1
|
Fragale M, Giordano M, Valle RD, Canzi G, Talamonti G. A "Smurf-Cap" head requiring total cranial vault reshaping. A novel syndromic presentation of craniofrontonasal dysplasia associated with spina bifida. Childs Nerv Syst 2025; 41:179. [PMID: 40358750 DOI: 10.1007/s00381-025-06846-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 05/08/2025] [Indexed: 05/15/2025]
Abstract
BACKGROUND Craniofrontonasal dysplasia (CFND) is a rare X-linked disorder caused by mutations in the EFNB1 gene, typically characterized by hypertelorism, craniosynostosis, and facial asymmetry. Although other congenital anomalies have been reported, neural tube defects-particularly myelomeningocele (MMC)-have not previously been associated with CFND in humans. CASE DESCRIPTION We present the case of a full-term female neonate with prenatally diagnosed MMC and Chiari II malformation. She also exhibited a unique constellation of craniofacial features, including a wide frontal bone defect with brain prolapse, right anterior plagiocephaly, hypertelorism, and brachycephaly, giving the head a "smurf cap" appearance. Additional anomalies included a left diaphragmatic hernia and thumb hexadactyly. Genetic testing confirmed CFND via an EFNB1mutation. Early postnatal interventions included MMC repair, ventriculoperitoneal shunting, and diaphragmatic hernia repair. At 11 months, total cranial vault remodeling was performed to address progressive cranial deformity and encephalocele. A staged surgical approach used both autologous and homologous bone grafts to repair the cranial defect. At age 5, fronto-orbital advancement was performed. Long-term follow-up at 12 years showed complete graft integration, normal cognitive development, and satisfactory craniofacial growth, with mild maxillary hypoplasia and residual hypertelorism. CONCLUSIONS This case represents the first reported co-occurrence of CFND and MMC. The case also underscores the feasibility and long-term success of combined autologous and homologous bone grafting in extensive pediatric cranial vault reconstruction.
Collapse
Affiliation(s)
- Maria Fragale
- Department of Neurosurgery, ASST Grande Ospedale Metropolitano, Niguarda, Milan, Italy
- University La Sapienza, Rome, Italy
| | - Martina Giordano
- Department of Neurosurgery, ASST Grande Ospedale Metropolitano, Niguarda, Milan, Italy.
| | - Raul Della Valle
- Department of Neurosurgery, ASST Grande Ospedale Metropolitano, Niguarda, Milan, Italy
| | - Gabriele Canzi
- Maxillofacial Departmental Structure, Emergency Department, ASST Grande Ospedale Metropolitano, Niguarda, Milan, Italy
| | - Giuseppe Talamonti
- Department of Neurosurgery, ASST Grande Ospedale Metropolitano, Niguarda, Milan, Italy
| |
Collapse
|
2
|
Sugawara T, Matsu-Ura H, Inagaki R, Kawamura T, Tanaka M, Hara Y, Saito K, Fukaya M, Moriguchi S, Sakagami H. EFA6A, a Guanine Nucleotide Exchange Factor for Arf6, Regulates Developmental Stage-Dependent Spine Morphogenesis, Synaptic Plasticity, and Long-Term Memory in the Hippocampus. Mol Neurobiol 2025:10.1007/s12035-025-05009-x. [PMID: 40335791 DOI: 10.1007/s12035-025-05009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 04/29/2025] [Indexed: 05/09/2025]
Abstract
EFA6A is a guanine nucleotide exchange factor for ADP ribosylation factor 6 (Arf6), a small GTPase involved in membrane trafficking and actin cytoskeleton remodeling. While EFA6A-Arf6 signaling has been shown to regulate dendritic spine formation and maintenance in cultured neurons, its role in higher brain functions remains unclear in vivo. Here, we generated mice lacking two EFA6A splicing isoforms, EFA6A and EFA6As, to examine their role in regulating spine morphology and hippocampus-dependent learning and memory. The loss of EFA6A and EFA6As caused reduced dendritic spine density in developing CA1 pyramidal neurons, whereas dendritic spines aberrantly increased in adults. Furthermore, the mutant mice also showed impaired maintenance of long-term potentiation (LTP) at Schaffer collateral-CA1 synapses in the hippocampus and memory retention in the passive avoidance test. These findings provide the first in vivo evidence that the EFA6A isoforms, EFA6A and EFA6As, collectively regulate spine formation bidirectionally in a developmental stage-dependent manner, which is likely to underlie hippocampal synaptic plasticity and memory formation.
Collapse
Affiliation(s)
- Takeyuki Sugawara
- Department of Anatomy, Kitasato University School of Medicine, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Hikaru Matsu-Ura
- Department of Anatomy, Kitasato University School of Medicine, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Ryo Inagaki
- Research Center for Pharmaceutical Development, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Taichi Kawamura
- Department of Anatomy, Kitasato University School of Medicine, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Manabu Tanaka
- Bio-Imaging Center, Kitasato University School of Medicine, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Yoshinobu Hara
- Department of Anatomy, Kitasato University School of Medicine, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Koji Saito
- Department of Anatomy, Kitasato University School of Medicine, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Masahiro Fukaya
- Department of Anatomy, Kitasato University School of Medicine, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
- Department of Anatomical Science, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Shigeki Moriguchi
- Research Center for Pharmaceutical Development, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan.
| |
Collapse
|
3
|
Fukaya M, Ibuchi K, Sugawara T, Itakura M, Ito A, Shiroshima T, Hara Y, Okamoto H, Luton F, Sakagami H. EFA6A, an Exchange Factor for Arf6, Regulates NGF-Dependent TrkA Recycling From Early Endosomes and Neurite Outgrowth in PC12 Cells. Traffic 2024; 25:e12936. [PMID: 38725127 DOI: 10.1111/tra.12936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 06/03/2024]
Abstract
Endosomal trafficking of TrkA is a critical process for nerve growth factor (NGF)-dependent neuronal cell survival and differentiation. The small GTPase ADP-ribosylation factor 6 (Arf6) is implicated in NGF-dependent processes in PC12 cells through endosomal trafficking and actin cytoskeleton reorganization. However, the regulatory mechanism for Arf6 in NGF signaling is largely unknown. In this study, we demonstrated that EFA6A, an Arf6-specific guanine nucleotide exchange factor, was abundantly expressed in PC12 cells and that knockdown of EFA6A significantly inhibited NGF-dependent Arf6 activation, TrkA recycling from early endosomes to the cell surface, prolonged ERK1/2 phosphorylation, and neurite outgrowth. We also demonstrated that EFA6A forms a protein complex with TrkA through its N-terminal region, thereby enhancing its catalytic activity for Arf6. Similarly, we demonstrated that EFA6A forms a protein complex with TrkA in cultured dorsal root ganglion (DRG) neurons. Furthermore, cultured DRG neurons from EFA6A knockout mice exhibited disturbed NGF-dependent TrkA trafficking compared with wild-type neurons. These findings provide the first evidence for EFA6A as a key regulator of NGF-dependent TrkA trafficking and signaling.
Collapse
Affiliation(s)
- Masahiro Fukaya
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Japan
| | - Kanta Ibuchi
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Japan
| | - Takeyuki Sugawara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Japan
| | - Makoto Itakura
- Department of Biochemistry, Kitasato University School of Medicine, Sagamihara, Japan
| | - Akiko Ito
- Department of Anesthesiology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Tomoko Shiroshima
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Japan
| | - Yoshinobu Hara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Japan
| | - Hirotsugu Okamoto
- Department of Anesthesiology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Frédéric Luton
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Université Côte d'Azur, Valbonne, France
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Japan
| |
Collapse
|
4
|
Zhang L, Wei X. Stepwise modulation of apical orientational cell adhesions for vertebrate neurulation. Biol Rev Camb Philos Soc 2023; 98:2271-2283. [PMID: 37534608 DOI: 10.1111/brv.13006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 07/05/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023]
Abstract
Neurulation transforms the neuroectoderm into the neural tube. This transformation relies on reorganising the configurational relationships between the orientations of intrinsic polarities of neighbouring cells. These orientational intercellular relationships are established, maintained, and modulated by orientational cell adhesions (OCAs). Here, using zebrafish (Danio rerio) neurulation as a major model, we propose a new perspective on how OCAs contribute to the parallel, antiparallel, and opposing intercellular relationships that underlie the neural plate-keel-rod-tube transformation, a stepwise process of cell aggregation followed by cord hollowing. We also discuss how OCAs in neurulation may be regulated by various adhesion molecules, including cadherins, Eph/Ephrins, Claudins, Occludins, Crumbs, Na+ /K+ -ATPase, and integrins. By comparing neurulation among species, we reveal that antiparallel OCAs represent a conserved mechanism for the fusion of the neural tube. Throughout, we highlight some outstanding questions regarding OCAs in neurulation. Answers to these questions will help us understand better the mechanisms of tubulogenesis of many tissues.
Collapse
Affiliation(s)
- Lili Zhang
- Department of Psychology, Dalian Medical University, 9 South LvShun Road, Dalian, 116044, China
| | - Xiangyun Wei
- Departments of Ophthalmology, Developmental Biology, and Microbiology & Molecular Genetics, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15213, USA
| |
Collapse
|
5
|
Rai S, Leydier L, Sharma S, Katwala J, Sahu A. A quest for genetic causes underlying signaling pathways associated with neural tube defects. Front Pediatr 2023; 11:1126209. [PMID: 37284286 PMCID: PMC10241075 DOI: 10.3389/fped.2023.1126209] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/28/2023] [Indexed: 06/08/2023] Open
Abstract
Neural tube defects (NTDs) are serious congenital deformities of the nervous system that occur owing to the failure of normal neural tube closures. Genetic and non-genetic factors contribute to the etiology of neural tube defects in humans, indicating the role of gene-gene and gene-environment interaction in the occurrence and recurrence risk of neural tube defects. Several lines of genetic studies on humans and animals demonstrated the role of aberrant genes in the developmental risk of neural tube defects and also provided an understanding of the cellular and morphological programs that occur during embryonic development. Other studies observed the effects of folate and supplementation of folic acid on neural tube defects. Hence, here we review what is known to date regarding altered genes associated with specific signaling pathways resulting in NTDs, as well as highlight the role of various genetic, and non-genetic factors and their interactions that contribute to NTDs. Additionally, we also shine a light on the role of folate and cell adhesion molecules (CAMs) in neural tube defects.
Collapse
Affiliation(s)
- Sunil Rai
- Department of Molecular Biology, Medical University of the Americas, Charlestown, Saint Kitts and Nevis
| | - Larissa Leydier
- Department of Molecular Biology, Medical University of the Americas, Charlestown, Saint Kitts and Nevis
| | - Shivani Sharma
- Department of Molecular Biology, Medical University of the Americas, Charlestown, Saint Kitts and Nevis
| | - Jigar Katwala
- Department of Molecular Biology, Medical University of the Americas, Charlestown, Saint Kitts and Nevis
| | - Anurag Sahu
- Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
6
|
Badouel C, Audouard C, Davy A. Heterogeneity in the size of the apical surface of cortical progenitors. Dev Dyn 2023; 252:363-376. [PMID: 36153792 DOI: 10.1002/dvdy.539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The apical surface (AS) of epithelial cells is highly specialized; it is important for morphogenetic processes that are essential to shape organs and tissues and it plays a role in morphogen and growth factor signaling. Apical progenitors in the mammalian neocortex are pseudoepithelial cells whose apical surface lines the ventricle. Whether changes in their apical surface sizes are important for cortical morphogenesis and/or other aspects of neocortex development has not been thoroughly addressed. RESULTS Here we show that apical progenitors are heterogeneous with respect to their apical surface area. In Efnb1 mutants, the size of the apical surface is modified and this correlates with discrete alterations of tissue organization without impacting apical progenitors proliferation. CONCLUSIONS Altogether, our data reveal heterogeneity in apical progenitors AS area in the developing neocortex and shows a role for Ephrin B1 in controlling AS size. Our study also indicates that changes in AS size do not have strong repercussion on apical progenitor behavior.
Collapse
Affiliation(s)
- Caroline Badouel
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Christophe Audouard
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Alice Davy
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, Université de Toulouse, Toulouse, France
| |
Collapse
|
7
|
Yoon J, Sun J, Lee M, Hwang YS, Daar IO. Wnt4 and ephrinB2 instruct apical constriction via Dishevelled and non-canonical signaling. Nat Commun 2023; 14:337. [PMID: 36670115 PMCID: PMC9860048 DOI: 10.1038/s41467-023-35991-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/11/2023] [Indexed: 01/22/2023] Open
Abstract
Apical constriction is a cell shape change critical to vertebrate neural tube closure, and the contractile force required for this process is generated by actin-myosin networks. The signaling cue that instructs this process has remained elusive. Here, we identify Wnt4 and the transmembrane ephrinB2 protein as playing an instructive role in neural tube closure as members of a signaling complex we termed WERDS (Wnt4, EphrinB2, Ror2, Dishevelled (Dsh2), and Shroom3). Disruption of function or interaction among members of the WERDS complex results in defects of apical constriction and neural tube closure. The mechanism of action involves an interaction of ephrinB2 with the Dsh2 scaffold protein that enhances the formation of the WERDS complex, which in turn, activates Rho-associated kinase to induce apical constriction. Moreover, the ephrinB2/Dsh2 interaction promotes non-canonical Wnt signaling and shows how cross-talk between two major signal transduction pathways, Eph/ephrin and Wnt, coordinate morphogenesis of the neural tube.
Collapse
Affiliation(s)
- Jaeho Yoon
- Cancer & Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA.
| | - Jian Sun
- Cancer & Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Moonsup Lee
- Cancer & Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Yoo-Seok Hwang
- Cancer & Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Ira O Daar
- Cancer & Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA.
| |
Collapse
|
8
|
Gerstmann K, Kindbeiter K, Telley L, Bozon M, Reynaud F, Théoulle E, Charoy C, Jabaudon D, Moret F, Castellani V. A balance of noncanonical Semaphorin signaling from the cerebrospinal fluid regulates apical cell dynamics during corticogenesis. SCIENCE ADVANCES 2022; 8:eabo4552. [PMID: 36399562 PMCID: PMC9674300 DOI: 10.1126/sciadv.abo4552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 10/03/2022] [Indexed: 06/01/2023]
Abstract
During corticogenesis, dynamic regulation of apical adhesion is fundamental to generate correct numbers and cell identities. While radial glial cells (RGCs) maintain basal and apical anchors, basal progenitors and neurons detach and settle at distal positions from the apical border. Whether diffusible signals delivered from the cerebrospinal fluid (CSF) contribute to the regulation of apical adhesion dynamics remains fully unknown. Secreted class 3 Semaphorins (Semas) trigger cell responses via Plexin-Neuropilin (Nrp) membrane receptor complexes. Here, we report that unconventional Sema3-Nrp preformed complexes are delivered by the CSF from sources including the choroid plexus to Plexin-expressing RGCs via their apical endfeet. Through analysis of mutant mouse models and various ex vivo assays mimicking ventricular delivery to RGCs, we found that two different complexes, Sema3B/Nrp2 and Sema3F/Nrp1, exert dual effects on apical endfeet dynamics, nuclei positioning, and RGC progeny. This reveals unexpected balance of CSF-delivered guidance molecules during cortical development.
Collapse
Affiliation(s)
- Katrin Gerstmann
- MeLis, CNRS UMR 5284, INSERM U1314, University of Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyoGène, 8 avenue Rockefeller, 69008 Lyon, France
| | - Karine Kindbeiter
- MeLis, CNRS UMR 5284, INSERM U1314, University of Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyoGène, 8 avenue Rockefeller, 69008 Lyon, France
| | - Ludovic Telley
- Department of Basic Neuroscience, University of Geneva, 1211 Geneva 4, Switzerland
| | - Muriel Bozon
- MeLis, CNRS UMR 5284, INSERM U1314, University of Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyoGène, 8 avenue Rockefeller, 69008 Lyon, France
| | - Florie Reynaud
- MeLis, CNRS UMR 5284, INSERM U1314, University of Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyoGène, 8 avenue Rockefeller, 69008 Lyon, France
| | - Emy Théoulle
- MeLis, CNRS UMR 5284, INSERM U1314, University of Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyoGène, 8 avenue Rockefeller, 69008 Lyon, France
| | - Camille Charoy
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Denis Jabaudon
- Department of Basic Neuroscience, University of Geneva, 1211 Geneva 4, Switzerland
| | - Frédéric Moret
- MeLis, CNRS UMR 5284, INSERM U1314, University of Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyoGène, 8 avenue Rockefeller, 69008 Lyon, France
| | - Valerie Castellani
- MeLis, CNRS UMR 5284, INSERM U1314, University of Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyoGène, 8 avenue Rockefeller, 69008 Lyon, France
| |
Collapse
|
9
|
Eph and Ephrin Variants in Malaysian Neural Tube Defect Families. Genes (Basel) 2022; 13:genes13060952. [PMID: 35741713 PMCID: PMC9222557 DOI: 10.3390/genes13060952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 02/01/2023] Open
Abstract
Neural tube defects (NTDs) are common birth defects with a complex genetic etiology. Mouse genetic models have indicated a number of candidate genes, of which functional mutations in some have been found in human NTDs, usually in a heterozygous state. This study focuses on Ephs-ephrins as candidate genes of interest owing to growing evidence of the role of this gene family during neural tube closure in mouse models. Eph-ephrin genes were analyzed in 31 Malaysian individuals comprising seven individuals with sporadic spina bifida, 13 parents, one twin-sibling and 10 unrelated controls. Whole exome sequencing analysis and bioinformatic analysis were performed to identify variants in 22 known Eph-ephrin genes. We reported that three out of seven spina bifida probands and three out of thirteen family members carried a variant in either EPHA2 (rs147977279), EPHB6 (rs780569137) or EFNB1 (rs772228172). Analysis of public databases shows that these variants are rare. In exome datasets of the probands and parents of the probands with Eph-ephrin variants, the genotypes of spina bifida-related genes were compared to investigate the probability of the gene–gene interaction in relation to environmental risk factors. We report the presence of Eph-ephrin gene variants that are prevalent in a small cohort of spina bifida patients in Malaysian families.
Collapse
|
10
|
Neurospheres obtained from the ciliary margin of the chicken eye possess positional values and retinal ganglion cells differentiated from them respond to EphA/ephrin-A system. Exp Eye Res 2022; 217:108965. [DOI: 10.1016/j.exer.2022.108965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 12/14/2021] [Accepted: 01/25/2022] [Indexed: 11/23/2022]
|
11
|
EFA6 in Axon Regeneration, as a Microtubule Regulator and as a Guanine Nucleotide Exchange Factor. Cells 2021; 10:cells10061325. [PMID: 34073530 PMCID: PMC8226579 DOI: 10.3390/cells10061325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 11/17/2022] Open
Abstract
Axon regeneration after injury is a conserved biological process that involves a large number of molecular pathways, including rapid calcium influx at injury sites, retrograde injury signaling, epigenetic transition, transcriptional reprogramming, polarized transport, and cytoskeleton reorganization. Despite the numerous efforts devoted to understanding the underlying cellular and molecular mechanisms of axon regeneration, the search continues for effective target molecules for improving axon regeneration. Although there have been significant historical efforts towards characterizing pro-regenerative factors involved in axon regeneration, the pursuit of intrinsic inhibitors is relatively recent. EFA6 (exchange factor for ARF6) has been demonstrated to inhibit axon regeneration in different organisms. EFA6 inhibition could be a promising therapeutic strategy to promote axon regeneration and functional recovery after axon injury. This review summarizes the inhibitory role on axon regeneration through regulating microtubule dynamics and through affecting ARF6 (ADP-ribosylation factor 6) GTPase-mediated integrin transport.
Collapse
|
12
|
Fawal MA, Jungas T, Davy A. Inhibition of DHFR targets the self-renewing potential of brain tumor initiating cells. Cancer Lett 2021; 503:129-137. [PMID: 33545223 DOI: 10.1016/j.canlet.2021.01.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 11/16/2022]
Abstract
Brain tumors are a heterogeneous group of benign and malignant tumors arising from the brain parenchyma and its surrounding structures, with in general a poor clinical outcome due to high recurrence. One of the underlying causes for this somber prognostic is the presence of brain tumor initiating cells (BTIC) endowed with self-renewal potential, multi-lineage differentiation and resistance to treatment. One promising therapeutic avenue for brain tumors is targeting BTIC self-renewal potential and forcing their differentiation. A compelling candidate is one-carbon metabolism shown to play a key role in maintaining stem cell self-renewal in several lineages. Here, we focus on dihydrofolate reductase (DHFR), a key enzyme in one-carbon metabolism, and demonstrate this enzyme's overexpression in several human brain tumors and its expression in human BTIC. We show that DHFR inhibition, either by Methotrexate (MTX) or EphB activation with synthetic ligands, reduces the tumorigenic potential of 4 human BTIC lines, by reducing their self-renewal capacities both in vitro and in a cerebral organoid glioma (GLICO) model. Our data indicate that driving BTIC differentiation by inhibiting DHFR may provide a new therapeutic approach to treating highly refractory aggressive tumors.
Collapse
Affiliation(s)
- Mohamad-Ali Fawal
- Molecular, Cellular and Developmental Biology (MCD), Center for Integrative Biology (CBI), University of Toulouse, CNRS, UPS, 118 route de Narbonne, 31062, Toulouse, France
| | - Thomas Jungas
- Molecular, Cellular and Developmental Biology (MCD), Center for Integrative Biology (CBI), University of Toulouse, CNRS, UPS, 118 route de Narbonne, 31062, Toulouse, France
| | - Alice Davy
- Molecular, Cellular and Developmental Biology (MCD), Center for Integrative Biology (CBI), University of Toulouse, CNRS, UPS, 118 route de Narbonne, 31062, Toulouse, France.
| |
Collapse
|
13
|
Rozés-Salvador V, González-Billault C, Conde C. The Recycling Endosome in Nerve Cell Development: One Rab to Rule Them All? Front Cell Dev Biol 2020; 8:603794. [PMID: 33425908 PMCID: PMC7793921 DOI: 10.3389/fcell.2020.603794] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
Endocytic recycling is an intracellular process that returns internalized molecules back to the plasma membrane and plays crucial roles not only in the reuse of receptor molecules but also in the remodeling of the different components of this membrane. This process is required for a diversity of cellular events, including neuronal morphology acquisition and functional regulation, among others. The recycling endosome (RE) is a key vesicular component involved in endocytic recycling. Recycling back to the cell surface may occur with the participation of several different Rab proteins, which are master regulators of membrane/protein trafficking in nerve cells. The RE consists of a network of interconnected and functionally distinct tubular subdomains that originate from sorting endosomes and transport their cargoes along microtubule tracks, by fast or slow recycling pathways. Different populations of REs, particularly those formed by Rab11, Rab35, and Arf6, are associated with a myriad of signaling proteins. In this review, we discuss the cumulative evidence suggesting the existence of heterogeneous domains of REs, controlling different aspects of neurogenesis, with a particular focus on the commonalities and singularities of these REs and their contribution to nerve development and differentiation in several animal models.
Collapse
Affiliation(s)
- Victoria Rozés-Salvador
- Instituto de Investigación Médica Mercedes y Martín Ferreyra INIMEC-CONICET-UNC, Córdoba, Argentina.,Instituto de Ciencias Básicas, Universidad Nacional de Villa María, Córdoba, Argentina
| | - Christian González-Billault
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile.,Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago, Chile.,The Buck Institute for Research on Aging, Novato, CA, United States
| | - Cecilia Conde
- Instituto de Investigación Médica Mercedes y Martín Ferreyra INIMEC-CONICET-UNC, Córdoba, Argentina
| |
Collapse
|
14
|
Ibuchi K, Fukaya M, Shinohara T, Hara Y, Shiroshima T, Sugawara T, Sakagami H. The Vps52 subunit of the GARP and EARP complexes is a novel Arf6-interacting protein that negatively regulates neurite outgrowth of hippocampal neurons. Brain Res 2020; 1745:146905. [PMID: 32473257 DOI: 10.1016/j.brainres.2020.146905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/18/2020] [Accepted: 05/24/2020] [Indexed: 01/05/2023]
Abstract
ADP ribosylation factor 6 (Arf6) is a small GTP-binding protein implicated in neuronal morphogenesis through endosomal trafficking and actin remodeling. In this study, we identified Vps52, a core subunit of the Golgi-associated retrograde protein (GARP) and endosome-associated recycling protein (EARP) complexes, as a novel Arf6-binding protein by yeast two-hybrid screening. Vps52 interacted specifically with GTP-bound Arf6 among the Arf family. Immunohistochemical analyses of hippocampal pyramidal cells revealed that fine punctate immunolabeling for Vps52 was distributed throughout neuronal compartments, most densely in the cell body and dendritic shafts, and was largely associated with trans-Golgi network and vesicular endomembranes. In cultured hippocampal neurons, knockdown of Vps52 increased total length of axons and dendrites; these phenotypes were completely restored by co-expression of shRNA-resistant full-length Vps52. However, co-expression of a Vps52 mutant lacking the ability to interact with Arf6 restored only the Vps52-knockdown phenotype of the dendritic length. The present findings suggest that Vps52 is a novel Arf6-interacting protein that regulates neurite outgrowth in hippocampal neurons.
Collapse
Affiliation(s)
- Kanta Ibuchi
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Masahiro Fukaya
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Tetsuro Shinohara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Yoshinobu Hara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Tomoko Shiroshima
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Takeyuki Sugawara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan.
| |
Collapse
|
15
|
CRL5-dependent regulation of the small GTPases ARL4C and ARF6 controls hippocampal morphogenesis. Proc Natl Acad Sci U S A 2020; 117:23073-23084. [PMID: 32873638 DOI: 10.1073/pnas.2002749117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The small GTPase ARL4C participates in the regulation of cell migration, cytoskeletal rearrangements, and vesicular trafficking in epithelial cells. The ARL4C signaling cascade starts by the recruitment of the ARF-GEF cytohesins to the plasma membrane, which, in turn, bind and activate the small GTPase ARF6. However, the role of ARL4C-cytohesin-ARF6 signaling during hippocampal development remains elusive. Here, we report that the E3 ubiquitin ligase Cullin 5/RBX2 (CRL5) controls the stability of ARL4C and its signaling effectors to regulate hippocampal morphogenesis. Both RBX2 knockout and Cullin 5 knockdown cause hippocampal pyramidal neuron mislocalization and development of multiple apical dendrites. We used quantitative mass spectrometry to show that ARL4C, Cytohesin-1/3, and ARF6 accumulate in the RBX2 mutant telencephalon. Furthermore, we show that depletion of ARL4C rescues the phenotypes caused by Cullin 5 knockdown, whereas depletion of CYTH1 or ARF6 exacerbates overmigration. Finally, we show that ARL4C, CYTH1, and ARF6 are necessary for the dendritic outgrowth of pyramidal neurons to the superficial strata of the hippocampus. Overall, we identified CRL5 as a key regulator of hippocampal development and uncovered ARL4C, CYTH1, and ARF6 as CRL5-regulated signaling effectors that control pyramidal neuron migration and dendritogenesis.
Collapse
|
16
|
Wang Q, Liu Y, Zhao Y, Sun LZ, Wang LX, Han M, Mi FL. [Research progress on the expression and function of erythropoietin-producing hepatomocellular receptors and their receptor-interacting proteins in oral-related diseases]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2020; 38:218-223. [PMID: 32314898 DOI: 10.7518/hxkq.2020.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Erythropoietin-producing hepatomocellular receptors and their receptor-interacting proteins (Eph/ephrin) can participate in the regulation of growth and development and promote the development of diseases through short-distance signal transduction between cells. To study the mechanism of Eph/ephrin and oral-related diseases, we provided a new theoretical basis and a strategy for the treatment of oral diseases. The Eph/ephrin pathway has been used to regulate oral diseases, especially in periodontal disease prevention, orthodontic bone reconstruction, and biological treatment of oral tumors. This paper reviews the research progress of Eph/ephrin pathway in oral-related diseases.
Collapse
Affiliation(s)
- Qi Wang
- Dept. of Stomatology, North Sichuan Medical College, Nanchong 637000, China
| | - Yan Liu
- Dept. of Prosthodontics, the Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Yun Zhao
- Dept. of Stomatology, North Sichuan Medical College, Nanchong 637000, China
| | - Li-Zhong Sun
- Dept. of Stomatology, North Sichuan Medical College, Nanchong 637000, China
| | - Lin-Xuan Wang
- Dept. of Stomatology, North Sichuan Medical College, Nanchong 637000, China
| | - Mei Han
- Dept. of Stomatology, North Sichuan Medical College, Nanchong 637000, China
| | - Fang-Lin Mi
- Dept. of Stomatology, North Sichuan Medical College, Nanchong 637000, China
| |
Collapse
|
17
|
Niethamer TK, Teng T, Franco M, Du YX, Percival CJ, Bush JO. Aberrant cell segregation in the craniofacial primordium and the emergence of facial dysmorphology in craniofrontonasal syndrome. PLoS Genet 2020; 16:e1008300. [PMID: 32092051 PMCID: PMC7058351 DOI: 10.1371/journal.pgen.1008300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 03/05/2020] [Accepted: 12/29/2019] [Indexed: 11/18/2022] Open
Abstract
Craniofrontonasal syndrome (CFNS) is a rare X-linked disorder characterized by craniofacial, skeletal, and neurological anomalies and is caused by mutations in EFNB1. Heterozygous females are more severely affected by CFNS than hemizygous males, a phenomenon called cellular interference that results from EPHRIN-B1 mosaicism. In Efnb1 heterozygous mice, mosaicism for EPHRIN-B1 results in cell sorting and more severe phenotypes than Efnb1 hemizygous males, but how craniofacial dysmorphology arises from cell segregation is unknown and CFNS etiology therefore remains poorly understood. Here, we couple geometric morphometric techniques with temporal and spatial interrogation of embryonic cell segregation in mouse mutant models to elucidate mechanisms underlying CFNS pathogenesis. By generating EPHRIN-B1 mosaicism at different developmental timepoints and in specific cell populations, we find that EPHRIN-B1 regulates cell segregation independently in early neural development and later in craniofacial development, correlating with the emergence of quantitative differences in face shape. Whereas specific craniofacial shape changes are qualitatively similar in Efnb1 heterozygous and hemizygous mutant embryos, heterozygous embryos are quantitatively more severely affected, indicating that Efnb1 mosaicism exacerbates loss of function phenotypes rather than having a neomorphic effect. Notably, neural tissue-specific disruption of Efnb1 does not appear to contribute to CFNS craniofacial dysmorphology, but its disruption within neural crest cell-derived mesenchyme results in phenotypes very similar to widespread loss. EPHRIN-B1 can bind and signal with EPHB1, EPHB2, and EPHB3 receptor tyrosine kinases, but the signaling partner(s) relevant to CFNS are unknown. Geometric morphometric analysis of an allelic series of Ephb1; Ephb2; Ephb3 mutant embryos indicates that EPHB2 and EPHB3 are key receptors mediating Efnb1 hemizygous-like phenotypes, but the complete loss of EPHB1-3 does not fully recapitulate the severity of CFNS-like Efnb1 heterozygosity. Finally, by generating Efnb1+/Δ; Ephb1; Ephb2; Ephb3 quadruple knockout mice, we determine how modulating cumulative receptor activity influences cell segregation in craniofacial development and find that while EPHB2 and EPHB3 play an important role in craniofacial cell segregation, EPHB1 is more important for cell segregation in the brain; surprisingly, complete loss of EPHB1-EPHB3 does not completely abrogate cell segregation. Together, these data advance our understanding of the etiology and signaling interactions underlying CFNS dysmorphology.
Collapse
Affiliation(s)
- Terren K. Niethamer
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, California, United States of America
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, United States of America
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, California, United States of America
| | - Teng Teng
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, California, United States of America
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, United States of America
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Melanie Franco
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, California, United States of America
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, United States of America
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Yu Xin Du
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, California, United States of America
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, United States of America
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Christopher J. Percival
- Department of Anthropology, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail: (CJP); (JOB)
| | - Jeffrey O. Bush
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, California, United States of America
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, United States of America
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (CJP); (JOB)
| |
Collapse
|
18
|
Fawal MA, Jungas T, Kischel A, Audouard C, Iacovoni JS, Davy A. Cross Talk between One-Carbon Metabolism, Eph Signaling, and Histone Methylation Promotes Neural Stem Cell Differentiation. Cell Rep 2019; 23:2864-2873.e7. [PMID: 29874574 DOI: 10.1016/j.celrep.2018.05.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 03/25/2018] [Accepted: 05/02/2018] [Indexed: 12/29/2022] Open
Abstract
Metabolic pathways, once seen as a mere consequence of cell states, have emerged as active players in dictating different cellular events such as proliferation, self-renewal, and differentiation. Several studies have reported a role for folate-dependent one-carbon (1C) metabolism in stem cells; however, its exact mode of action and how it interacts with other cues are largely unknown. Here, we report a link between the Eph:ephrin cell-cell communication pathway and 1C metabolism in controlling neural stem cell differentiation. Transcriptional and functional analyses following ephrin stimulation revealed alterations in folate metabolism-related genes and enzymatic activity. In vitro and in vivo data indicate that Eph-B forward signaling alters the methylation state of H3K4 by regulating 1C metabolism and locks neural stem cell in a differentiation-ready state. Our study highlights a functional link between cell-cell communication, metabolism, and epigenomic remodeling in the control of stem cell self-renewal.
Collapse
Affiliation(s)
- Mohamad-Ali Fawal
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Thomas Jungas
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Anthony Kischel
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Christophe Audouard
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Jason S Iacovoni
- Bioinformatic Plateau I2MC, INSERM and University of Toulouse, 31432 Toulouse, France
| | - Alice Davy
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France.
| |
Collapse
|
19
|
Garcia-Diaz B, Bachelin C, Coulpier F, Gerschenfeld G, Deboux C, Zujovic V, Charnay P, Topilko P, Baron-Van Evercooren A. Blood vessels guide Schwann cell migration in the adult demyelinated CNS through Eph/ephrin signaling. Acta Neuropathol 2019; 138:457-476. [PMID: 31011859 PMCID: PMC6689289 DOI: 10.1007/s00401-019-02011-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/27/2019] [Accepted: 04/07/2019] [Indexed: 12/30/2022]
Abstract
Schwann cells (SC) enter the central nervous system (CNS) in pathophysiological conditions. However, how SC invade the CNS to remyelinate central axons remains undetermined. We studied SC migratory behavior ex vivo and in vivo after exogenous transplantation in the demyelinated spinal cord. The data highlight for the first time that SC migrate preferentially along blood vessels in perivascular extracellular matrix (ECM), avoiding CNS myelin. We demonstrate in vitro and in vivo that this migration route occurs by virtue of a dual mode of action of Eph/ephrin signaling. Indeed, EphrinB3, enriched in myelin, interacts with SC Eph receptors, to drive SC away from CNS myelin, and triggers their preferential adhesion to ECM components, such as fibronectin via integrinβ1 interactions. This complex interplay enhances SC migration along the blood vessel network and together with lesion-induced vascular remodeling facilitates their timely invasion of the lesion site. These novel findings elucidate the mechanism by which SC invade and contribute to spinal cord repair.
Collapse
|
20
|
Saegusa S, Fukaya M, Kakegawa W, Tanaka M, Katsumata O, Sugawara T, Hara Y, Itakura M, Okubo T, Sato T, Yuzaki M, Sakagami H. Mice lacking EFA6C/Psd2, a guanine nucleotide exchange factor for Arf6, exhibit lower Purkinje cell synaptic density but normal cerebellar motor functions. PLoS One 2019; 14:e0216960. [PMID: 31095630 PMCID: PMC6522047 DOI: 10.1371/journal.pone.0216960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/01/2019] [Indexed: 11/18/2022] Open
Abstract
ADP ribosylation factor 6 (Arf6) is a small GTPase that regulates various neuronal events including formation of the axon, dendrites and dendritic spines, and synaptic plasticity through actin cytoskeleton remodeling and endosomal trafficking. EFA6C, also known as Psd2, is a guanine nucleotide exchange factor for Arf6 that is preferentially expressed in the cerebellar cortex of adult mice, particularly in Purkinje cells. However, the roles of EFA6C in cerebellar development and functions remain unknown. In this study, we generated global EFA6C knockout (KO) mice using the CRISPR/Cas9 system and investigated their cerebellar phenotypes by histological and behavioral analyses. Histological analyses revealed that EFA6C KO mice exhibited normal gross anatomy of the cerebellar cortex, in terms of the thickness and cellularity of each layer, morphology of Purkinje cells, and distribution patterns of parallel fibers, climbing fibers, and inhibitory synapses. Electron microscopic observation of the cerebellar molecular layer revealed that the density of asymmetric synapses of Purkinje cells was significantly lower in EFA6C KO mice compared with wild-type control mice. However, behavioral analyses using accelerating rotarod and horizontal optokinetic response tests failed to detect any differences in motor coordination, learning or adaptation between the control and EFA6C KO mice. These results suggest that EFA6C plays ancillary roles in cerebellar development and motor functions.
Collapse
Affiliation(s)
- Shintaro Saegusa
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Masahiro Fukaya
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Wataru Kakegawa
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Manabu Tanaka
- Bio-imaging Center, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Osamu Katsumata
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Takeyuki Sugawara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Yoshinobu Hara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Makoto Itakura
- Department of Biochemistry, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Tadashi Okubo
- Department of Laboratory Animal Science, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Toshiya Sato
- Department of Laboratory Animal Science, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Michisuke Yuzaki
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
21
|
Tanguy E, Tran Nguyen AP, Kassas N, Bader MF, Grant NJ, Vitale N. Regulation of Phospholipase D by Arf6 during FcγR-Mediated Phagocytosis. THE JOURNAL OF IMMUNOLOGY 2019; 202:2971-2981. [DOI: 10.4049/jimmunol.1801019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 03/11/2019] [Indexed: 12/20/2022]
|
22
|
Niethamer TK, Bush JO. Getting direction(s): The Eph/ephrin signaling system in cell positioning. Dev Biol 2019; 447:42-57. [PMID: 29360434 PMCID: PMC6066467 DOI: 10.1016/j.ydbio.2018.01.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/21/2017] [Accepted: 01/18/2018] [Indexed: 12/16/2022]
Abstract
In vertebrates, the Eph/ephrin family of signaling molecules is a large group of membrane-bound proteins that signal through a myriad of mechanisms and effectors to play diverse roles in almost every tissue and organ system. Though Eph/ephrin signaling has functions in diverse biological processes, one core developmental function is in the regulation of cell position and tissue morphology by regulating cell migration and guidance, cell segregation, and boundary formation. Often, the role of Eph/ephrin signaling is to translate patterning information into physical movement of cells and changes in morphology that define tissue and organ systems. In this review, we focus on recent advances in the regulation of these processes, and our evolving understanding of the in vivo signaling mechanisms utilized in distinct developmental contexts.
Collapse
Affiliation(s)
- Terren K Niethamer
- Department of Cell and Tissue Biology, Program in Craniofacial Biology, and Institute of Human Genetics, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Jeffrey O Bush
- Department of Cell and Tissue Biology, Program in Craniofacial Biology, and Institute of Human Genetics, University of California at San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
23
|
Franco M, Carmena A. Eph signaling controls mitotic spindle orientation and cell proliferation in neuroepithelial cells. J Cell Biol 2019; 218:1200-1217. [PMID: 30808706 PMCID: PMC6446852 DOI: 10.1083/jcb.201807157] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 12/16/2018] [Accepted: 01/28/2019] [Indexed: 12/17/2022] Open
Abstract
In this study, Franco and Carmena uncover a function for Eph signaling as a novel extrinsic mechanism controlling mitotic spindle alignment in Drosophila neuroepithelial cells through aPKC activity–dependent myosin II regulation. Additionally, Eph loss leads to a Rho signaling–dependent activation of the PI3K–Akt1 pathway, enhancing cell proliferation within this neuroepithelium. Mitotic spindle orientation must be tightly regulated during development and adult tissue homeostasis. It determines cell-fate specification and tissue architecture during asymmetric and symmetric cell division, respectively. Here, we uncover a novel role for Ephrin–Eph intercellular signaling in controlling mitotic spindle alignment in Drosophila optic lobe neuroepithelial cells through aPKC activity–dependent myosin II regulation. We show that conserved core components of the mitotic spindle orientation machinery, including Discs Large1, Mud/NuMA, and Canoe/Afadin, mislocalize in dividing Eph mutant neuroepithelial cells and produce spindle alignment defects in these cells when they are down-regulated. In addition, the loss of Eph leads to a Rho signaling–dependent activation of the PI3K–Akt1 pathway, enhancing cell proliferation within this neuroepithelium. Hence, Eph signaling is a novel extrinsic mechanism that regulates both spindle orientation and cell proliferation in the Drosophila optic lobe neuroepithelium. Similar mechanisms could operate in other Drosophila and vertebrate epithelia.
Collapse
Affiliation(s)
- Maribel Franco
- Developmental Neurobiology Department, Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas/Universidad Miguel Hernández, Alicante, Spain
| | - Ana Carmena
- Developmental Neurobiology Department, Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas/Universidad Miguel Hernández, Alicante, Spain
| |
Collapse
|
24
|
Cytoskeletal Signal-Regulated Oligodendrocyte Myelination and Remyelination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1190:33-42. [DOI: 10.1007/978-981-32-9636-7_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Insights into the Etiology of Mammalian Neural Tube Closure Defects from Developmental, Genetic and Evolutionary Studies. J Dev Biol 2018; 6:jdb6030022. [PMID: 30134561 PMCID: PMC6162505 DOI: 10.3390/jdb6030022] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 02/06/2023] Open
Abstract
The human neural tube defects (NTD), anencephaly, spina bifida and craniorachischisis, originate from a failure of the embryonic neural tube to close. Human NTD are relatively common and both complex and heterogeneous in genetic origin, but the genetic variants and developmental mechanisms are largely unknown. Here we review the numerous studies, mainly in mice, of normal neural tube closure, the mechanisms of failure caused by specific gene mutations, and the evolution of the vertebrate cranial neural tube and its genetic processes, seeking insights into the etiology of human NTD. We find evidence of many regions along the anterior–posterior axis each differing in some aspect of neural tube closure—morphology, cell behavior, specific genes required—and conclude that the etiology of NTD is likely to be partly specific to the anterior–posterior location of the defect and also genetically heterogeneous. We revisit the hypotheses explaining the excess of females among cranial NTD cases in mice and humans and new developments in understanding the role of the folate pathway in NTD. Finally, we demonstrate that evidence from mouse mutants strongly supports the search for digenic or oligogenic etiology in human NTD of all types.
Collapse
|
26
|
Mire E, Hocine M, Bazellières E, Jungas T, Davy A, Chauvet S, Mann F. Developmental Upregulation of Ephrin-B1 Silences Sema3C/Neuropilin-1 Signaling during Post-crossing Navigation of Corpus Callosum Axons. Curr Biol 2018; 28:1768-1782.e4. [PMID: 29779877 DOI: 10.1016/j.cub.2018.04.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 02/23/2018] [Accepted: 04/06/2018] [Indexed: 01/09/2023]
Abstract
The corpus callosum is the largest commissure in the brain, whose main function is to ensure communication between homotopic regions of the cerebral cortex. During fetal development, corpus callosum axons (CCAs) grow toward and across the brain midline and then away on the contralateral hemisphere to their targets. A particular feature of this circuit, which raises a key developmental question, is that the outgoing trajectory of post-crossing CCAs is mirror-symmetric with the incoming trajectory of pre-crossing axons. Here, we show that post-crossing CCAs switch off their response to axon guidance cues, among which the secreted Semaphorin-3C (Sema3C), that act as attractants for pre-crossing axons on their way to the midline. This change is concomitant with an upregulation of the surface protein Ephrin-B1, which acts in CCAs to inhibit Sema3C signaling via interaction with the Neuropilin-1 (Nrp1) receptor. This silencing activity is independent of Eph receptors and involves a N-glycosylation site (N-139) in the extracellular domain of Ephrin-B1. Together, our results reveal a molecular mechanism, involving interaction between the two unrelated guidance receptors Ephrin-B1 and Nrp1, that is used to control the navigation of post-crossing axons in the corpus callosum.
Collapse
Affiliation(s)
- Erik Mire
- Aix Marseille Univ, CNRS, IBDM, 13288 Marseille, France.
| | | | | | - Thomas Jungas
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 Route de Narbonne, 31062 Toulouse, France
| | - Alice Davy
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 Route de Narbonne, 31062 Toulouse, France
| | | | - Fanny Mann
- Aix Marseille Univ, CNRS, IBDM, 13288 Marseille, France.
| |
Collapse
|
27
|
Junghans D, Herzog S. Cnn3 regulates neural tube morphogenesis and neuronal stem cell properties. FEBS J 2018; 285:325-338. [PMID: 29151265 DOI: 10.1111/febs.14338] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/25/2017] [Accepted: 11/15/2017] [Indexed: 12/15/2022]
Abstract
Calponin 3 (Cnn3) is a member of the Cnn family of actin-binding molecules that is highly expressed in the mammalian brain and has been shown to control dendritic spine morphology, density, and plasticity by regulating actin cytoskeletal reorganization and dynamics. However, little is known about the role of Cnn3 during embryonic development. In this study, we analyzed mutant animals deficient in Cnn3 to gain a better understanding of its role in brain morphogenesis. Embryos lacking Cnn3 exhibited massive malformation of the developing brain including exoencephaly, closure defects at the rostral neural tube, and strong enlargement of brain tissue. In wild-type animals, we found Cnn3 being localized to the apical lining of the neuroepithelium in close vicinity to beta-Catenin and N-cadherin. By performing immunohistochemistry on beta-Catenin and p-Smad, and furthermore taking advantage of Wnt-reporter animals, we provide evidence that the loss of Cnn3 during development can affect signaling pathways crucial for correct morphogenesis of the neural tube. In addition, we used embryonic neurosphere cultures to investigate the role of Cnn3 in embryonic neuronal stem cells (NSC). Here, we observed that Cnn3 deficiency in NSCs increased the number of newly formed neurospheres and increased neurosphere size without perturbing their differentiation potential. Together, our study provides evidence for an important role of Cnn3 during development of the embryonic brain and in regulating NSC function.
Collapse
Affiliation(s)
- Dirk Junghans
- Institute of Embryology and Stem Cell Biology, Department of Biomedicine, University of Basel, Switzerland
| | - Sebastian Herzog
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Austria
| |
Collapse
|
28
|
Agirman G, Broix L, Nguyen L. Cerebral cortex development: an outside‐in perspective. FEBS Lett 2017; 591:3978-3992. [DOI: 10.1002/1873-3468.12924] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/17/2017] [Accepted: 11/28/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Gulistan Agirman
- GIGA‐Neurosciences Interdisciplinary Cluster for Applied Genoproteomics (GIGA‐R) Liège Belgium
| | - Loïc Broix
- GIGA‐Neurosciences Interdisciplinary Cluster for Applied Genoproteomics (GIGA‐R) Liège Belgium
| | - Laurent Nguyen
- GIGA‐Neurosciences Interdisciplinary Cluster for Applied Genoproteomics (GIGA‐R) Liège Belgium
| |
Collapse
|
29
|
Friedl P, Mayor R. Tuning Collective Cell Migration by Cell-Cell Junction Regulation. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a029199. [PMID: 28096261 DOI: 10.1101/cshperspect.a029199] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Collective cell migration critically depends on cell-cell interactions coupled to a dynamic actin cytoskeleton. Important cell-cell adhesion receptor systems implicated in controlling collective movements include cadherins, immunoglobulin superfamily members (L1CAM, NCAM, ALCAM), Ephrin/Eph receptors, Slit/Robo, connexins and integrins, and an adaptive array of intracellular adapter and signaling proteins. Depending on molecular composition and signaling context, cell-cell junctions adapt their shape and stability, and this gradual junction plasticity enables different types of collective cell movements such as epithelial sheet and cluster migration, branching morphogenesis and sprouting, collective network migration, as well as coordinated individual-cell migration and streaming. Thereby, plasticity of cell-cell junction composition and turnover defines the type of collective movements in epithelial, mesenchymal, neuronal, and immune cells, and defines migration coordination, anchorage, and cell dissociation. We here review cell-cell adhesion systems and their functions in different types of collective cell migration as key regulators of collective plasticity.
Collapse
Affiliation(s)
- Peter Friedl
- Department of Cell Biology, Radboud University Medical Centre, Nijmegen 6525GA, The Netherlands.,David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030.,Cancer Genomics Center, 3584 CG Utrecht, The Netherlands
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
30
|
Jungas T, Perchey RT, Fawal M, Callot C, Froment C, Burlet-Schiltz O, Besson A, Davy A. Eph-mediated tyrosine phosphorylation of citron kinase controls abscission. J Cell Biol 2016; 214:555-69. [PMID: 27551053 PMCID: PMC5004443 DOI: 10.1083/jcb.201602057] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 07/25/2016] [Indexed: 12/30/2022] Open
Abstract
Abscission is the last step of cytokinesis, allowing the physical separation of daughter cells at the end of cell division. It has been considered a cell autonomous process, yet Jungas et al. report that Ephrin/Eph signaling controls the completion of abscission. Cytokinesis is the last step of cell division, culminating in the physical separation of daughter cells at the end of mitosis. Cytokinesis is a tightly regulated process that until recently was mostly viewed as a cell-autonomous event. Here, we investigated the role of Ephrin/Eph signaling, a well-known local cell-to-cell communication pathway, in cell division. We show that activation of Eph signaling in vitro leads to multinucleation and polyploidy, and we demonstrate that this is caused by alteration of the ultimate step of cytokinesis, abscission. Control of abscission requires Eph kinase activity, and Src and citron kinase (CitK) are downstream effectors in the Eph-induced signal transduction cascade. CitK is phosphorylated on tyrosines in neural progenitors in vivo, and Src kinase directly phosphorylates CitK. We have identified the specific tyrosine residues of CitK that are phosphorylated and show that tyrosine phosphorylation of CitK impairs cytokinesis. Finally, we show that, similar to CitK, Ephrin/Eph signaling controls neuronal ploidy in the developing neocortex. Our study indicates that CitK integrates intracellular and extracellular signals provided by the local environment to coordinate completion of cytokinesis.
Collapse
Affiliation(s)
- Thomas Jungas
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, 31062 Toulouse, France
| | - Renaud T Perchey
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1037, Cancer Research Center of Toulouse, 31037 Toulouse, France Centre National de la Recherche Scientifique, ERL 5294, Université de Toulouse, Université Paul Sabatier, 31037 Toulouse, France
| | - Mohamad Fawal
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, 31062 Toulouse, France
| | - Caroline Callot
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1037, Cancer Research Center of Toulouse, 31037 Toulouse, France Centre National de la Recherche Scientifique, ERL 5294, Université de Toulouse, Université Paul Sabatier, 31037 Toulouse, France
| | - Carine Froment
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, 31077 Toulouse, France
| | - Odile Burlet-Schiltz
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, 31077 Toulouse, France
| | - Arnaud Besson
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1037, Cancer Research Center of Toulouse, 31037 Toulouse, France Centre National de la Recherche Scientifique, ERL 5294, Université de Toulouse, Université Paul Sabatier, 31037 Toulouse, France
| | - Alice Davy
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, 31062 Toulouse, France
| |
Collapse
|
31
|
Abstract
Ephrins and Eph receptors enable contact-mediated interactions between cells at every stage of nervous system development. In spite of their broad binding affinities, Eph proteins facilitate specificity in neuronal migration and axon targeting. This review focuses on recent studies that demonstrate how these proteins interact with each other, and with other signaling pathways, to guide specificity in a diverse set of developmental processes.
Collapse
Affiliation(s)
- Karina S Cramer
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Ilona J Miko
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
32
|
Mechanisms of ephrin-Eph signalling in development, physiology and disease. Nat Rev Mol Cell Biol 2016; 17:240-56. [PMID: 26790531 DOI: 10.1038/nrm.2015.16] [Citation(s) in RCA: 461] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Eph receptor Tyr kinases and their membrane-tethered ligands, the ephrins, elicit short-distance cell-cell signalling and thus regulate many developmental processes at the interface between pattern formation and morphogenesis, including cell sorting and positioning, and the formation of segmented structures and ordered neural maps. Their roles extend into adulthood, when ephrin-Eph signalling regulates neuronal plasticity, homeostatic events and disease processes. Recently, new insights have been gained into the mechanisms of ephrin-Eph signalling in different cell types, and into the physiological importance of ephrin-Eph in different organs and in disease, raising questions for future research directions.
Collapse
|
33
|
Nunan R, Campbell J, Mori R, Pitulescu ME, Jiang WG, Harding KG, Adams RH, Nobes CD, Martin P. Ephrin-Bs Drive Junctional Downregulation and Actin Stress Fiber Disassembly to Enable Wound Re-epithelialization. Cell Rep 2015; 13:1380-1395. [PMID: 26549443 PMCID: PMC4660216 DOI: 10.1016/j.celrep.2015.09.085] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/12/2015] [Accepted: 09/30/2015] [Indexed: 12/21/2022] Open
Abstract
For a skin wound to successfully heal, the cut epidermal-edge cells have to migrate forward at the interface between scab and healthy granulation tissue. Much is known about how lead-edge cells migrate, but very little is known about the mechanisms that enable active participation by cells further back. Here we show that ephrin-B1 and its receptor EphB2 are both upregulated in vivo, just for the duration of repair, in the first 70 or so rows of epidermal cells, and this signal leads to downregulation of the molecular components of adherens and tight (but not desmosomal) junctions, leading to loosening between neighbors and enabling shuffle room among epidermal cells. Additionally, this signaling leads to the shutdown of actomyosin stress fibers in these same epidermal cells, which may act to release tension within the wound monolayer. If this signaling axis is perturbed, then disrupted healing is a consequence in mouse and man. Ephrin-B/EphBs are upregulated in the migrating wound epidermis in mouse and man Ephrin-B/EphB signaling drives junction loosening, thus enabling re-epithelialization Ephrin-B/EphB signaling also leads to dissolution of stress fibers and tension release In human chronic wounds ephrin-Bs are misregulated and may be a therapeutic target
Collapse
Affiliation(s)
- Robert Nunan
- Schools of Biochemistry and Physiology & Pharmacology, University of Bristol, Bristol BS8 1TD, UK
| | - Jessica Campbell
- Schools of Biochemistry and Physiology & Pharmacology, University of Bristol, Bristol BS8 1TD, UK
| | - Ryoichi Mori
- Schools of Biochemistry and Physiology & Pharmacology, University of Bristol, Bristol BS8 1TD, UK; Department of Pathology, Nagasaki University, Nagasaki 852-8523, Japan
| | - Mara E Pitulescu
- Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany; Faculty of Medicine, University of Muenster, 48149 Muenster, Germany
| | - Wen G Jiang
- School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Keith G Harding
- School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Ralf H Adams
- Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany; Faculty of Medicine, University of Muenster, 48149 Muenster, Germany
| | - Catherine D Nobes
- Schools of Biochemistry and Physiology & Pharmacology, University of Bristol, Bristol BS8 1TD, UK
| | - Paul Martin
- Schools of Biochemistry and Physiology & Pharmacology, University of Bristol, Bristol BS8 1TD, UK; School of Medicine, Cardiff University, Cardiff CF14 4XN, UK.
| |
Collapse
|
34
|
Linneberg C, Harboe M, Laursen LS. Axo-Glia Interaction Preceding CNS Myelination Is Regulated by Bidirectional Eph-Ephrin Signaling. ASN Neuro 2015; 7:7/5/1759091415602859. [PMID: 26354550 PMCID: PMC4568937 DOI: 10.1177/1759091415602859] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In the central nervous system, myelination of axons is required to ensure fast saltatory conduction and for survival of neurons. However, not all axons are myelinated, and the molecular mechanisms involved in guiding the oligodendrocyte processes toward the axons to be myelinated are not well understood. Only a few negative or positive guidance clues that are involved in regulating axo-glia interaction prior to myelination have been identified. One example is laminin, known to be required for early axo-glia interaction, which functions through α6β1 integrin. Here, we identify the Eph-ephrin family of guidance receptors as novel regulators of the initial axo-glia interaction, preceding myelination. We demonstrate that so-called forward and reverse signaling, mediated by members of both Eph and ephrin subfamilies, has distinct and opposing effects on processes extension and myelin sheet formation. EphA forward signaling inhibits oligodendrocyte process extension and myelin sheet formation, and blocking of bidirectional signaling through this receptor enhances myelination. Similarly, EphB forward signaling also reduces myelin membrane formation, but in contrast to EphA forward signaling, this occurs in an integrin-dependent manner, which can be reversed by overexpression of a constitutive active β1-integrin. Furthermore, ephrin-B reverse signaling induced by EphA4 or EphB1 enhances myelin sheet formation. Combined, this suggests that the Eph-ephrin receptors are important mediators of bidirectional signaling between axons and oligodendrocytes. It further implies that balancing Eph-ephrin forward and reverse signaling is important in the selection process of axons to be myelinated.
Collapse
Affiliation(s)
- Cecilie Linneberg
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej, Aarhus, Denmark
| | - Mette Harboe
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej, Aarhus, Denmark
| | - Lisbeth S Laursen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej, Aarhus, Denmark
| |
Collapse
|
35
|
Sui YP, Zhang XX, Lu JL, Sui F. New Insights into the Roles of Nogo-A in CNS Biology and Diseases. Neurochem Res 2015; 40:1767-85. [PMID: 26266872 DOI: 10.1007/s11064-015-1671-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 07/15/2015] [Accepted: 07/17/2015] [Indexed: 12/22/2022]
Abstract
Nogos have become a hot topic for its well-known number Nogo-A's big role in clinical matters. It has been recognized that the expression of Nogo-A and the receptor NgR1 inhibit the neuron's growth after CNS injuries or the onset of the MS. The piling evidence supports the notion that the Nogo-A is also involved in the synaptic plasticity, which was shown to negatively regulate the strength of synaptic transmission. The occurrence of significant schizophrenia-like behavioral phenotypes in Nogo-A KO rats also added strong proof to this conclusion. This review mainly focuses on the structure of Nogo-A and its corresponding receptor-NgR1, its intra- and extra-cellular signaling, together with its major physiological functions such as regulation of migration and distribution and its related diseases like stroke, AD, ALS and so on.
Collapse
Affiliation(s)
- Yun-Peng Sui
- Institute of Chinese Material Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | | | | | | |
Collapse
|
36
|
Abstract
Eph:ephrin signaling plays an important role in embryonic development as well as tissue homeostasis in the adult. At the cellular level, this transduction pathway is best known for its role in the control of cell adhesion and repulsion, cell migration and morphogenesis. Yet, a number of publications have also implicated Eph:ephrin signaling in the control of adult and embryonic neurogenesis. As is the case for other biological processes, these studies have reported conflicting and sometimes opposite roles for Eph:ephrin signaling in neurogenesis. Herein, we review these studies and we discuss existing mathematical models of stem cell dynamics and neurogenesis that provide a coherent framework and may help reconcile conflicting results.
Collapse
Affiliation(s)
- J Laussu
- a Centre de Biologie du Développement; CNRS; Université de Toulouse ; Toulouse , France
| | | | | | | |
Collapse
|
37
|
Heidari N, Saki N, De Filippis L, Shahjahani M, Teimouri A, Ahmadzadeh A. Central nervous system niche involvement in the leukemia. Clin Transl Oncol 2015; 18:240-50. [DOI: 10.1007/s12094-015-1370-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 07/20/2015] [Indexed: 12/25/2022]
|
38
|
Andrews WD, Davidson K, Tamamaki N, Ruhrberg C, Parnavelas JG. Altered proliferative ability of neuronal progenitors in PlexinA1 mutant mice. J Comp Neurol 2015; 524:518-34. [PMID: 25975775 PMCID: PMC4737253 DOI: 10.1002/cne.23806] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/30/2015] [Accepted: 04/30/2015] [Indexed: 12/12/2022]
Abstract
Cortical interneurons are generated predominantly in the medial ganglionic eminence (MGE) and migrate through the ventral and dorsal telencephalon before taking their final positions within the developing cortical plate. Previously we demonstrated that interneurons from Robo1 knockout (Robo1(-/-)) mice contain reduced levels of neuropilin 1 (Nrp1) and PlexinA1 receptors, rendering them less responsive to the chemorepulsive actions of semaphorin ligands expressed in the striatum and affecting their course of migration (Hernandez-Miranda et al. [2011] J. Neurosci. 31:6174-6187). Earlier studies have highlighted the importance of Nrp1 and Nrp2 in interneuron migration, and here we assess the role of PlexinA1 in this process. We observed significantly fewer cells expressing the interneuron markers Gad67 and Lhx6 in the cortex of PlexinA1(-/-) mice compared with wild-type littermates at E14.5 and E18.5. Although the level of apoptosis was similar in the mutant and control forebrain, proliferation was significantly reduced in the former. Furthermore, progenitor cells in the MGE of PlexinA1(-/-) mice appeared to be poorly anchored to the ventricular surface and showed reduced adhesive properties, which may account for the observed reduction in proliferation. Together our data uncover a novel role for PlexinA1 in forebrain development.
Collapse
Affiliation(s)
- William D Andrews
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Kathryn Davidson
- Division of Visual Science and Molecular Genetics, Institute of Ophthalmology, University College London, London, WC1E 6BT, United Kingdom
| | - Nobuaki Tamamaki
- Department of Morphological Neural Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860 0862, Japan
| | - Christiana Ruhrberg
- Division of Visual Science and Molecular Genetics, Institute of Ophthalmology, University College London, London, WC1E 6BT, United Kingdom
| | - John G Parnavelas
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, United Kingdom
| |
Collapse
|
39
|
Bizzotto S, Francis F. Morphological and functional aspects of progenitors perturbed in cortical malformations. Front Cell Neurosci 2015; 9:30. [PMID: 25729350 PMCID: PMC4325918 DOI: 10.3389/fncel.2015.00030] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 01/18/2015] [Indexed: 11/13/2022] Open
Abstract
In this review, we discuss molecular and cellular mechanisms important for the function of neuronal progenitors during development, revealed by their perturbation in different cortical malformations. We focus on a class of neuronal progenitors, radial glial cells (RGCs), which are renowned for their unique morphological and behavioral characteristics, constituting a key element during the development of the mammalian cerebral cortex. We describe how the particular morphology of these cells is related to their roles in the orchestration of cortical development and their influence on other progenitor types and post-mitotic neurons. Important for disease mechanisms, we overview what is currently known about RGC cellular components, cytoskeletal mechanisms, signaling pathways and cell cycle characteristics, focusing on how defects lead to abnormal development and cortical malformation phenotypes. The multiple recent entry points from human genetics and animal models are contributing to our understanding of this important cell type. Combining data from phenotypes in the mouse reveals molecules which potentially act in common pathways. Going beyond this, we discuss future directions that may provide new data in this expanding area.
Collapse
Affiliation(s)
- Sara Bizzotto
- INSERM UMRS 839 Paris, France ; Sorbonne Universités, Université Pierre et Marie Curie Paris, France ; Institut du Fer à Moulin Paris, France
| | - Fiona Francis
- INSERM UMRS 839 Paris, France ; Sorbonne Universités, Université Pierre et Marie Curie Paris, France ; Institut du Fer à Moulin Paris, France
| |
Collapse
|
40
|
Park I, Lee HS. EphB/ephrinB signaling in cell adhesion and migration. Mol Cells 2015; 38:14-9. [PMID: 25475547 PMCID: PMC4314128 DOI: 10.14348/molcells.2015.2116] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 10/14/2014] [Accepted: 10/17/2014] [Indexed: 11/27/2022] Open
Abstract
Eph receptors and their ligands, ephrins, represent the largest group of the receptor tyrosine kinase (RTK) family, and they mediate numerous developmental processes in a variety of organisms. Ephrins are membrane-bound proteins that are mainly divided into two classes: A class ephrins, which are linked to the membrane by a glycosylphosphatidylinositol (GPI) linkage, and B class ephrins, which are transmembrane ligands. Based on their domain structures and affinities for ligand binding, the Eph receptors are also divided into two groups. Trans-dimerization of Eph receptors with their membrane-tethered ligands regulates cell-cell interactions and initiates bidirectional signaling pathways. These pathways are intimately involved in regulating cytoskeleton dynamics, cell migration, and alterations in cellular dynamics and shapes. The EphBs and ephrinBs are specifically localized and modified to promote higher-order clustering and initiate of bidirectional signaling. In this review, we present an in-depth overview of the structure, mechanisms, cell signaling, and functions of EphB/ephrinB in cell adhesion and migration.
Collapse
Affiliation(s)
- Inji Park
- ABRC, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 702-701,
Korea
| | - Hyun-Shik Lee
- ABRC, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 702-701,
Korea
| |
Collapse
|
41
|
Ji YJ, Hwang YS, Mood K, Cho HJ, Lee HS, Winterbottom E, Cousin H, Daar IO. EphrinB2 affects apical constriction in Xenopus embryos and is regulated by ADAM10 and flotillin-1. Nat Commun 2014; 5:3516. [PMID: 24662724 PMCID: PMC4120273 DOI: 10.1038/ncomms4516] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 02/26/2014] [Indexed: 01/19/2023] Open
Abstract
The Eph/ephrin signalling pathways have a critical function in cell adhesion and repulsion, and thus play key roles in various morphogenetic events during development. Here we show that a decrease in ephrinB2 protein causes neural tube closure defects during Xenopus laevis embryogenesis. Such a decrease in ephrinB2 protein levels is observed on the loss of flotillin-1 scaffold protein, a newly identified ephrinB2-binding partner. This dramatic decline in ephrinB2 protein levels on the absence of flotillin-1 expression is specific, and is partly the result of an increased susceptibility to cleavage by the metalloprotease ADAM10. These findings indicate that flotillin-1 regulates ephrinB2 protein levels through ADAM10, and is required for appropriate neural tube morphogenesis in the Xenopus embryo.
Collapse
Affiliation(s)
- Yon Ju Ji
- Laboratory of Cell and Developmental Signaling, National Cancer Institute-Frederick, Frederick, Maryland 21702, USA
| | - Yoo-Seok Hwang
- Laboratory of Cell and Developmental Signaling, National Cancer Institute-Frederick, Frederick, Maryland 21702, USA
| | - Kathleen Mood
- Laboratory of Cell and Developmental Signaling, National Cancer Institute-Frederick, Frederick, Maryland 21702, USA
| | - Hee-Jun Cho
- Laboratory of Cell and Developmental Signaling, National Cancer Institute-Frederick, Frederick, Maryland 21702, USA
| | - Hyun-Shik Lee
- ABRC, CMRI School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 702-701, South Korea
| | - Emily Winterbottom
- Laboratory of Cell and Developmental Signaling, National Cancer Institute-Frederick, Frederick, Maryland 21702, USA
| | - Hèléne Cousin
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Ira O. Daar
- Laboratory of Cell and Developmental Signaling, National Cancer Institute-Frederick, Frederick, Maryland 21702, USA
| |
Collapse
|
42
|
Paridaen JTML, Huttner WB. Neurogenesis during development of the vertebrate central nervous system. EMBO Rep 2014; 15:351-64. [PMID: 24639559 DOI: 10.1002/embr.201438447] [Citation(s) in RCA: 261] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
During vertebrate development, a wide variety of cell types and tissues emerge from a single fertilized oocyte. One of these tissues, the central nervous system, contains many types of neurons and glial cells that were born during the period of embryonic and post-natal neuro- and gliogenesis. As to neurogenesis, neural progenitors initially divide symmetrically to expand their pool and switch to asymmetric neurogenic divisions at the onset of neurogenesis. This process involves various mechanisms involving intrinsic as well as extrinsic factors. Here, we discuss the recent advances and insights into regulation of neurogenesis in the developing vertebrate central nervous system. Topics include mechanisms of (a)symmetric cell division, transcriptional and epigenetic regulation, and signaling pathways, using mostly examples from the developing mammalian neocortex.
Collapse
|
43
|
Klein R, Kania A. Ephrin signalling in the developing nervous system. Curr Opin Neurobiol 2014; 27:16-24. [PMID: 24608162 DOI: 10.1016/j.conb.2014.02.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/20/2014] [Accepted: 02/06/2014] [Indexed: 12/27/2022]
Abstract
Ephrin ligands and their Eph receptors hold our attention since their link to axon guidance almost twenty years ago. Since then, they have been shown to be critical for short distance cell-cell interactions in the nervous system. The interest in their function has not abated, leading to ever-more sophisticated studies generating as many surprising answers about their function as new questions. We discuss recent insights into their functions in the developing nervous system, including neuronal progenitor sorting, stochastic cell migration, guidance of neuronal growth cones, topographic map formation, as well as synaptic plasticity.
Collapse
Affiliation(s)
- Rüdiger Klein
- Department of Molecules - Signaling - Development, Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany; Munich Cluster for Systems Neurology (Synergy), Munich, Germany.
| | - Artur Kania
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada H2W 1R7; Département de Médecine, Université de Montréal, Montréal, QC, Canada H3T 1J4; Division of Experimental Medicine, Departments of Biology, and, Anatomy and Cell Biology and Integrated Program in Neurosciences, McGill University, Montréal, QC, Canada H3A 1A3.
| |
Collapse
|
44
|
Cortical abnormalities and non-spatial learning deficits in a mouse model of CranioFrontoNasal syndrome. PLoS One 2014; 9:e88325. [PMID: 24520368 PMCID: PMC3919725 DOI: 10.1371/journal.pone.0088325] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 01/07/2014] [Indexed: 11/22/2022] Open
Abstract
Eph receptors and their ephrin ligands play critical roles in the development of the nervous system, however, less is known about their functions in the adult brain. Here, we investigated the function of ephrinB1, an ephrinB family member that is mutated in CranioFrontoNasal Syndrome. We show that ephrinB1 deficient mice (EfnB1Y/−) demonstrate spared spatial learning and memory but exhibit exclusive impairment in non-spatial learning and memory tasks. We established that ephrinB1 does not control learning and memory through direct modulation of synaptic plasticity in adults, since it is not expressed in the adult brain. Rather we show that the cortex of EfnB1Y/− mice displayed supernumerary neurons, with a particular increase in calretinin-positive interneurons. Further, the increased neuron number in EfnB1Y/− mutants correlated with shorter dendritic arborization and decreased spine densities of cortical pyramidal neurons. Our findings indicate that ephrinB1 plays an important role in cortical maturation and that its loss has deleterious consequences on selective cognitive functions in the adult.
Collapse
|
45
|
TBC1D24 regulates neuronal migration and maturation through modulation of the ARF6-dependent pathway. Proc Natl Acad Sci U S A 2014; 111:2337-42. [PMID: 24469796 DOI: 10.1073/pnas.1316294111] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Alterations in the formation of brain networks are associated with several neurodevelopmental disorders. Mutations in TBC1 domain family member 24 (TBC1D24) are responsible for syndromes that combine cortical malformations, intellectual disability, and epilepsy, but the function of TBC1D24 in the brain remains unknown. We report here that in utero TBC1D24 knockdown in the rat developing neocortex affects the multipolar-bipolar transition of neurons leading to delayed radial migration. Furthermore, we find that TBC1D24-knockdown neurons display an abnormal maturation and retain immature morphofunctional properties. TBC1D24 interacts with ADP ribosylation factor (ARF)6, a small GTPase crucial for membrane trafficking. We show that in vivo, overexpression of the dominant-negative form of ARF6 rescues the neuronal migration and dendritic outgrowth defects induced by TBC1D24 knockdown, suggesting that TBC1D24 prevents ARF6 activation. Overall, our findings demonstrate an essential role of TBC1D24 in neuronal migration and maturation and highlight the physiological relevance of the ARF6-dependent membrane-trafficking pathway in brain development.
Collapse
|
46
|
Cavodeassi F, Ivanovitch K, Wilson SW. Eph/Ephrin signalling maintains eye field segregation from adjacent neural plate territories during forebrain morphogenesis. Development 2013; 140:4193-202. [PMID: 24026122 PMCID: PMC3787759 DOI: 10.1242/dev.097048] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2013] [Indexed: 02/02/2023]
Abstract
During forebrain morphogenesis, there is extensive reorganisation of the cells destined to form the eyes, telencephalon and diencephalon. Little is known about the molecular mechanisms that regulate region-specific behaviours and that maintain the coherence of cell populations undergoing specific morphogenetic processes. In this study, we show that the activity of the Eph/Ephrin signalling pathway maintains segregation between the prospective eyes and adjacent regions of the anterior neural plate during the early stages of forebrain morphogenesis in zebrafish. Several Ephrins and Ephs are expressed in complementary domains in the prospective forebrain and combinatorial abrogation of their activity results in incomplete segregation of the eyes and telencephalon and in defective evagination of the optic vesicles. Conversely, expression of exogenous Ephs or Ephrins in regions of the prospective forebrain where they are not usually expressed changes the adhesion properties of the cells, resulting in segregation to the wrong domain without changing their regional fate. The failure of eye morphogenesis in rx3 mutants is accompanied by a loss of complementary expression of Ephs and Ephrins, suggesting that this pathway is activated downstream of the regional fate specification machinery to establish boundaries between domains undergoing different programmes of morphogenesis.
Collapse
Affiliation(s)
| | - Kenzo Ivanovitch
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Stephen W. Wilson
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
47
|
Eph:ephrin-B1 forward signaling controls fasciculation of sensory and motor axons. Dev Biol 2013; 383:264-74. [PMID: 24056079 DOI: 10.1016/j.ydbio.2013.09.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 09/04/2013] [Accepted: 09/07/2013] [Indexed: 11/22/2022]
Abstract
Axon fasciculation is one of the processes controlling topographic innervation during embryonic development. While axon guidance steers extending axons in the accurate direction, axon fasciculation allows sets of co-extending axons to grow in tight bundles. The Eph:ephrin family has been involved both in axon guidance and fasciculation, yet it remains unclear how these two distinct types of responses are elicited. Herein we have characterized the role of ephrin-B1, a member of the ephrinB family in sensory and motor innervation of the limb. We show that ephrin-B1 is expressed in sensory axons and in the limb bud mesenchyme while EphB2 is expressed in motor and sensory axons. Loss of ephrin-B1 had no impact on the accurate dorso-ventral innervation of the limb by motor axons, yet EfnB1 mutants exhibited decreased fasciculation of peripheral motor and sensory nerves. Using tissue-specific excision of EfnB1 and in vitro experiments, we demonstrate that ephrin-B1 controls fasciculation of axons via a surround repulsion mechanism involving growth cone collapse of EphB2-expressing axons. Altogether, our results highlight the complex role of Eph:ephrin signaling in the development of the sensory-motor circuit innervating the limb.
Collapse
|
48
|
Dimidschstein J, Passante L, Dufour A, van den Ameele J, Tiberi L, Hrechdakian T, Adams R, Klein R, Lie D, Jossin Y, Vanderhaeghen P. Ephrin-B1 Controls the Columnar Distribution of Cortical Pyramidal Neurons by Restricting Their Tangential Migration. Neuron 2013; 79:1123-35. [DOI: 10.1016/j.neuron.2013.07.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2013] [Indexed: 10/26/2022]
|
49
|
Itoh Y, Tyssowski K, Gotoh Y. Transcriptional coupling of neuronal fate commitment and the onset of migration. Curr Opin Neurobiol 2013; 23:957-64. [PMID: 23973158 DOI: 10.1016/j.conb.2013.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 08/05/2013] [Accepted: 08/05/2013] [Indexed: 12/18/2022]
Abstract
During mammalian CNS development, when the neural precursor cells commit to the neuronal fate they must delaminate and migrate toward the pial surface in order to reach the appropriate final location. Thus, the coordination of delamination and fate commitment is important in creating the correct structure. Although previous studies have proposed that spindle orientation during mitosis plays a role in both delamination and fate commitment, thus coordinating these events, subsequent studies have challenged this model. Recent work has identified several transcriptional mechanisms associated with neurogenesis that inhibit cell adhesion of newborn neurons and intermediate neuronal progenitors, thereby triggering delamination and linking it with fate commitment.
Collapse
Affiliation(s)
- Yasuhiro Itoh
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| | | | | |
Collapse
|
50
|
Rudov A, Rocchi MBL, Accorsi A, Spada G, Procopio AD, Olivieri F, Rippo MR, Albertini MC. Putative miRNAs for the diagnosis of dyslexia, dyspraxia, and specific language impairment. Epigenetics 2013; 8:1023-9. [PMID: 23949389 DOI: 10.4161/epi.26026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Disorders of human communication abilities can be classified into speech and language disorders. Speech disorders (e.g., dyspraxia) affect the sound generation and sequencing, while language disorders (e.g., dyslexia and specific language impairment, or SLI) are deficits in the encoding and decoding of language according to its rules (reading, spelling, grammar). The diagnosis of such disorders is often complicated, especially when a patient presents more than one disorder at the same time. The present review focuses on these challenges. We have combined data available from the literature with an in silico approach in an attempt to identify putative miRNAs that may have a key role in dyspraxia, dyslexia and SLI. We suggest the use of new miRNAs, which could have an important impact on the three diseases. Further, we relate those miRNAs to the axon guidance pathway and discuss possible interactions and the role of likely deregulated proteins. In addition, we describe potential differences in expressional deregulation and its role in the improvement of diagnosis. We encourage experimental investigations to test the data obtained in silico.
Collapse
Affiliation(s)
- Alexander Rudov
- Department of Biomolecular Sciences; Urbino University ''Carlo Bo''; Urbino, Italy
| | | | - Augusto Accorsi
- Department of Biomolecular Sciences; Urbino University ''Carlo Bo''; Urbino, Italy
| | - Giorgio Spada
- Dipartimento di Scienze di Base e Fondamenti; Urbino University ''Carlo Bo''; Urbino, Italy
| | | | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences; Università Politecnica delle Marche; Ancona, Italy
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences; Università Politecnica delle Marche; Ancona, Italy
| | | |
Collapse
|