1
|
Bañón A, Alsina B. Pioneer statoacoustic neurons guide neuroblast behaviour during otic ganglion assembly. Development 2023; 150:dev201824. [PMID: 37938828 PMCID: PMC10651105 DOI: 10.1242/dev.201824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/07/2023] [Indexed: 11/10/2023]
Abstract
Cranial ganglia are aggregates of sensory neurons that mediate distinct types of sensation. The statoacoustic ganglion (SAG) develops into several lobes that are spatially arranged to connect appropriately with hair cells of the inner ear. To investigate the cellular behaviours involved in the 3D organization of the SAG, we use high-resolution confocal imaging of single-cell, labelled zebrafish neuroblasts (NBs), photoconversion, photoablation, and genetic perturbations. We show that otic NBs delaminate out of the otic epithelium in an epithelial-mesenchymal transition-like manner, rearranging apical polarity and primary cilia proteins. We also show that, once delaminated, NBs require RhoGTPases in order to perform active migration. Furthermore, tracking of recently delaminated NBs revealed their directed migration and coalescence around a small population of pioneer SAG neurons. These pioneer SAG neurons, not from otic placode origin, populate the coalescence region before otic neurogenesis begins and their ablation disrupts delaminated NB migratory pathways, consequentially affecting SAG shape. Altogether, this work shows for the first time the role of pioneer SAG neurons in orchestrating SAG development.
Collapse
Affiliation(s)
- Aitor Bañón
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra-Parc de Recerca Biomèdica de Barcelona, Dr Aiguader 88, 08003 Barcelona, Spain
| | - Berta Alsina
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra-Parc de Recerca Biomèdica de Barcelona, Dr Aiguader 88, 08003 Barcelona, Spain
| |
Collapse
|
2
|
Wagner CA, Unwin R, Lopez-Garcia SC, Kleta R, Bockenhauer D, Walsh S. The pathophysiology of distal renal tubular acidosis. Nat Rev Nephrol 2023; 19:384-400. [PMID: 37016093 DOI: 10.1038/s41581-023-00699-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 04/06/2023]
Abstract
The kidneys have a central role in the control of acid-base homeostasis owing to bicarbonate reabsorption and production of ammonia and ammonium in the proximal tubule and active acid secretion along the collecting duct. Impaired acid excretion by the collecting duct system causes distal renal tubular acidosis (dRTA), which is characterized by the failure to acidify urine below pH 5.5. This defect originates from reduced function of acid-secretory type A intercalated cells. Inherited forms of dRTA are caused by variants in SLC4A1, ATP6V1B1, ATP6V0A4, FOXI1, WDR72 and probably in other genes that are yet to be discovered. Inheritance of dRTA follows autosomal-dominant and -recessive patterns. Acquired forms of dRTA are caused by various types of autoimmune diseases or adverse effects of some drugs. Incomplete dRTA is frequently found in patients with and without kidney stone disease. These patients fail to appropriately acidify their urine when challenged, suggesting that incomplete dRTA may represent an intermediate state in the spectrum of the ability to excrete acids. Unrecognized or insufficiently treated dRTA can cause rickets and failure to thrive in children, osteomalacia in adults, nephrolithiasis and nephrocalcinosis. Electrolyte disorders are also often present and poorly controlled dRTA can increase the risk of developing chronic kidney disease.
Collapse
Affiliation(s)
- Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland.
- Department of Renal Medicine, Royal Free Hospital, University College London, London, UK.
| | - Robert Unwin
- Department of Renal Medicine, Royal Free Hospital, University College London, London, UK
| | - Sergio C Lopez-Garcia
- Department of Renal Medicine, Royal Free Hospital, University College London, London, UK
- Department of Paediatric Nephrology, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - Robert Kleta
- Department of Renal Medicine, Royal Free Hospital, University College London, London, UK
| | - Detlef Bockenhauer
- Department of Renal Medicine, Royal Free Hospital, University College London, London, UK
- Department of Paediatric Nephrology, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - Stephen Walsh
- Department of Renal Medicine, Royal Free Hospital, University College London, London, UK
| |
Collapse
|
3
|
Mattonet K, Riemslagh FW, Guenther S, Prummel KD, Kesavan G, Hans S, Ebersberger I, Brand M, Burger A, Reischauer S, Mosimann C, Stainier DYR. Endothelial versus pronephron fate decision is modulated by the transcription factors Cloche/Npas4l, Tal1, and Lmo2. SCIENCE ADVANCES 2022; 8:eabn2082. [PMID: 36044573 PMCID: PMC9432843 DOI: 10.1126/sciadv.abn2082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 07/11/2022] [Indexed: 05/17/2023]
Abstract
Endothelial specification is a key event during embryogenesis; however, when, and how, endothelial cells separate from other lineages is poorly understood. In zebrafish, Npas4l is indispensable for endothelial specification by inducing the expression of the transcription factor genes etsrp, tal1, and lmo2. We generated a knock-in reporter in zebrafish npas4l to visualize endothelial progenitors and their derivatives in wild-type and mutant embryos. Unexpectedly, we find that in npas4l mutants, npas4l reporter-expressing cells contribute to the pronephron tubules. Single-cell transcriptomics and live imaging of the early lateral plate mesoderm in wild-type embryos indeed reveals coexpression of endothelial and pronephron markers, a finding confirmed by creERT2-based lineage tracing. Increased contribution of npas4l reporter-expressing cells to pronephron tubules is also observed in tal1 and lmo2 mutants and is reversed in npas4l mutants injected with tal1 mRNA. Together, these data reveal that Npas4l/Tal1/Lmo2 regulate the fate decision between the endothelial and pronephron lineages.
Collapse
Affiliation(s)
- Kenny Mattonet
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
- DZHK (German Center for Cardiovascular Research), partner site, 43, D-61231 Bad Nauheim
- CPI (Cardio Pulmonary Institute), partner site, 43, D-61231 Bad Nauheim
- DZL (German Center for Lung Research), partner site, 43, D-61231 Bad Nauheim
| | - Fréderike W. Riemslagh
- Section of Developmental Biology, Department of Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Stefan Guenther
- DZHK (German Center for Cardiovascular Research), partner site, 43, D-61231 Bad Nauheim
- CPI (Cardio Pulmonary Institute), partner site, 43, D-61231 Bad Nauheim
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Karin D. Prummel
- Section of Developmental Biology, Department of Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Gokul Kesavan
- Center for Regenerative Therapies at TU Dresden (CRTD); Dresden, Germany
| | - Stefan Hans
- Center for Regenerative Therapies at TU Dresden (CRTD); Dresden, Germany
| | - Ingo Ebersberger
- Goethe University Frankfurt am Main, Institute of Cell Biology and Neuroscience, Frankfurt 60438, Germany
- Senckenberg Biodiversity and Climate Research Center (S-BIKF), Frankfurt 60325, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), Frankfurt 60325, Germany
| | - Michael Brand
- Center for Regenerative Therapies at TU Dresden (CRTD); Dresden, Germany
| | - Alexa Burger
- Section of Developmental Biology, Department of Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Sven Reischauer
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
- CPI (Cardio Pulmonary Institute), partner site, 43, D-61231 Bad Nauheim
| | - Christian Mosimann
- Section of Developmental Biology, Department of Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Didier Y. R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
- DZHK (German Center for Cardiovascular Research), partner site, 43, D-61231 Bad Nauheim
- CPI (Cardio Pulmonary Institute), partner site, 43, D-61231 Bad Nauheim
- DZL (German Center for Lung Research), partner site, 43, D-61231 Bad Nauheim
| |
Collapse
|
4
|
Wu CS, Ma ZY, Zheng GD, Zou SM, Zhang XJ, Zhang YA. Chromosome-level genome assembly of grass carp (Ctenopharyngodon idella) provides insights into its genome evolution. BMC Genomics 2022; 23:271. [PMID: 35392810 PMCID: PMC8988418 DOI: 10.1186/s12864-022-08503-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/23/2022] [Indexed: 12/18/2022] Open
Abstract
Background The grass carp has great economic value and occupies an important evolutionary position. Genomic information regarding this species could help better understand its rapid growth rate as well as its unique body plan and environmental adaptation. Results We assembled the chromosome-level grass carp genome using the PacBio sequencing and chromosome structure capture technique. The final genome assembly has a total length of 893.2 Mb with a contig N50 of 19.3 Mb and a scaffold N50 of 35.7 Mb. About 99.85% of the assembled contigs were anchored into 24 chromosomes. Based on the prediction, this genome contained 30,342 protein-coding genes and 43.26% repetitive sequences. Furthermore, we determined that the large genome size can be attributed to the DNA-mediated transposable elements which accounted for 58.9% of the repetitive sequences in grass carp. We identified that the grass carp has only 24 pairs of chromosomes due to the fusion of two ancestral chromosomes. Enrichment analyses of significantly expanded and positively selected genes reflected evolutionary adaptation of grass carp to the feeding habits. We also detected the loss of conserved non-coding regulatory elements associated with the development of the immune system, nervous system, and digestive system, which may be critical for grass carp herbivorous traits. Conclusions The high-quality reference genome reported here provides a valuable resource for the genetic improvement and molecular-guided breeding of the grass carp. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08503-x.
Collapse
Affiliation(s)
- Chang-Song Wu
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zi-You Ma
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Guo-Dong Zheng
- Genetics and Breeding Center for Blunt Snout Bream, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Shu-Ming Zou
- Genetics and Breeding Center for Blunt Snout Bream, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xu-Jie Zhang
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China. .,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China.
| | - Yong-An Zhang
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China. .,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China. .,Hubei Hongshan Laboratory, Wuhan, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
5
|
Ramšak Ž, Modic V, Li RA, vom Berg C, Zupanic A. From Causal Networks to Adverse Outcome Pathways: A Developmental Neurotoxicity Case Study. FRONTIERS IN TOXICOLOGY 2022; 4:815754. [PMID: 35295214 PMCID: PMC8915909 DOI: 10.3389/ftox.2022.815754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/31/2022] [Indexed: 11/15/2022] Open
Abstract
The last decade has seen the adverse outcome pathways (AOP) framework become one of the most powerful tools in chemical risk assessment, but the development of new AOPs remains a slow and manually intensive process. Here, we present a faster approach for AOP generation, based on manually curated causal toxicological networks. As a case study, we took a recently published zebrafish developmental neurotoxicity network, which contains causally connected molecular events leading to neuropathologies, and developed two new adverse outcome pathways: Inhibition of Fyna (Src family tyrosine kinase A) leading to increased mortality via decreased eye size (AOP 399 on AOP-Wiki) and GSK3beta (Glycogen synthase kinase 3 beta) inactivation leading to increased mortality via defects in developing inner ear (AOP 410). The approach consists of an automatic separation of the toxicological network into candidate AOPs, filtering the AOPs according to available evidence and length as well as manual development of new AOPs and weight-of-evidence evaluation. The semiautomatic approach described here provides a new opportunity for fast and straightforward AOP development based on large network resources.
Collapse
Affiliation(s)
- Živa Ramšak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Vid Modic
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Roman A. Li
- Department of Environmental Toxicology, Eawag—Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland
| | - Colette vom Berg
- Department of Environmental Toxicology, Eawag—Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland
| | - Anze Zupanic
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- *Correspondence: Anze Zupanic,
| |
Collapse
|
6
|
Mackowetzky K, Yoon KH, Mackowetzky EJ, Waskiewicz AJ. Development and evolution of the vestibular apparatuses of the inner ear. J Anat 2021; 239:801-828. [PMID: 34047378 PMCID: PMC8450482 DOI: 10.1111/joa.13459] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/07/2021] [Accepted: 05/06/2021] [Indexed: 12/16/2022] Open
Abstract
The vertebrate inner ear is a labyrinthine sensory organ responsible for perceiving sound and body motion. While a great deal of research has been invested in understanding the auditory system, a growing body of work has begun to delineate the complex developmental program behind the apparatuses of the inner ear involved with vestibular function. These animal studies have helped identify genes involved in inner ear development and model syndromes known to include vestibular dysfunction, paving the way for generating treatments for people suffering from these disorders. This review will provide an overview of known inner ear anatomy and function and summarize the exciting discoveries behind inner ear development and the evolution of its vestibular apparatuses.
Collapse
Affiliation(s)
- Kacey Mackowetzky
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | - Kevin H. Yoon
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | | | - Andrew J. Waskiewicz
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
- Women & Children’s Health Research InstituteUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
7
|
Howard AGA, Baker PA, Ibarra-García-Padilla R, Moore JA, Rivas LJ, Tallman JJ, Singleton EW, Westheimer JL, Corteguera JA, Uribe RA. An atlas of neural crest lineages along the posterior developing zebrafish at single-cell resolution. eLife 2021; 10:e60005. [PMID: 33591267 PMCID: PMC7886338 DOI: 10.7554/elife.60005] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 01/31/2021] [Indexed: 02/06/2023] Open
Abstract
Neural crest cells (NCCs) are vertebrate stem cells that give rise to various cell types throughout the developing body in early life. Here, we utilized single-cell transcriptomic analyses to delineate NCC-derivatives along the posterior developing vertebrate, zebrafish, during the late embryonic to early larval stage, a period when NCCs are actively differentiating into distinct cellular lineages. We identified several major NCC/NCC-derived cell-types including mesenchyme, neural crest, neural, neuronal, glial, and pigment, from which we resolved over three dozen cellular subtypes. We dissected gene expression signatures of pigment progenitors delineating into chromatophore lineages, mesenchyme cells, and enteric NCCs transforming into enteric neurons. Global analysis of NCC derivatives revealed they were demarcated by combinatorial hox gene codes, with distinct profiles within neuronal cells. From these analyses, we present a comprehensive cell-type atlas that can be utilized as a valuable resource for further mechanistic and evolutionary investigations of NCC differentiation.
Collapse
Affiliation(s)
| | - Phillip A Baker
- Department of BioSciences, Rice UniversityHoustonUnited States
| | | | - Joshua A Moore
- Department of BioSciences, Rice UniversityHoustonUnited States
| | - Lucia J Rivas
- Department of BioSciences, Rice UniversityHoustonUnited States
| | - James J Tallman
- Department of BioSciences, Rice UniversityHoustonUnited States
| | | | | | | | - Rosa A Uribe
- Department of BioSciences, Rice UniversityHoustonUnited States
| |
Collapse
|
8
|
Carney TJ, Mosimann C. Switch and Trace: Recombinase Genetics in Zebrafish. Trends Genet 2018; 34:362-378. [PMID: 29429760 DOI: 10.1016/j.tig.2018.01.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/04/2018] [Accepted: 01/08/2018] [Indexed: 01/04/2023]
Abstract
Transgenic approaches are instrumental for labeling and manipulating cells and cellular machineries in vivo. Transgenes have traditionally been static entities that remained unaltered following genome integration, limiting their versatility. The development of DNA recombinase-based methods to modify, excise, or rearrange transgene cassettes has introduced versatile control of transgene activity and function. In particular, recombinase-controlled transgenes enable regulation of exogenous gene expression, conditional mutagenesis, and genetic lineage tracing. In zebrafish, transgenesis-based recombinase genetics using Cre/lox, Flp/FRT, and ΦC31 are increasingly applied to study development and homeostasis, and to generate disease models. Intersected with the versatile imaging capacity of the zebrafish model and recent breakthroughs in genome editing, we review and discuss past, current, and potential future approaches and resources for recombinase-based techniques in zebrafish.
Collapse
Affiliation(s)
- Tom J Carney
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A*STAR), Singapore.
| | - Christian Mosimann
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
9
|
Schwarzer S, Spieß S, Brand M, Hans S. Dlx3b/4b is required for early-born but not later-forming sensory hair cells during zebrafish inner ear development. Biol Open 2017; 6:1270-1278. [PMID: 28751305 PMCID: PMC5612237 DOI: 10.1242/bio.026211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Morpholino-mediated knockdown has shown that the homeodomain transcription factors Dlx3b and Dlx4b are essential for proper induction of the otic-epibranchial progenitor domain (OEPD), as well as subsequent formation of sensory hair cells in the developing zebrafish inner ear. However, increasing use of reverse genetic approaches has revealed poor correlation between morpholino-induced and mutant phenotypes. Using CRISPR/Cas9-mediated mutagenesis, we generated a defined deletion eliminating the entire open reading frames of dlx3b and dlx4b (dlx3b/4b) and investigated a potential phenotypic difference between mutants and morpholino-mediated knockdown. Consistent with previous findings obtained by morpholino-mediated knockdown of Dlx3b and Dlx4b, dlx3b/4b mutants display compromised otic induction, the development of smaller otic vesicles and an elimination of all indications of otic specification when combined with loss of foxi1, a second known OEPD competence factor in zebrafish. Furthermore, sensorigenesis is also affected in dlx3b/4b mutants. However, we find that only early-born sensory hair cells (tether cells), that seed and anchor the formation of otoliths, are affected. Later-forming sensory hair cells are present, indicating that two genetically distinct pathways control the development of early-born and later-forming sensory hair cells. Finally, impairment of early-born sensory hair cell formation in dlx3b/4b mutant embryos reverses the common temporal sequence of neuronal and sensory hair cell specification in zebrafish, resembling the order of cell specification in amniotes; Neurog1 expression before Atoh1 expression. We conclude that the Dlx3b/4b-dependent pathway has been either acquired newly in the fish lineage or lost in other vertebrate species during evolution, and that the events during early inner ear development are remarkably similar in fish and amniotes in the absence of this pathway. Summary: The transcription factors Dlx3b and Dlx4b control the formation of early-born sensory hair cells or tether cells in the developing zebrafish inner ear.
Collapse
Affiliation(s)
- Simone Schwarzer
- Technische Universität Dresden, Biotechnology Center and DFG-Center for Regenerative Therapies Dresden Cluster of Excellence, Tatzberg 47-49, 01307 Dresden, Germany
| | - Sandra Spieß
- Technische Universität Dresden, Biotechnology Center and DFG-Center for Regenerative Therapies Dresden Cluster of Excellence, Tatzberg 47-49, 01307 Dresden, Germany
| | - Michael Brand
- Technische Universität Dresden, Biotechnology Center and DFG-Center for Regenerative Therapies Dresden Cluster of Excellence, Tatzberg 47-49, 01307 Dresden, Germany
| | - Stefan Hans
- Technische Universität Dresden, Biotechnology Center and DFG-Center for Regenerative Therapies Dresden Cluster of Excellence, Tatzberg 47-49, 01307 Dresden, Germany
| |
Collapse
|
10
|
Abstract
Cre-mediated site-specific recombination has emerged as an indispensable tool for the precise manipulation of genomes allowing lineage-tracing studies, temporal and spatial misexpressions, and in particular the generation of conditional knockout alleles. Previously, we and others showed that Cre and its ligand-inducible variant CreERT2 are also highly efficient in the developing and adult zebrafish. The number of Cre driver and effector lines is currently still limited in zebrafish. However, the recent advent of novel genome editing tools such as TALEN and CRISPR/Cas will significantly increase interest in the conditional Cre/lox-technology in this organism. The considerations of basic transgene design and subsequent transgenesis have been addressed elsewhere. Here we outline practical experimental steps for transient functionality tests of CreERT2 driver and effector constructs. In addition, we introduce detailed protocols to elicit CreERT2-mediated recombination in vivo at embryonic as well as adult stages.
Collapse
Affiliation(s)
- Avinash Chekuru
- Technische Universität Dresden, Biotechnology Center and DFG-Center for Regenerative Therapies Dresden Cluster of Excellence, Tatzberg 47-49, 01307, Dresden, Germany
| | - Veronika Kuscha
- Technische Universität Dresden, Biotechnology Center and DFG-Center for Regenerative Therapies Dresden Cluster of Excellence, Tatzberg 47-49, 01307, Dresden, Germany
| | - Stefan Hans
- Technische Universität Dresden, Biotechnology Center and DFG-Center for Regenerative Therapies Dresden Cluster of Excellence, Tatzberg 47-49, 01307, Dresden, Germany
| | - Michael Brand
- Technische Universität Dresden, Biotechnology Center and DFG-Center for Regenerative Therapies Dresden Cluster of Excellence, Tatzberg 47-49, 01307, Dresden, Germany.
| |
Collapse
|
11
|
Aguillon R, Blader P, Batut J. Patterning, morphogenesis, and neurogenesis of zebrafish cranial sensory placodes. Methods Cell Biol 2016; 134:33-67. [PMID: 27312490 DOI: 10.1016/bs.mcb.2016.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Peripheral sensory organs and ganglia found in the vertebrate head arise during embryonic development from distinct ectodermal thickenings, called cranial sensory placodes (adenohypophyseal, olfactory, lens, trigeminal, epibranchial, and otic). A series of patterning events leads to the establishment of these placodes. Subsequently, these placodes undergo specific morphogenetic movements and cell-type specification in order to shape the final placodal derivatives and to produce differentiated cell types necessary for their function. In this chapter, we will focus on recent studies in the zebrafish that have advanced our understanding of cranial sensory placode development. We will summarize the signaling events and their molecular effectors guiding the formation of the so-called preplacodal region, and the subsequent subdivision of this region along the anteroposterior axis that gives rise to specific placode identities as well as those controlling morphogenesis and neurogenesis. Finally, we will highlight the approaches used in zebrafish that have been established to precisely label cell populations, to follow their development, and/or to characterize cell fates within a specific placode.
Collapse
Affiliation(s)
- R Aguillon
- Centre de Biologie du Développement (CBD, UMR5547), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - P Blader
- Centre de Biologie du Développement (CBD, UMR5547), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - J Batut
- Centre de Biologie du Développement (CBD, UMR5547), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
12
|
Goodrich LV. Early Development of the Spiral Ganglion. THE PRIMARY AUDITORY NEURONS OF THE MAMMALIAN COCHLEA 2016. [DOI: 10.1007/978-1-4939-3031-9_2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Birol O, Ohyama T, Edlund RK, Drakou K, Georgiades P, Groves AK. The mouse Foxi3 transcription factor is necessary for the development of posterior placodes. Dev Biol 2015; 409:139-151. [PMID: 26550799 DOI: 10.1016/j.ydbio.2015.09.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 09/22/2015] [Indexed: 02/01/2023]
Abstract
The inner ear develops from the otic placode, one of the cranial placodes that arise from a region of ectoderm adjacent to the anterior neural plate called the pre-placodal domain. We have identified a Forkhead family transcription factor, Foxi3, that is expressed in the pre-placodal domain and down-regulated when the otic placode is induced. We now show that Foxi3 mutant mice do not form otic placodes as evidenced by expression changes in early molecular markers and the lack of thickened placodal ectoderm, an otic cup or otocyst. Some preplacodal genes downstream of Foxi3-Gata3, Six1 and Eya1-are not expressed in the ectoderm of Foxi3 mutant mice, and the ectoderm exhibits signs of increased apoptosis. We also show that Fgf signals from the hindbrain and cranial mesoderm, which are necessary for otic placode induction, are received by pre-placodal ectoderm in Foxi3 mutants, but do not initiate otic induction. Finally, we show that the epibranchial placodes that develop in close proximity to the otic placode and the mandibular division of the trigeminal ganglion are missing in Foxi3 mutants. Our data suggest that Foxi3 is necessary to prime pre-placodal ectoderm for the correct interpretation of inductive signals for the otic and epibranchial placodes.
Collapse
Affiliation(s)
- Onur Birol
- Program in Developmental Biology, Baylor College of Medicine, BCM295, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Takahiro Ohyama
- USC Caruso Department of Otolaryngology - Head & Neck Surgery, Keck Medicine of USC, University of Southern California, 1501 San Pablo Street, Los Angeles, CA 90033-4503, USA; Zilkha Neurogenetic Institute, Keck Medicine of USC, University of Southern California, 1501 San Pablo Street, Los Angeles, CA 90033-4503, USA
| | - Renée K Edlund
- Program in Developmental Biology, Baylor College of Medicine, BCM295, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Katerina Drakou
- Department of Biological Sciences, University of Cyprus, 1 University Avenue, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Pantelis Georgiades
- Department of Biological Sciences, University of Cyprus, 1 University Avenue, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Andrew K Groves
- Program in Developmental Biology, Baylor College of Medicine, BCM295, 1 Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, BCM295, 1 Baylor Plaza, Houston, TX 77030, USA; Department of Neurosc ience, Baylor College of Medicine, BCM295, 1 Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
14
|
Whitfield TT. Development of the inner ear. Curr Opin Genet Dev 2015; 32:112-8. [DOI: 10.1016/j.gde.2015.02.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/11/2015] [Accepted: 02/13/2015] [Indexed: 02/04/2023]
|
15
|
Abstract
Fibroblast growth factors (Fgfs) play important roles in developmental processes of the inner ear, including the ontogeny of the statoacoustic ganglia (SAG) and hair cells. However, the detailed genetic mechanism(s) underlying Fgf/Fgfr-dependent otic neural development remains elusive. Using conditional genetic approaches and inhibitory small molecules, we have revealed that Fgfr-PI3K/Akt signaling is mainly responsible for zebrafish SAG development and have determined that Sox9a and Atoh1a act downstream of Fgfr-Akt signaling to specify and/or maintain the otic neuron fate during the early segmentation stage. Sox9a and Atoh1a coregulate numerous downstream factors identified through our ChIP-seq analyses, including Tlx2 and Eya2. Fgfr-Erk1/2 signaling contributes to ultricular hair cell development during a critical period between 9 and 15 hours postfertilization. Our work reveals that a genetic network of the previously known sensory determinant Atoh1 and the neural crest determinant Sox9 plays critical roles in SAG development. These newly uncovered roles for Atoh1and Sox9 in zebrafish otic development may be relevant to study in other species.
Collapse
|
16
|
Edlund RK, Birol O, Groves AK. The role of foxi family transcription factors in the development of the ear and jaw. Curr Top Dev Biol 2015; 111:461-95. [PMID: 25662269 DOI: 10.1016/bs.ctdb.2014.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The mammalian outer, middle, and inner ears have different embryonic origins and evolved at different times in the vertebrate lineage. The outer ear is derived from first and second branchial arch ectoderm and mesoderm, the middle ear ossicles are derived from neural crest mesenchymal cells that invade the first and second branchial arches, whereas the inner ear and its associated vestibule-acoustic (VIIIth) ganglion are derived from the otic placode. In this chapter, we discuss recent findings in the development of these structures and describe the contributions of members of a Forkhead transcription factor family, the Foxi family to their formation. Foxi transcription factors are critical for formation of the otic placode, survival of the branchial arch neural crest, and developmental remodeling of the branchial arch ectoderm.
Collapse
Affiliation(s)
- Renée K Edlund
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Onur Birol
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Andrew K Groves
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA; Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
17
|
Maier EC, Whitfield TT. RA and FGF signalling are required in the zebrafish otic vesicle to pattern and maintain ventral otic identities. PLoS Genet 2014; 10:e1004858. [PMID: 25473832 PMCID: PMC4256275 DOI: 10.1371/journal.pgen.1004858] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 10/29/2014] [Indexed: 12/12/2022] Open
Abstract
During development of the zebrafish inner ear, regional patterning in the ventral half of the otic vesicle establishes zones of gene expression that correspond to neurogenic, sensory and non-neural cell fates. FGF and Retinoic acid (RA) signalling from surrounding tissues are known to have an early role in otic placode induction and otic axial patterning, but how external signalling cues are translated into intrinsic patterning during otic vesicle (OV) stages is not yet understood. FGF and RA signalling pathway members are expressed in and around the OV, suggesting important roles in later patterning or maintenance events. We have analysed the temporal requirement of FGF and RA signalling for otic development at stages after initial anteroposterior patterning has occurred. We show that high level FGF signalling acts to restrict sensory fates, whereas low levels favour sensory hair cell development; in addition, FGF is both required and sufficient to promote the expression of the non-neural marker otx1b in the OV. RA signalling has opposite roles: it promotes sensory fates, and restricts otx1b expression and the development of non-neural fates. This is surprisingly different from the earlier requirement for RA signalling in specification of non-neural fates via tbx1 expression, and highlights the shift in regulation that takes place between otic placode and vesicle stages in zebrafish. Both FGF and RA signalling are required for the development of the otic neurogenic domain and the generation of otic neuroblasts. In addition, our results indicate that FGF and RA signalling act in a feedback loop in the anterior OV, crucial for pattern refinement. The vertebrate inner ear is a complex three-dimensional structure with hearing and balance functions. To form a functional ear in the embryo, it is crucial that the right cells develop at the right time and in the right place. These cells include the sensory hair cells that detect sound and movement, neurons that relay sensory information to the brain, and structural cells. We have investigated patterning and maintenance events in the developing ear of the zebrafish embryo. We show that two signalling pathways, FGF and Retinoic Acid (RA), act in an antagonistic manner to regulate the numbers of sensory hair cells that develop, together with the expression of a key gene, otx1b, required for the development of structural cells. However, the two signalling pathways act in concert to regulate the emergence of neuronal cells. Our data also indicate that FGF and RA signalling form a feedback loop, placing them at the heart of the regulatory network that ensures correct patterning is maintained in the ear. Both FGF and RA signalling are employed to generate hair cells and neurons for replacement therapies to treat hearing loss. Understanding the roles of FGF and RA signalling underpins the development of such therapies.
Collapse
Affiliation(s)
- Esther C. Maier
- MRC Centre for Developmental and Biomedical Genetics, Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Tanya T. Whitfield
- MRC Centre for Developmental and Biomedical Genetics, Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Yao D, Zhao F, Wu Y, Wang J, Dong W, Zhao J, Zhu Z, Liu D. Dissecting the differentiation process of the preplacodal ectoderm in zebrafish. Dev Dyn 2014; 243:1338-51. [DOI: 10.1002/dvdy.24160] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 06/21/2014] [Accepted: 06/23/2014] [Indexed: 01/13/2023] Open
Affiliation(s)
- Di Yao
- The Education Ministry Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Bio-membrane and Membrane Bio-engineering; School of Life Sciences; Peking University; Beijing China
| | - Feng Zhao
- The Education Ministry Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Bio-membrane and Membrane Bio-engineering; School of Life Sciences; Peking University; Beijing China
| | - Ying Wu
- The Education Ministry Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Bio-membrane and Membrane Bio-engineering; School of Life Sciences; Peking University; Beijing China
| | - Jialiang Wang
- The Education Ministry Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Bio-membrane and Membrane Bio-engineering; School of Life Sciences; Peking University; Beijing China
| | - Wei Dong
- The Education Ministry Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Bio-membrane and Membrane Bio-engineering; School of Life Sciences; Peking University; Beijing China
| | - Jue Zhao
- The Education Ministry Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Bio-membrane and Membrane Bio-engineering; School of Life Sciences; Peking University; Beijing China
| | - Zuoyan Zhu
- The Education Ministry Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Bio-membrane and Membrane Bio-engineering; School of Life Sciences; Peking University; Beijing China
| | - Dong Liu
- The Education Ministry Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Bio-membrane and Membrane Bio-engineering; School of Life Sciences; Peking University; Beijing China
| |
Collapse
|
19
|
Raft S, Groves AK. Segregating neural and mechanosensory fates in the developing ear: patterning, signaling, and transcriptional control. Cell Tissue Res 2014; 359:315-32. [PMID: 24902666 DOI: 10.1007/s00441-014-1917-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 05/08/2014] [Indexed: 12/21/2022]
Abstract
The vertebrate inner ear is composed of multiple sensory receptor epithelia, each of which is specialized for detection of sound, gravity, or angular acceleration. Each receptor epithelium contains mechanosensitive hair cells, which are connected to the brainstem by bipolar sensory neurons. Hair cells and their associated neurons are derived from the embryonic rudiment of the inner ear epithelium, but the precise spatial and temporal patterns of their generation, as well as the signals that coordinate these events, have only recently begun to be understood. Gene expression, lineage tracing, and mutant analyses suggest that both neurons and hair cells are generated from a common domain of neural and sensory competence in the embryonic inner ear rudiment. Members of the Shh, Wnt, and FGF families, together with retinoic acid signals, regulate transcription factor genes within the inner ear rudiment to establish the axial identity of the ear and regionalize neurogenic activity. Close-range signaling, such as that of the Notch pathway, specifies the fate of sensory regions and individual cell types. We also describe positive and negative interactions between basic helix-loop-helix and SoxB family transcription factors that specify either neuronal or sensory fates in a context-dependent manner. Finally, we review recent work on inner ear development in zebrafish, which demonstrates that the relative timing of neurogenesis and sensory epithelial formation is not phylogenetically constrained.
Collapse
Affiliation(s)
- Steven Raft
- Section on Sensory Cell Regeneration and Development, National Institute on Deafness and Other Communication Disorders National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA,
| | | |
Collapse
|
20
|
Sensational placodes: neurogenesis in the otic and olfactory systems. Dev Biol 2014; 389:50-67. [PMID: 24508480 PMCID: PMC3988839 DOI: 10.1016/j.ydbio.2014.01.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/27/2014] [Accepted: 01/28/2014] [Indexed: 11/22/2022]
Abstract
For both the intricate morphogenetic layout of the sensory cells in the ear and the elegantly radial arrangement of the sensory neurons in the nose, numerous signaling molecules and genetic determinants are required in concert to generate these specialized neuronal populations that help connect us to our environment. In this review, we outline many of the proteins and pathways that play essential roles in the differentiation of otic and olfactory neurons and their integration into their non-neuronal support structures. In both cases, well-known signaling pathways together with region-specific factors transform thickened ectodermal placodes into complex sense organs containing numerous, diverse neuronal subtypes. Olfactory and otic placodes, in combination with migratory neural crest stem cells, generate highly specialized subtypes of neuronal cells that sense sound, position and movement in space, odors and pheromones throughout our lives.
Collapse
|
21
|
McCarroll MN, Nechiporuk AV. Fgf3 and Fgf10a work in concert to promote maturation of the epibranchial placodes in zebrafish. PLoS One 2013; 8:e85087. [PMID: 24358375 PMCID: PMC3866233 DOI: 10.1371/journal.pone.0085087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 11/22/2013] [Indexed: 01/02/2023] Open
Abstract
Essential cellular components of the paired sensory organs of the vertebrate head are derived from transient thickenings of embryonic ectoderm known as cranial placodes. The epibranchial (EB) placodes give rise to sensory neurons of the EB ganglia that are responsible for relaying visceral sensations form the periphery to the central nervous system. Development of EB placodes and subsequent formation of EB ganglia is a multistep process regulated by various extrinsic factors, including fibroblast growth factors (Fgfs). We discovered that two Fgf ligands, Fgf3 and Fgf10a, cooperate to promote EB placode development. Whereas EB placodes are induced in the absence of Fgf3 and Fgf10a, they fail to express placode specific markers Pax2a and Sox3. Expression analysis and mosaic rescue experiments demonstrate that Fgf3 signal is derived from the endoderm, whereas Fgf10a is emitted from the lateral line system and the otic placode. Further analyses revealed that Fgf3 and Fgf10a activities are not required for cell proliferation or survival, but are required for placodal cells to undergo neurogenesis. Based on these data, we conclude that a combined loss of these Fgf factors results in a failure of the EB placode precursors to initiate a transcriptional program needed for maturation and subsequent neurogenesis. These findings highlight the importance and complexity of reiterated Fgf signaling during cranial placode formation and subsequent sensory organ development.
Collapse
Affiliation(s)
- Matthew N. McCarroll
- Department of Cell and Developmental Biology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Alex V. Nechiporuk
- Department of Cell and Developmental Biology, Oregon Health and Science University, Portland, Oregon, United States of America
| |
Collapse
|