field, which is required to cover the dorsal part of the developing spider germ rudiment before proper dorsal closure. In this review, we summarize the current knowledge regarding the formation of potential extraembryonic structures in the Chelicerata. We describe the early embryogenesis of spiders and other chelicerates, with a special focus on the formation of the potential extraembryonic tissues. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.
Collapse
Affiliation(s)
- Nikola-Michael Prpic
- Justus-Liebig-Universitaet Giessen, Institut für Allgemeine Zoologie und Entwicklungsbiologie, AG Zoologie mit dem Schwerpunkt Molekulare Entwicklungsbiologie, Heinrich-Buff-Ring 38, 35392 Giessen, Germany
| | - Matthias Pechmann
- Institute for Zoology, University of Cologne, Biocenter, Zuelpicher Strasse 47b, 50674 Cologne, Germany
| |
Collapse
|
3
|
Schmidt-Ott U, Kwan CW. How two extraembryonic epithelia became one: serosa and amnion features and functions of Drosophila's amnioserosa. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210265. [PMID: 36252222 PMCID: PMC9574642 DOI: 10.1098/rstb.2021.0265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/30/2022] [Indexed: 01/19/2023] Open
Abstract
The conservation of gene networks that specify and differentiate distinct tissues has long been a subject of great interest to evolutionary developmental biologists, but the question of how pre-existing tissue-specific developmental trajectories merge is rarely asked. During the radiation of flies, two extraembryonic epithelia, known as serosa and amnion, evolved into one, called amnioserosa. This unique extraembryonic epithelium is found in fly species of the group Schizophora, including the genetic model organism Drosophila melanogaster, and has been studied in depth. Close relatives of this group develop a serosa and a rudimentary amnion. The scuttle fly Megaselia abdita has emerged as an excellent model organism to study this extraembryonic tissue organization. In this review, development and functions of the extraembryonic tissue complements of Drosophila and Megaselia are compared. It is concluded that the amnioserosa combines cells, genetic pathway components and functions that were previously associated either with serosa development or amnion development. The composite developmental trajectory of the amnioserosa raises the question of whether merging tissue-specific gene networks is a common evolutionary process. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.
Collapse
Affiliation(s)
- Urs Schmidt-Ott
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 East 57th Street, Chicago, IL 60637, USA
| | - Chun Wai Kwan
- Laboratory for Epithelial Morphogenesis, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
4
|
In toto light sheet fluorescence microscopy live imaging datasets of Ceratitis capitata embryonic development. Sci Data 2022; 9:340. [PMID: 35705572 PMCID: PMC9200851 DOI: 10.1038/s41597-022-01443-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/01/2022] [Indexed: 11/09/2022] Open
Abstract
The Mediterranean fruit fly (medfly), Ceratitis capitata, is an important model organism in biology and agricultural research with high economic relevance. However, information about its embryonic development is still sparse. We share nine long-term live imaging datasets acquired with light sheet fluorescence microscopy (484.5 h total recording time, 373 995 images, 256 Gb) with the scientific community. Six datasets show the embryonic development in toto for about 60 hours at 30 minutes intervals along four directions in three spatial dimensions, covering approximately 97% of the entire embryonic development period. Three datasets focus on germ cell formation and head involution. All imaged embryos hatched morphologically intact. Based on these data, we suggest a two-level staging system that functions as a morphogenetic framework for upcoming studies on medfly. Our data supports research on wild-type or aberrant morphogenesis, quantitative analyses, comparative approaches to insect development as well as studies related to pest control. Further, they can be used to test advanced image processing approaches or to train machine learning algorithms and/or neuronal networks.
Collapse
|
5
|
Lemke S, Kale G, Urbansky S. Comparing gastrulation in flies: Links between cell biology and the evolution of embryonic morphogenesis. Mech Dev 2020. [DOI: 10.1016/j.mod.2020.103648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Fan XB, Pang R, Li WX, Ojha A, Li D, Zhang WQ. An Overview of Embryogenesis: External Morphology and Transcriptome Profiling in the Hemipteran Insect Nilaparvata lugens. Front Physiol 2020; 11:106. [PMID: 32132932 PMCID: PMC7040246 DOI: 10.3389/fphys.2020.00106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/28/2020] [Indexed: 11/13/2022] Open
Abstract
During embryogenesis of insects, the morphological and transcriptional changes are important signatures to obtain a better understanding of insect patterning and evolution. The brown planthopper Nilaparvata lugens is a serious insect pest of rice plants, but its embryogenesis has not uncovered. Here, we described embryonic development process of the pest and found it belongs to an intermediate-germ mode. The RNA-seq data from different times (6, 30, 96, and 150 h, after egg laying) of embryogenesis were then analyzed, and a total of 10,895 genes were determined as differentially expressed genes (DEGs) based on pairwise comparisons. Afterward, 1,898 genes, differentially expressed in at least two comparisons of adjacent embryonic stages were divided into 10 clusters using K means cluster analysis (KMCA). Eight-gene modules were established using a weighted gene co-expression network analysis (WGCNA). Gene expression patterns in the different embryonic stages were identified by combining the functional enrichments of the stage-specific clusters and modules, which displayed the expression level and reprogramming of multiple developmental genes during embryogenesis. The "hub" genes at each embryonic stage with possible crucial roles were identified. Notably, we found a "center" set of genes that were related to overall membrane functions and might play important roles in the embryogenesis process. After parental RNAi of the MSTRG.3372, the hub gene, the embryo was observed as abnormal. Furthermore, some homologous genes in classic embryonic development processes and signaling pathways were also involved in embryogenesis of this insect. An improved comprehensive finding of embryogenesis within the N. lugens reveals better information on genetic and genomic studies of embryonic development and might be a potential target for RNAi-based control of this insect pest.
Collapse
Affiliation(s)
- Xiao-Bin Fan
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Rui Pang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Wan-Xue Li
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Abhishek Ojha
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dan Li
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wen-Qing Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
da Silva Gonçalves D, Iturbe-Ormaetxe I, Martins-da-Silva A, Telleria EL, Rocha MN, Traub-Csekö YM, O'Neill SL, Sant'Anna MRV, Moreira LA. Wolbachia introduction into Lutzomyia longipalpis (Diptera: Psychodidae) cell lines and its effects on immune-related gene expression and interaction with Leishmania infantum. Parasit Vectors 2019; 12:33. [PMID: 30646951 PMCID: PMC6332621 DOI: 10.1186/s13071-018-3227-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 11/21/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The leishmaniases are important neglected diseases caused by Leishmania spp. which are transmitted by sand flies, Lutzomyia longipalpis being the main vector of visceral leishmaniasis in the Americas. The methodologies for leishmaniasis control are not efficient, causing 1.5 million reported cases annually worldwide, therefore showing the need for development of novel strategies and interventions to control transmission of the disease. The bacterium Wolbachia pipientis is being used to control viruses transmitted by mosquitoes, such as dengue and Zika, and its introduction in disease vectors has been effective against parasites such as Plasmodium. Here we show the first successful establishment of Wolbachia into two different embryonic cell lines from L. longipalpis, LL-5 and Lulo, and analysed its effects on the sand fly innate immune system, followed by in vitro Leishmania infantum interaction. RESULTS Our results show that LL-5 cells respond to wMel and wMelPop-CLA strains within the first 72 h post-infection, through the expression of antimicrobial peptides and inducible nitric oxide synthase resulting in a decrease of Wolbachia detection in the early stages of infection. In subsequent passages, the wMel strain was not able to infect any of the sand fly cell lines while the wMelPop-CLA strain was able to stably infect Lulo cells and LL-5 at lower levels. In Wolbachia stably infected cells, the expression of immune-related genes involved with downregulation of the IMD, Toll and Jak-Stat innate immune pathways was significantly decreased, in comparison with the uninfected control, suggesting immune activation upon Wolbachia transinfection. Furthermore, Wolbachia transinfection did not promote a negative effect on parasite load in those cells. CONCLUSIONS Initial strong immune responses of LL5 cells might explain the inefficiency of stable infections in these cells while we found that Lulo cells are more permissive to infection with Wolbachia causing an effect on the cell immune system, but not against in vitro L. infantum interaction. This establishes Lulo cells as a good system for the adaptation of Wolbachia in L. longipalpis.
Collapse
Affiliation(s)
- Daniela da Silva Gonçalves
- Grupo Mosquitos Vetores: Endossimbiontes e Interação Patógeno Vetor, Centro de Pesquisas René Rachou - Fundação Oswaldo Cruz, Av. Augusto de Lima 1715, 30190-002. Belo Horizonte, Belo Horizonte, MG, Brazil
| | - Iñaki Iturbe-Ormaetxe
- World Mosquito Program, Institute of Vector-Borne Disease, Monash University, 12 Innovation Walk, Clayton, VIC, 3800, Australia
| | - Andrea Martins-da-Silva
- Laboratório de Biologia Molecular de Parasitos e Vetores, Instituto Oswaldo Cruz - Fundação Oswaldo Cruz, Av. Brasil, 4365, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Erich Loza Telleria
- Laboratório de Biologia Molecular de Parasitos e Vetores, Instituto Oswaldo Cruz - Fundação Oswaldo Cruz, Av. Brasil, 4365, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Marcele Neves Rocha
- Grupo Mosquitos Vetores: Endossimbiontes e Interação Patógeno Vetor, Centro de Pesquisas René Rachou - Fundação Oswaldo Cruz, Av. Augusto de Lima 1715, 30190-002. Belo Horizonte, Belo Horizonte, MG, Brazil
| | - Yara M Traub-Csekö
- Laboratório de Biologia Molecular de Parasitos e Vetores, Instituto Oswaldo Cruz - Fundação Oswaldo Cruz, Av. Brasil, 4365, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Scott L O'Neill
- World Mosquito Program, Institute of Vector-Borne Disease, Monash University, 12 Innovation Walk, Clayton, VIC, 3800, Australia
| | - Maurício Roberto Viana Sant'Anna
- Laboratório de Insetos Hematófagos, Departamento de Parasitologia, Instituto de Ciências Biológicas/UFMG, Av. Antônio Carlos, 6627, 31270-901. Belo Horizonte, Belo Horizonte, MG, Brazil
| | - Luciano Andrade Moreira
- Grupo Mosquitos Vetores: Endossimbiontes e Interação Patógeno Vetor, Centro de Pesquisas René Rachou - Fundação Oswaldo Cruz, Av. Augusto de Lima 1715, 30190-002. Belo Horizonte, Belo Horizonte, MG, Brazil.
| |
Collapse
|
8
|
Caroti F, González Avalos E, Noeske V, González Avalos P, Kromm D, Wosch M, Schütz L, Hufnagel L, Lemke S. Decoupling from yolk sac is required for extraembryonic tissue spreading in the scuttle fly Megaselia abdita. eLife 2018; 7:34616. [PMID: 30375972 PMCID: PMC6231767 DOI: 10.7554/elife.34616] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 10/24/2018] [Indexed: 12/12/2022] Open
Abstract
Extraembryonic tissues contribute to animal development, which often entails spreading over embryo or yolk. Apart from changes in cell shape, the requirements for this tissue spreading are not well understood. Here, we analyze spreading of the extraembryonic serosa in the scuttle fly Megaselia abdita. The serosa forms from a columnar blastoderm anlage, becomes a squamous epithelium, and eventually spreads over the embryo proper. We describe the dynamics of this process in long-term, whole-embryo time-lapse recordings, demonstrating that free serosa spreading is preceded by a prolonged pause in tissue expansion. Closer examination of this pause reveals mechanical coupling to the underlying yolk sac, which is later released. We find mechanical coupling prolonged and serosa spreading impaired after knockdown of M. abdita Matrix metalloprotease 1. We conclude that tissue–tissue interactions provide a critical functional element to constrain spreading epithelia.
Collapse
Affiliation(s)
| | | | - Viola Noeske
- Centre for Organismal Studies Heidelberg, Heidelberg, Germany
| | | | - Dimitri Kromm
- European Molecular Biology Laboratory, Heidelberg, Germany.,Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Maike Wosch
- Centre for Organismal Studies Heidelberg, Heidelberg, Germany
| | - Lucas Schütz
- Centre for Organismal Studies Heidelberg, Heidelberg, Germany
| | - Lars Hufnagel
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Steffen Lemke
- Centre for Organismal Studies Heidelberg, Heidelberg, Germany
| |
Collapse
|
9
|
Dobreva MP, Abon Escalona V, Lawson KA, Sanchez MN, Ponomarev LC, Pereira PNG, Stryjewska A, Criem N, Huylebroeck D, Chuva de Sousa Lopes SM, Aerts S, Zwijsen A. Amniotic ectoderm expansion in mouse occurs via distinct modes and requires SMAD5-mediated signalling. Development 2018; 145:dev.157222. [PMID: 29884675 DOI: 10.1242/dev.157222] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 05/30/2018] [Indexed: 12/18/2022]
Abstract
Upon gastrulation, the mammalian conceptus transforms rapidly from a simple bilayer into a multilayered embryo enveloped by its extra-embryonic membranes. Impaired development of the amnion, the innermost membrane, causes major malformations. To clarify the origin of the mouse amnion, we used single-cell labelling and clonal analysis. We identified four clone types with distinct clonal growth patterns in amniotic ectoderm. Two main types have progenitors in extreme proximal-anterior epiblast. Early descendants initiate and expand amniotic ectoderm posteriorly, while descendants of cells remaining anteriorly later expand amniotic ectoderm from its anterior side. Amniogenesis is abnormal in embryos deficient in the bone morphogenetic protein (BMP) signalling effector SMAD5, with delayed closure of the proamniotic canal, and aberrant amnion and folding morphogenesis. Transcriptomics of individual Smad5 mutant amnions isolated before visible malformations and tetraploid chimera analysis revealed two amnion defect sets. We attribute them to impairment of progenitors of the two main cell populations in amniotic ectoderm and to compromised cuboidal-to-squamous transition of anterior amniotic ectoderm. In both cases, SMAD5 is crucial for expanding amniotic ectoderm rapidly into a stretchable squamous sheet to accommodate exocoelom expansion, axial growth and folding morphogenesis.
Collapse
Affiliation(s)
- Mariya P Dobreva
- VIB-KU Leuven Center for Brain and Disease Research, Leuven 3000, Belgium .,Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Vanesa Abon Escalona
- VIB-KU Leuven Center for Brain and Disease Research, Leuven 3000, Belgium.,Department of Human Genetics, KU Leuven, Leuven 3000, Belgium.,Department of Cardiovascular Sciences, KU Leuven, Leuven 3000, Belgium
| | - Kirstie A Lawson
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | | | - Ljuba C Ponomarev
- Department of Cardiovascular Sciences, KU Leuven, Leuven 3000, Belgium
| | - Paulo N G Pereira
- VIB-KU Leuven Center for Brain and Disease Research, Leuven 3000, Belgium.,Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Agata Stryjewska
- Department of Development and Regeneration, KU Leuven, Leuven 3000, Belgium
| | - Nathan Criem
- VIB-KU Leuven Center for Brain and Disease Research, Leuven 3000, Belgium.,Department of Human Genetics, KU Leuven, Leuven 3000, Belgium.,Department of Cardiovascular Sciences, KU Leuven, Leuven 3000, Belgium
| | - Danny Huylebroeck
- Department of Development and Regeneration, KU Leuven, Leuven 3000, Belgium
| | | | - Stein Aerts
- Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - An Zwijsen
- VIB-KU Leuven Center for Brain and Disease Research, Leuven 3000, Belgium .,Department of Human Genetics, KU Leuven, Leuven 3000, Belgium.,Department of Cardiovascular Sciences, KU Leuven, Leuven 3000, Belgium
| |
Collapse
|
10
|
Benton MA. A revised understanding of Tribolium morphogenesis further reconciles short and long germ development. PLoS Biol 2018; 16:e2005093. [PMID: 29969459 PMCID: PMC6047830 DOI: 10.1371/journal.pbio.2005093] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 07/16/2018] [Accepted: 06/15/2018] [Indexed: 11/19/2022] Open
Abstract
In Drosophila melanogaster, the germband forms directly on the egg surface and solely consists of embryonic tissue. In contrast, most insect embryos undergo a complicated set of tissue rearrangements to generate a condensed, multilayered germband. The ventral side of the germband is embryonic, while the dorsal side is thought to be an extraembryonic tissue called the amnion. While this tissue organisation has been accepted for decades and has been widely reported in insects, its accuracy has not been directly tested in any species. Using live cell tracking and differential cell labelling in the short germ beetle Tribolium castaneum, I show that most of the cells previously thought to be amnion actually give rise to large parts of the embryo. This process occurs via the dorsal-to-ventral flow of cells and contributes to germband extension (GBE). In addition, I show that true 'amnion' cells in Tribolium originate from a small region of the blastoderm. Together, my findings show that development in the short germ embryos of Tribolium and the long germ embryos of Drosophila is more similar than previously proposed. Dorsal-to-ventral cell flow also occurs in Drosophila during GBE, and I argue that the flow is driven by a conserved set of underlying morphogenetic events in both species. Furthermore, the revised Tribolium fate map that I present is far more similar to that of Drosophila than the classic Tribolium fate map. Lastly, my findings show that there is no qualitative difference between the tissue structure of the cellularised blastoderm and the short/intermediate germ germband. As such, the same tissue patterning mechanisms could function continuously throughout the cellularised blastoderm and germband stages, and easily shift between them over evolutionary time.
Collapse
|
11
|
The dorsoventral patterning of Musca domestica embryos: insights into BMP/Dpp evolution from the base of the lower cyclorraphan flies. EvoDevo 2018; 9:13. [PMID: 29796243 PMCID: PMC5956798 DOI: 10.1186/s13227-018-0102-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/06/2018] [Indexed: 01/09/2023] Open
Abstract
Background In the last few years, accumulated information has indicated that the evolution of an extra-embryonic membrane in dipterans was accompanied by changes in the gene regulatory network controlled by the BMP/Dpp pathway, which is responsible for dorsal patterning in these insects. However, only comparative analysis of gene expression levels between distant species with two extra-embryonic membranes, like A. gambiae or C. albipunctata, and D. melanogaster, has been conducted. Analysis of gene expression in ancestral species, which evolved closer to the amnioserosa origin, could provide new insights into the evolution of dorsoventral patterning in dipterans. Results Here we describe the spatial expression of several key and downstream elements of the Dpp pathway and show the compared patterns of expression between Musca and Drosophila embryos, both dipterans with amnioserosa. Most of the analyzed gene showed a high degree of expression conservation, however, we found several differences in the gene expression pattern of M. domestica orthologs for sog and tolloid. Bioinformatics analysis of the promoter of both genes indicated that the variations could be related to the gain of several binding sites for the transcriptional factor Dorsal in the Md.tld promoter and Snail in the Md.sog enhancer. These altered expressions could explain the unclear formation of the pMad gradient in the M. domestica embryo, compared to the formation of the gradient in D. melanogaster. Conclusion Gene expression changes during the dorsal–ventral patterning in insects contribute to the differentiation of extra-embryonic tissues as a consequence of changes in the gene regulatory network controlled by BMP/Dpp. In this work, in early M. domestica embryos, we identified the expression pattern of several genes members involved in the dorsoventral specification of the embryo. We believe that these data can contribute to understanding the evolution of the BMP/Dpp pathway, the regulation of BMP ligands, and the formation of a Dpp gradient in higher cyclorraphan flies. Electronic supplementary material The online version of this article (10.1186/s13227-018-0102-5) contains supplementary material, which is available to authorized users.
Collapse
|
12
|
Fraire-Zamora JJ, Jaeger J, Solon J. Two consecutive microtubule-based epithelial seaming events mediate dorsal closure in the scuttle fly Megaselia abdita. eLife 2018. [PMID: 29537962 PMCID: PMC5851697 DOI: 10.7554/elife.33807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Evolution of morphogenesis is generally associated with changes in genetic regulation. Here, we report evidence indicating that dorsal closure, a conserved morphogenetic process in dipterans, evolved as the consequence of rearrangements in epithelial organization rather than signaling regulation. In Drosophila melanogaster, dorsal closure consists of a two-tissue system where the contraction of extraembryonic amnioserosa and a JNK/Dpp-dependent epidermal actomyosin cable result in microtubule-dependent seaming of the epidermis. We find that dorsal closure in Megaselia abdita, a three-tissue system comprising serosa, amnion and epidermis, differs in morphogenetic rearrangements despite conservation of JNK/Dpp signaling. In addition to an actomyosin cable, M. abdita dorsal closure is driven by the rupture and contraction of the serosa and the consecutive microtubule-dependent seaming of amnion and epidermis. Our study indicates that the evolutionary transition to a reduced system of dorsal closure involves simplification of the seaming process without changing the signaling pathways of closure progression.
Collapse
Affiliation(s)
- Juan Jose Fraire-Zamora
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Johannes Jaeger
- Universitat Pompeu Fabra, Barcelona, Spain.,System Biology Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Konrad Lorenz Institute for Evolution and Cognition Research (KLI), Klosterneuburg, Austria
| | - Jérôme Solon
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
13
|
Wotton KR, Alcaine-Colet A, Jaeger J, Jiménez-Guri E. Non-canonical dorsoventral patterning in the moth midge Clogmia albipunctata. EvoDevo 2017; 8:20. [PMID: 29158889 PMCID: PMC5683363 DOI: 10.1186/s13227-017-0083-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 11/03/2017] [Indexed: 11/20/2022] Open
Abstract
Background Bone morphogenetic proteins (BMPs) are of central importance for dorsal–ventral (DV) axis specification. They are core components of a signalling cascade that includes the BMP ligand decapentaplegic (DPP) and its antagonist short gastrulation (SOG) in Drosophila melanogaster. These components are very ancient, with orthologs involved in DV patterning in both protostomes and deuterostomes. Despite such strong conservation, recent comparative work in insects has revealed interesting differences in the way the patterning function of the DV system is achieved in different species. Results In this paper, we characterise the expression patterns of the principal components of the BMP DV patterning system, as well as its signalling outputs and downstream targets, in the non-cyclorrhaphan moth midge Clogmia albipunctata (Diptera: Psychodidae). We previously reported ventral expression patterns of dpp in the pole regions of C. albipunctata blastoderm embryos. Strikingly, we also find ventral sog and posteriorly restricted tkv expression, as well as expanded polar activity of pMad. We use our results from gene knock-down by embryonic RNA interference to propose a mechanism of polar morphogen shuttling in C. albipunctata. We compare these results to available data from other species and discuss scenarios for the evolution of DV signalling in the holometabolan insects. Conclusions A comparison of gene expression patterns across hemipteran and holometabolan insects reveals that expression of upstream signalling factors in the DV system is very variable, while signalling output is highly conserved. This has two major implications: first, as long as ligand shuttling and other upstream regulatory mechanisms lead to an appropriately localised activation of BMP signalling at the dorsal midline, it is of less importance exactly where the upstream components of the DV system are expressed. This, in turn, explains why the early-acting components of the DV patterning system in insects exhibit extensive amounts of developmental systems drift constrained by highly conserved downstream signalling output.
Collapse
Affiliation(s)
- Karl R Wotton
- EMBL/CRG Research Unit in Systems Biology, Centre de Regulació Genòmica (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Present Address: Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, Cornwall TR10 9EZ UK
| | - Anna Alcaine-Colet
- EMBL/CRG Research Unit in Systems Biology, Centre de Regulació Genòmica (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Johannes Jaeger
- EMBL/CRG Research Unit in Systems Biology, Centre de Regulació Genòmica (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Present Address: Complexity Science Hub Vienna, Josefstädter Straße 39, 1080 Vienna, Austria
| | - Eva Jiménez-Guri
- EMBL/CRG Research Unit in Systems Biology, Centre de Regulació Genòmica (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Present Address: Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, Cornwall TR10 9EZ UK
| |
Collapse
|
14
|
Kwan CW, Gavin-Smyth J, Ferguson EL, Schmidt-Ott U. Functional evolution of a morphogenetic gradient. eLife 2016; 5:e20894. [PMID: 28005004 PMCID: PMC5224919 DOI: 10.7554/elife.20894] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/20/2016] [Indexed: 01/08/2023] Open
Abstract
Bone Morphogenetic Proteins (BMPs) pattern the dorsal-ventral axis of bilaterian embryos; however, their roles in the evolution of body plan are largely unknown. We examined their functional evolution in fly embryos. BMP signaling specifies two extraembryonic tissues, the serosa and amnion, in basal-branching flies such as Megaselia abdita, but only one, the amnioserosa, in Drosophila melanogaster. The BMP signaling dynamics are similar in both species until the beginning of gastrulation, when BMP signaling broadens and intensifies at the edge of the germ rudiment in Megaselia, while remaining static in Drosophila. Here we show that the differences in gradient dynamics and tissue specification result from evolutionary changes in the gene regulatory network that controls the activity of a positive feedback circuit on BMP signaling, involving the tumor necrosis factor alpha homolog eiger. These data illustrate an evolutionary mechanism by which spatiotemporal changes in morphogen gradients can guide tissue complexity.
Collapse
Affiliation(s)
- Chun Wai Kwan
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, United States
| | - Jackie Gavin-Smyth
- Department of Ecology and Evolution, University of Chicago, Chicago, United States
| | - Edwin L Ferguson
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, United States
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, United States
| | - Urs Schmidt-Ott
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, United States
| |
Collapse
|
15
|
Urbansky S, González Avalos P, Wosch M, Lemke S. Folded gastrulation and T48 drive the evolution of coordinated mesoderm internalization in flies. eLife 2016; 5. [PMID: 27685537 PMCID: PMC5042651 DOI: 10.7554/elife.18318] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/30/2016] [Indexed: 12/17/2022] Open
Abstract
Gastrulation constitutes a fundamental yet diverse morphogenetic process of metazoan development. Modes of gastrulation range from stochastic translocation of individual cells to coordinated infolding of an epithelial sheet. How such morphogenetic differences are genetically encoded and whether they have provided specific developmental advantages is unclear. Here we identify two genes, folded gastrulation and t48, which in the evolution of fly gastrulation acted as a likely switch from an ingression of individual cells to the invagination of the blastoderm epithelium. Both genes are expressed and required for mesoderm invagination in the fruit fly Drosophila melanogaster but do not appear during mesoderm ingression of the midge Chironomus riparius. We demonstrate that early expression of either or both of these genes in C.riparius is sufficient to invoke mesoderm invagination similar to D.melanogaster. The possible genetic simplicity and a measurable increase in developmental robustness might explain repeated evolution of similar transitions in animal gastrulation. DOI:http://dx.doi.org/10.7554/eLife.18318.001 In animals, gastrulation is a period of time in early development during which a sphere of cells is reorganized into an embryo with cells arranged into three distinct layers (called germ layers). The process has changed substantially during the course of evolution and thus provides a great experimental system to investigate the genetic basis for differences in animal form and shape. As an example, true flies use at least two different mechanisms to make the middle germ layer (the mesoderm). In both cases, the mesoderm is made up of cells that move inwards from the boundary of the outer germ layer. In midges and some other flies, these cells migrate individually, while in others including fruit flies, the cells move together as a sheet. Fruit flies and midges shared their last common ancestor 250 million years ago and although the genes that make the mesoderm in fruit flies are well understood, little is known about how the mesoderm forms in midges. Urbansky, González Avalos et al. investigated which genes were responsible for the evolutionary transition between the different types of cell migration seen in flies. The experiments identified two genes – called folded gastrulation and t48 – that seem to operate as a simple switch between the two ways that mesoderm cells migrate. Both of these genes are active in fruit fly embryos and are required for the group migration of mesoderm cells. However, the genes do not appear to play a major role in the movement of individual mesoderm cells in midges. Further experiments demonstrate that switching on these genes in midge embryos is sufficient to invoke group mesoderm cell migrations similar to those seen in fruit flies. These findings show that it is possible to identify genetic changes that underlie substantial differences in animal form and shape over hundred million of years. The ease by which Urbansky, González Avalos et al. were able to switch between the two types of mesoderm migration might explain why similar transitions in gastrulation have evolved repeatedly in animals. The next step is to test this hypothesis in other animals. DOI:http://dx.doi.org/10.7554/eLife.18318.002
Collapse
Affiliation(s)
- Silvia Urbansky
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Paula González Avalos
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Maike Wosch
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Steffen Lemke
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
16
|
Tauscher PM, Gui J, Shimmi O. Adaptive protein divergence of BMP ligands takes place under developmental and evolutionary constraints. Development 2016; 143:3742-3750. [PMID: 27578781 DOI: 10.1242/dev.130427] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 08/17/2016] [Indexed: 11/20/2022]
Abstract
The bone morphogenetic protein (BMP) signaling network, comprising evolutionary conserved BMP2/4/Decapentaplegic (Dpp) and Chordin/Short gastrulation (Sog), is widely utilized for dorsal-ventral (DV) patterning during animal development. A similar network is required for posterior crossvein (PCV) formation in the Drosophila pupal wing. Although both transcriptional and post-transcriptional regulation of co-factors in the network gives rise to tissue-specific and species-specific properties, their mechanisms are incompletely understood. In Drosophila, BMP5/6/7/8-type ligands, Screw (Scw) and Glass bottom boat (Gbb), form heterodimers with Dpp for DV patterning and PCV development, respectively. Sequence analysis indicates that the Scw ligand contains two N-glycosylation motifs: one being highly conserved between BMP2/4- and BMP5/6/7/8-type ligands, and the other being Scw ligand specific. Our data reveal that N-glycosylation of the Scw ligand boosts BMP signaling both in cell culture and in the embryo. In contrast, N-glycosylation modifications of Gbb or Scw ligands reduce the consistency of PCV development. These results suggest that tolerance for structural changes of BMP5/6/7/8-type ligands is dependent on developmental constraints. Furthermore, gain and loss of N-glycosylation motifs in conserved signaling molecules under evolutionary constraints appear to constitute flexible modules to adapt to developmental processes.
Collapse
Affiliation(s)
- Petra M Tauscher
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| | - Jinghua Gui
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| | - Osamu Shimmi
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
17
|
Horn T, Panfilio KA. Novel functions for Dorsocross in epithelial morphogenesis in the beetle Tribolium castaneum. Development 2016; 143:3002-11. [PMID: 27407103 DOI: 10.1242/dev.133280] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 07/07/2016] [Indexed: 10/21/2022]
Abstract
Epithelial morphogenesis, the progressive restructuring of tissue sheets, is fundamental to embryogenesis. In insects, not only embryonic tissues but also extraembryonic (EE) epithelia play a crucial role in shaping the embryo. In Drosophila, the T-box transcription factor Dorsocross (Doc) is essential for EE tissue maintenance and therefore embryo survival. However, Drosophila possesses a single amnioserosa, whereas most insects have a distinct amnion and serosa. How does this derived situation compare with Doc function in the ancestral context of two EE epithelia? Here, we investigate the Doc orthologue in the red flour beetle, Tribolium castaneum, which is an excellent model for EE tissue complement and for functional, fluorescent live imaging approaches. Surprisingly, we find that Tc-Doc controls all major events in Tribolium EE morphogenesis without affecting EE tissue specification or maintenance. These macroevolutionary changes in function between Tribolium and Drosophila are accompanied by regulatory network changes, where BMP signaling and possibly the transcription factor Hindsight are downstream mediators. We propose that the ancestral role of Doc was to control morphogenesis and discuss how Tc-Doc could provide spatial precision for remodeling the amnion-serosa border.
Collapse
Affiliation(s)
- Thorsten Horn
- Institute for Developmental Biology, University of Cologne, Zülpicher Str. 47b, Cologne 50674, Germany
| | - Kristen A Panfilio
- Institute for Developmental Biology, University of Cologne, Zülpicher Str. 47b, Cologne 50674, Germany
| |
Collapse
|
18
|
Schmidt-Ott U, Lynch JA. Emerging developmental genetic model systems in holometabolous insects. Curr Opin Genet Dev 2016; 39:116-128. [PMID: 27399647 DOI: 10.1016/j.gde.2016.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/25/2016] [Accepted: 06/08/2016] [Indexed: 01/08/2023]
Abstract
The number of insect species that are amenable to functional genetic studies is growing rapidly and provides many new research opportunities in developmental and evolutionary biology. The holometabolous insects represent a disproportionate percentage of animal diversity and are thus well positioned to provide model species for a wide variety of developmental processes. Here we discuss emerging holometabolous models, and review some recent breakthroughs. For example, flies and midges were found to use structurally unrelated long-range pattern organizers, butterflies and moths revealed extensive pattern formation during oogenesis, new imaging possibilities in the flour beetle Tribolium castaneum showed how embryos break free of their extraembryonic membranes, and the complex genetics governing interspecies difference in head shape were revealed in Nasonia wasps.
Collapse
Affiliation(s)
- Urs Schmidt-Ott
- Department of Organismal Biology and Anatomy, University of Chicago, United States.
| | - Jeremy A Lynch
- Department of Biological Sciences, University of Illinois at Chicago, United States.
| |
Collapse
|
19
|
Lacy ME, Hutson MS. Amnioserosa development and function in Drosophila embryogenesis: Critical mechanical roles for an extraembryonic tissue. Dev Dyn 2016; 245:558-68. [PMID: 26878336 DOI: 10.1002/dvdy.24395] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 11/07/2022] Open
Abstract
Despite being a short-lived, extraembryonic tissue, the amnioserosa plays critical roles in the major morphogenetic events of Drosophila embryogenesis. These roles involve both cellular mechanics and biochemical signaling. Its best-known role is in dorsal closure-well studied by both developmental biologists and biophysicists-but the amnioserosa is also important during earlier developmental stages. Here, we provide an overview of amnioserosa specification and its role in several key developmental stages: germ band extension, germ band retraction, and dorsal closure. We also compare embryonic development in Drosophila and its relative Megaselia to highlight how the amnioserosa and its roles have evolved. Placed in context, the amnioserosa provides a fascinating example of how signaling, mechanics, and morphogen patterns govern cell-type specification and subsequent morphogenetic changes in cell shape, orientation, and movement. Developmental Dynamics 245:558-568, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Monica E Lacy
- Department of Physics & Astronomy, Vanderbilt University, Nashville, Tennessee
| | - M Shane Hutson
- Department of Physics & Astronomy, Vanderbilt University, Nashville, Tennessee.,Vanderbilt Institute for Integrative Biosystems Research & Education, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
20
|
Hilbrant M, Horn T, Koelzer S, Panfilio KA. The beetle amnion and serosa functionally interact as apposed epithelia. eLife 2016; 5. [PMID: 26824390 PMCID: PMC4786423 DOI: 10.7554/elife.13834] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 01/28/2016] [Indexed: 12/21/2022] Open
Abstract
Unlike passive rupture of the human chorioamnion at birth, the insect extraembryonic (EE) tissues - the amnion and serosa - actively rupture and withdraw in late embryogenesis. Withdrawal is essential for development and has been a morphogenetic puzzle. Here, we use new fluorescent transgenic lines in the beetle Tribolium castaneum to show that the EE tissues dynamically form a basal-basal epithelial bilayer, contradicting the previous hypothesis of EE intercalation. We find that the EE tissues repeatedly detach and reattach throughout development and have distinct roles. Quantitative live imaging analyses show that the amnion initiates EE rupture in a specialized anterior-ventral cap. RNAi phenotypes demonstrate that the serosa contracts autonomously. Thus, apposition in a bilayer enables the amnion as 'initiator' to coordinate with the serosa as 'driver' to achieve withdrawal. This EE strategy may reflect evolutionary changes within the holometabolous insects and serves as a model to study interactions between developing epithelia.
Collapse
Affiliation(s)
- Maarten Hilbrant
- Institute for Developmental Biology, University of Cologne, Cologne, Germany
| | - Thorsten Horn
- Institute for Developmental Biology, University of Cologne, Cologne, Germany
| | - Stefan Koelzer
- Institute for Developmental Biology, University of Cologne, Cologne, Germany
| | - Kristen A Panfilio
- Institute for Developmental Biology, University of Cologne, Cologne, Germany
| |
Collapse
|
21
|
Bier E, De Robertis EM. BMP gradients: A paradigm for morphogen-mediated developmental patterning. Science 2015; 348:aaa5838. [DOI: 10.1126/science.aaa5838] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Caroti F, Urbansky S, Wosch M, Lemke S. Germ line transformation and in vivo labeling of nuclei in Diptera: report on Megaselia abdita (Phoridae) and Chironomus riparius (Chironomidae). Dev Genes Evol 2015; 225:179-86. [PMID: 26044750 PMCID: PMC4460289 DOI: 10.1007/s00427-015-0504-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 05/20/2015] [Indexed: 11/28/2022]
Abstract
To understand how and when developmental traits of the fruit fly Drosophila melanogaster originated during the course of insect evolution, similar traits are functionally studied in variably related satellite species. The experimental toolkit available for relevant fly models typically comprises gene expression and loss as well as gain-of-function analyses. Here, we extend the set of available molecular tools to piggyBac-based germ line transformation in two satellite fly models, Megaselia abdita and Chironomus riparius. As proof-of-concept application, we used a Gateway variant of the piggyBac transposon vector pBac{3xP3-eGFPafm} to generate a transgenic line that expresses His2Av-mCherry as fluorescent nuclear reporter ubiquitously in the gastrulating embryo of M. abdita. Our results open two phylogenetically important nodes of the insect order Diptera for advanced developmental evolutionary genetics.
Collapse
Affiliation(s)
- Francesca Caroti
- Centre for Organismal Studies, Universität Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Silvia Urbansky
- Centre for Organismal Studies, Universität Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Maike Wosch
- Centre for Organismal Studies, Universität Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Steffen Lemke
- Centre for Organismal Studies, Universität Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| |
Collapse
|
23
|
Cicin-Sain D, Pulido AH, Crombach A, Wotton KR, Jiménez-Guri E, Taly JF, Roma G, Jaeger J. SuperFly: a comparative database for quantified spatio-temporal gene expression patterns in early dipteran embryos. Nucleic Acids Res 2014; 43:D751-5. [PMID: 25404137 PMCID: PMC4383950 DOI: 10.1093/nar/gku1142] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We present SuperFly (http://superfly.crg.eu), a relational database for quantified spatio-temporal expression data of segmentation genes during early development in different species of dipteran insects (flies, midges and mosquitoes). SuperFly has a special focus on emerging non-drosophilid model systems. The database currently includes data of high spatio-temporal resolution for three species: the vinegar fly Drosophila melanogaster, the scuttle fly Megaselia abdita and the moth midge Clogmia albipunctata. At this point, SuperFly covers up to 9 genes and 16 time points per species, with a total of 1823 individual embryos. It provides an intuitive web interface, enabling the user to query and access original embryo images, quantified expression profiles, extracted positions of expression boundaries and integrated datasets, plus metadata and intermediate processing steps. SuperFly is a valuable new resource for the quantitative comparative study of gene expression patterns across dipteran species. Moreover, it provides an interesting test set for systems biologists interested in fitting mathematical gene network models to data. Both of these aspects are essential ingredients for progress toward a more quantitative and mechanistic understanding of developmental evolution.
Collapse
Affiliation(s)
- Damjan Cicin-Sain
- EMBL/CRG Research Unit in Systems Biology, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain Bioinformatics Core Facility, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain
| | - Antonio Hermoso Pulido
- Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain Bioinformatics Core Facility, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain
| | - Anton Crombach
- EMBL/CRG Research Unit in Systems Biology, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain Bioinformatics Core Facility, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain
| | - Karl R Wotton
- EMBL/CRG Research Unit in Systems Biology, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain Bioinformatics Core Facility, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain
| | - Eva Jiménez-Guri
- EMBL/CRG Research Unit in Systems Biology, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain Bioinformatics Core Facility, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain
| | - Jean-François Taly
- Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain Bioinformatics Core Facility, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain
| | - Guglielmo Roma
- Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain Bioinformatics Core Facility, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain
| | - Johannes Jaeger
- EMBL/CRG Research Unit in Systems Biology, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain Bioinformatics Core Facility, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain
| |
Collapse
|
24
|
Toll signals regulate dorsal-ventral patterning and anterior-posterior placement of the embryo in the hemipteran Rhodnius prolixus. EvoDevo 2014; 5:38. [PMID: 25908955 PMCID: PMC4407881 DOI: 10.1186/2041-9139-5-38] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 09/11/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Insect embryonic dorso-ventral patterning depends greatly on two pathways: the Toll pathway and the Bone Morphogenetic Protein pathway. While the relative contribution of each pathway has been investigated in holometabolous insects, their role has not been explored in insects with a hemimetabolous type of development. The hemimetabolous insect Rhodnius prolixus, an important vector of Chagas disease in the Americas, develops from an intermediate germ band and displays complex movements during katatrepsis that are not observed in other orders. However, little is known about the molecular events that regulate its embryogenesis. Here we investigate the expression and function of genes potentially involved in the initial patterning events that establish the embryonic dorso-ventral axis in this hemipteran. RESULTS We establish a staging system for early embryogenesis that allows us to correlate embryo morphology with gene expression profiles. Using this system, we investigate the role of Toll pathway genes during embryogenesis. Detailed analyses of gene expression throughout development, coupled with functional analyses using parental RNA interference, revealed that maternal Toll is required to establish germ layers along the dorso-ventral axis and for embryo placement along the anterior-posterior axis. Interestingly, knockdown of the Toll pathway effector Rp-dorsal appears to regulate the expression of the Bone Morphogenetic Protein antagonist Rp-short-gastrulation. CONCLUSIONS Our results indicate that Toll signals are the initiating event in dorso-ventral patterning during Rhodnius embryogenesis, and this is the first report of a conserved role for Toll in a hemipteran. Furthermore, as Rp-dorsal RNA interference generates anteriorly misplaced embryos, our results indicate a novel role for Toll signals in establishment of the anterior-posterior axis in Rhodnius.
Collapse
|
25
|
Wilson MJ, Kenny NJ, Dearden PK. Components of the dorsal-ventral pathway also contribute to anterior-posterior patterning in honeybee embryos (Apis mellifera). EvoDevo 2014; 5:11. [PMID: 24620747 PMCID: PMC3995682 DOI: 10.1186/2041-9139-5-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 01/20/2014] [Indexed: 01/27/2023] Open
Abstract
Background A key early step in embryogenesis is the establishment of the major body axes; the dorsal-ventral (DV) and anterior-posterior (AP) axes. Determination of these axes in some insects requires the function of different sets of signalling pathways for each axis. Patterning across the DV axis requires interaction between the Toll and Dpp/TGF-β pathways, whereas patterning across the AP axis requires gradients of bicoid/orthodenticle proteins and the actions of a hierarchy of gene transcription factors. We examined the expression and function of Toll and Dpp signalling during honeybee embryogenesis to assess to the role of these genes in DV patterning. Results Pathway components that are required for dorsal specification in Drosophila are expressed in an AP-restricted pattern in the honeybee embryo, including Dpp and its receptor Tkv. Components of the Toll pathway are expressed in a more conserved pattern along the ventral axis of the embryo. Late-stage embryos from RNA interference (RNAi) knockdown of Toll and Dpp pathways had both DV and AP patterning defects, confirmed by staining with Am-sna, Am-zen, Am-eve, and Am-twi at earlier stages. We also identified two orthologues of dorsal in the honeybee genome, with one being expressed during embryogenesis and having a minor role in axis patterning, as determined by RNAi and the other expressed during oogenesis. Conclusions We found that early acting pathways (Toll and Dpp) are involved not only in DV patterning but also AP patterning in honeybee embryogenesis. Changes to the expression patterns and function of these genes may reflect evolutionary changes in the placement of the extra-embryonic membranes during embryogenesis with respect to the AP and DV axes.
Collapse
Affiliation(s)
- Megan J Wilson
- Developmental Biology Laboratory, Department of Anatomy, University of Otago, P,O, Box 56, Dunedin 9054, New Zealand.
| | | | | |
Collapse
|
26
|
Wotton KR, Jiménez-Guri E, García Matheu B, Jaeger J. A staging scheme for the development of the scuttle fly Megaselia abdita. PLoS One 2014; 9:e84421. [PMID: 24409295 PMCID: PMC3883658 DOI: 10.1371/journal.pone.0084421] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 11/13/2013] [Indexed: 12/01/2022] Open
Abstract
Model organisms, such as Drosophila melanogaster, provide powerful experimental tools for the study of development. However, approaches using model systems need to be complemented by comparative studies for us to gain a deeper understanding of the functional properties and evolution of developmental processes. New model organisms need to be established to enable such comparative work. The establishment of new model system requires a detailed description of its life cycle and development. The resulting staging scheme is essential for providing morphological context for molecular studies, and allows us to homologise developmental processes between species. In this paper, we provide a staging scheme and morphological characterisation of the life cycle for an emerging non-drosophilid dipteran model system: the scuttle fly Megaselia abdita. We pay particular attention to early embryogenesis (cleavage and blastoderm stages up to gastrulation), the formation and retraction of extraembryonic tissues, and the determination and formation of germ (pole) cells. Despite the large evolutionary distance between the two species (approximately 150 million years), we find that M. abdita development is remarkably similar to D. melanogaster in terms of developmental landmarks and their relative timing.
Collapse
Affiliation(s)
- Karl R. Wotton
- EMBL/CRG Research Unit in Systems Biology, Centre for Genomic Regulation (CRG), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Eva Jiménez-Guri
- EMBL/CRG Research Unit in Systems Biology, Centre for Genomic Regulation (CRG), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Belén García Matheu
- EMBL/CRG Research Unit in Systems Biology, Centre for Genomic Regulation (CRG), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Johannes Jaeger
- EMBL/CRG Research Unit in Systems Biology, Centre for Genomic Regulation (CRG), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
27
|
Expression of the decapentaplegic ortholog in embryos of the onychophoran Euperipatoides rowelli. Gene Expr Patterns 2013; 13:384-94. [DOI: 10.1016/j.gep.2013.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/07/2013] [Accepted: 07/10/2013] [Indexed: 12/21/2022]
|
28
|
Panfilio K, Roth S. Development: Getting into the Groove, or Evolving off the Rails? Curr Biol 2013; 23:R1101-3. [DOI: 10.1016/j.cub.2013.10.073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
29
|
Sharma R, Beermann A, Schröder R. The dynamic expression of extraembryonic marker genes in the beetle Tribolium castaneum reveals the complexity of serosa and amnion formation in a short germ insect. Gene Expr Patterns 2013; 13:362-71. [DOI: 10.1016/j.gep.2013.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 07/02/2013] [Accepted: 07/04/2013] [Indexed: 10/26/2022]
|
30
|
Buchta T, Özüak O, Stappert D, Roth S, Lynch JA. Patterning the dorsal–ventral axis of the wasp Nasonia vitripennis. Dev Biol 2013; 381:189-202. [DOI: 10.1016/j.ydbio.2013.05.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 05/14/2013] [Accepted: 05/24/2013] [Indexed: 10/26/2022]
|
31
|
Abstract
Bone morphogenetic proteins (BMPs) play key roles in development. In Drosophila melanogaster, there are three BMP-encoding genes: decapentaplegic (dpp), glass bottom boat (gbb) and screw (scw). dpp and gbb are found in all groups of insects. In contrast, the origin of scw via duplication of an ancestral gbb homologue is more recent, with new evidence placing it within the Diptera. Recent studies show that scw appeared basal to the Schizophora, since scw orthologues exist in aschizan cyclorrhaphan flies. In order to further localise the origin of scw, we have utilised new genomic resources for the nematoceran moth midge Clogmia albipunctata (Psychodidae). We identified the BMP subclass members dpp and gbb from an early embryonic transcriptome and show that their expression patterns in the blastoderm differ considerably from those seen in cyclorrhaphan flies. Further searches of the genome of C. albipunctata were unable to identify a scw-like gbb duplicate, but confirm the presence of dpp and gbb. Our phylogenetic analysis shows these to be clear orthologues of dpp and gbb from other non-cyclorrhaphan insects, with C. albipunctata gbb branching ancestrally to the cyclorrhaphan gbb/scw split. Furthermore, our analysis suggests that scw is absent from all Nematocera, including the Bibionomorpha. We conclude that the gbb/scw duplication occurred between the separation of the lineage leading to Brachycera and the origin of cyclorrhaphan flies 200–150 Ma ago.
Collapse
|
32
|
Jiménez-Guri E, Huerta-Cepas J, Cozzuto L, Wotton KR, Kang H, Himmelbauer H, Roma G, Gabaldón T, Jaeger J. Comparative transcriptomics of early dipteran development. BMC Genomics 2013; 14:123. [PMID: 23432914 PMCID: PMC3616871 DOI: 10.1186/1471-2164-14-123] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 02/19/2013] [Indexed: 12/24/2022] Open
Abstract
Background Modern sequencing technologies have massively increased the amount of data available for comparative genomics. Whole-transcriptome shotgun sequencing (RNA-seq) provides a powerful basis for comparative studies. In particular, this approach holds great promise for emerging model species in fields such as evolutionary developmental biology (evo-devo). Results We have sequenced early embryonic transcriptomes of two non-drosophilid dipteran species: the moth midge Clogmia albipunctata, and the scuttle fly Megaselia abdita. Our analysis includes a third, published, transcriptome for the hoverfly Episyrphus balteatus. These emerging models for comparative developmental studies close an important phylogenetic gap between Drosophila melanogaster and other insect model systems. In this paper, we provide a comparative analysis of early embryonic transcriptomes across species, and use our data for a phylogenomic re-evaluation of dipteran phylogenetic relationships. Conclusions We show how comparative transcriptomics can be used to create useful resources for evo-devo, and to investigate phylogenetic relationships. Our results demonstrate that de novo assembly of short (Illumina) reads yields high-quality, high-coverage transcriptomic data sets. We use these data to investigate deep dipteran phylogenetic relationships. Our results, based on a concatenation of 160 orthologous genes, provide support for the traditional view of Clogmia being the sister group of Brachycera (Megaselia, Episyrphus, Drosophila), rather than that of Culicomorpha (which includes mosquitoes and blackflies).
Collapse
Affiliation(s)
- Eva Jiménez-Guri
- EMBL/CRG Research Unit in Systems Biology, Centre de Regulació Genòmica (CRG), and Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
The importance of geometry in mathematical models of developing systems. Curr Opin Genet Dev 2012; 22:547-52. [PMID: 23107453 DOI: 10.1016/j.gde.2012.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 09/20/2012] [Accepted: 09/25/2012] [Indexed: 11/21/2022]
Abstract
Understanding the interaction between the spatial variation of extracellular signals and the interpretation of such signals in embryonic development is difficult without a mathematical model, but the inherent limitations of a model can have a profound impact on its utility. A central issue is the level of abstraction needed, and here we focus on the role of geometry in models and how the choice of the spatial dimension can influence the conclusions reached. A widely studied system in which the proper choice of geometry is critical is embryonic development of Drosophila melanogaster, and we discuss recent work in which 3D embryo-scale modeling is used to identify key modes of transport, analyze gap gene expression, and test BMP-mediated positive feedback mechanisms.
Collapse
|