1
|
Rispal J, Rives C, Jouffret V, Leoni C, Dubois L, Chevillard-Briet M, Trouche D, Escaffit F. Control of Intestinal Stemness and Cell Lineage by Histone Variant H2A.Z Isoforms. Mol Cell Biol 2024; 44:455-472. [PMID: 39155414 PMCID: PMC11529411 DOI: 10.1080/10985549.2024.2387720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
The histone variant H2A.Z plays important functions in the regulation of gene expression. In mammals, it is encoded by two genes, giving rise to two highly related isoforms named H2A.Z.1 and H2A.Z.2, which can have similar or antagonistic functions depending on the promoter. Knowledge of the physiopathological consequences of such functions emerges, but how the balance between these isoforms regulates tissue homeostasis is not fully understood. Here, we investigated the relative role of H2A.Z isoforms in intestinal epithelial homeostasis. Through genome-wide analysis of H2A.Z genomic localization in differentiating Caco-2 cells, we uncovered an enrichment of H2A.Z isoforms on the bodies of genes which are induced during enterocyte differentiation, stressing the potential importance of H2A.Z isoforms dynamics in this process. Through a combination of in vitro and in vivo experiments, we further demonstrated the two isoforms cooperate for stem and progenitor cells proliferation, as well as for secretory lineage differentiation. However, we found that they antagonistically regulate enterocyte differentiation, with H2A.Z.1 preventing terminal differentiation and H2A.Z.2 favoring it. Altogether, these data indicate that H2A.Z isoforms are critical regulators of intestine homeostasis and may provide a paradigm of how the balance between two isoforms of the same chromatin structural protein can control physiopathological processes.
Collapse
Affiliation(s)
- Jérémie Rispal
- Molecular, Cellular and Developmental Biology Unit, Centre de Biologie Integrative, University of Toulouse, Université Paul Sabatier, CNRS, Toulouse, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Toulouse, France
| | - Clémence Rives
- Molecular, Cellular and Developmental Biology Unit, Centre de Biologie Integrative, University of Toulouse, Université Paul Sabatier, CNRS, Toulouse, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Toulouse, France
| | - Virginie Jouffret
- Molecular, Cellular and Developmental Biology Unit, Centre de Biologie Integrative, University of Toulouse, Université Paul Sabatier, CNRS, Toulouse, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Toulouse, France
| | - Caroline Leoni
- Molecular, Cellular and Developmental Biology Unit, Centre de Biologie Integrative, University of Toulouse, Université Paul Sabatier, CNRS, Toulouse, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Toulouse, France
| | - Louise Dubois
- Molecular, Cellular and Developmental Biology Unit, Centre de Biologie Integrative, University of Toulouse, Université Paul Sabatier, CNRS, Toulouse, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Toulouse, France
| | - Martine Chevillard-Briet
- Molecular, Cellular and Developmental Biology Unit, Centre de Biologie Integrative, University of Toulouse, Université Paul Sabatier, CNRS, Toulouse, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Toulouse, France
| | - Didier Trouche
- Molecular, Cellular and Developmental Biology Unit, Centre de Biologie Integrative, University of Toulouse, Université Paul Sabatier, CNRS, Toulouse, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Toulouse, France
| | - Fabrice Escaffit
- Molecular, Cellular and Developmental Biology Unit, Centre de Biologie Integrative, University of Toulouse, Université Paul Sabatier, CNRS, Toulouse, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Toulouse, France
| |
Collapse
|
2
|
Dijkwel Y, Tremethick DJ. The Role of the Histone Variant H2A.Z in Metazoan Development. J Dev Biol 2022; 10:jdb10030028. [PMID: 35893123 PMCID: PMC9326617 DOI: 10.3390/jdb10030028] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/12/2022] [Accepted: 06/23/2022] [Indexed: 12/10/2022] Open
Abstract
During the emergence and radiation of complex multicellular eukaryotes from unicellular ancestors, transcriptional systems evolved by becoming more complex to provide the basis for this morphological diversity. The way eukaryotic genomes are packaged into a highly complex structure, known as chromatin, underpins this evolution of transcriptional regulation. Chromatin structure is controlled by a variety of different epigenetic mechanisms, including the major mechanism for altering the biochemical makeup of the nucleosome by replacing core histones with their variant forms. The histone H2A variant H2A.Z is particularly important in early metazoan development because, without it, embryos cease to develop and die. However, H2A.Z is also required for many differentiation steps beyond the stage that H2A.Z-knockout embryos die. H2A.Z can facilitate the activation and repression of genes that are important for pluripotency and differentiation, and acts through a variety of different molecular mechanisms that depend upon its modification status, its interaction with histone and nonhistone partners, and where it is deposited within the genome. In this review, we discuss the current knowledge about the different mechanisms by which H2A.Z regulates chromatin function at various developmental stages and the chromatin remodeling complexes that determine when and where H2A.Z is deposited.
Collapse
|
3
|
Shibata Y, Seki Y, Nishiwaki K. Maintenance of cell fates and regulation of the histone variant H3.3 by TLK kinase in Caenorhabditis elegans. Biol Open 2019; 8:bio.038448. [PMID: 30635266 PMCID: PMC6361200 DOI: 10.1242/bio.038448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cell-fate maintenance is important to preserve the variety of cell types that are essential for the formation and function of tissues. We previously showed that the acetylated histone-binding protein BET-1 maintains cell fate by recruiting the histone variant H2A.z. Here, we report that Caenorhabditis elegans TLK-1 and the histone H3 chaperone CAF1 prevent the accumulation of histone variant H3.3. In addition, TLK-1 and CAF1 maintain cell fate by repressing ectopic expression of transcription factors that induce cell-fate specification. Genetic analyses suggested that TLK-1 and BET-1 act in parallel pathways. In tlk-1 mutants, the loss of SIN-3, which promotes histone acetylation, suppressed a defect in cell-fate maintenance in a manner dependent on MYST family histone acetyltransferase MYS-2 and BET-1. sin-3 mutation also suppressed abnormal H3.3 incorporation. Thus, we propose a hypothesis that the regulation and interaction of histone variants play crucial roles in cell-fate maintenance through the regulation of selector genes. Summary: Histone H3 chaperone CAF1 maintains cell fate by repressing ectopic expression of genes for cell fate-specifying transcription factors. Accumulation of histone variant H3.3 correlates with defects in cell-fate maintenance.
Collapse
Affiliation(s)
- Yukimasa Shibata
- School of Science and Technology, Department of Bioscience, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Yoshiyuki Seki
- School of Science and Technology, Department of Bioscience, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Kiyoji Nishiwaki
- School of Science and Technology, Department of Bioscience, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|
4
|
Weinhouse C, Truong L, Meyer JN, Allard P. Caenorhabditis elegans as an emerging model system in environmental epigenetics. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:560-575. [PMID: 30091255 PMCID: PMC6113102 DOI: 10.1002/em.22203] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/13/2018] [Accepted: 04/19/2018] [Indexed: 05/19/2023]
Abstract
The roundworm Caenorhabitis elegans has been an established model organism for the study of genetics and developmental biology, including studies of transcriptional regulation, since the 1970s. This model organism has continued to be used as a classical model system as the field of transcriptional regulation has expanded to include scientific advances in epigenetics and chromatin biology. In the last several decades, C. elegans has emerged as a powerful model for environmental toxicology, particularly for the study of chemical genotoxicity. Here, we outline the utility and applicability of C. elegans as a powerful model organism for mechanistic studies of environmental influences on the epigenome. Our goal in this article is to inform the field of environmental epigenetics of the strengths and limitations of the well-established C. elegans model organism as an emerging model for medium-throughput, in vivo exploration of the role of exogenous chemical stimuli in transcriptional regulation, developmental epigenetic reprogramming, and epigenetic memory and inheritance. As the field of environmental epigenetics matures, and research begins to map mechanisms underlying observed associations, new toolkits and model systems, particularly manipulable, scalable in vivo systems that accurately model human transcriptional regulatory circuits, will provide an essential experimental bridge between in vitro biochemical experiments and mammalian model systems. Environ. Mol. Mutagen. 59:560-575, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Caren Weinhouse
- Duke Global Health Institute, Duke University, Durham, North Carolina
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Lisa Truong
- UCLA Human Genetics and Genomic Analysis Training Program, University of California, Los Angeles; Los Angeles, California
| | - Joel N. Meyer
- Duke Global Health Institute, Duke University, Durham, North Carolina
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Patrick Allard
- Institute for Society and Genetics, University of California at Los Angeles, Los Angeles, California
| |
Collapse
|
5
|
Shinkai Y, Kuramochi M, Doi M. Regulation of chromatin states and gene expression during HSN neuronal maturation is mediated by EOR-1/PLZF, MAU-2/cohesin loader, and SWI/SNF complex. Sci Rep 2018; 8:7942. [PMID: 29786685 PMCID: PMC5962631 DOI: 10.1038/s41598-018-26149-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/01/2018] [Indexed: 01/03/2023] Open
Abstract
Newborn neurons mature by distinct and sequential steps through the timely induction of specific gene expression programs in concert with epigenetic changes. However, it has been difficult to investigate the relationship between gene expression and epigenetic changes at a single-cell resolution during neuronal maturation. In this study, we investigated the maturation of hermaphrodite-specific neurons (HSNs) in C. elegans, which provided the link between chromatin dynamics, gene expression, and the degree of neuronal maturation at a single-cell resolution. Our results demonstrated that chromatin composition in the promoter region of several genes acting for neuronal terminal maturation was modulated at an early developmental stage, and is dependent on the function of the transcription factor EOR-1/PLZF and the cohesin loader MAU-2/MAU2. Components of the SWI/SNF chromatin remodeling complex were also required for the proper expression of terminal maturation genes. Epistasis analyses suggested that eor-1 functions with mau-2 and swsn-1 in the same genetic pathway to regulate the maturation of HSNs. Collectively, our study provides a novel approach to analyze neuronal maturation and proposes that predefined epigenetic modifications, mediated by EOR-1, MAU-2, and the SWI/SNF complex, are important for the preparation of future gene expression programs in neuronal terminal maturation.
Collapse
Affiliation(s)
- Yoichi Shinkai
- Molecular Neurobiology Research Group and DAI-Lab, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1, Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
| | - Masahiro Kuramochi
- Molecular Neurobiology Research Group and DAI-Lab, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1, Higashi, Tsukuba, Ibaraki, 305-8566, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa City, Chiba, 277-8561, Japan
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Chiba, 277-8565, Japan
| | - Motomichi Doi
- Molecular Neurobiology Research Group and DAI-Lab, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1, Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
| |
Collapse
|
6
|
Lau AC, Zhu KP, Brouhard EA, Davis MB, Csankovszki G. An H4K16 histone acetyltransferase mediates decondensation of the X chromosome in C. elegans males. Epigenetics Chromatin 2016; 9:44. [PMID: 27777629 PMCID: PMC5070013 DOI: 10.1186/s13072-016-0097-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/05/2016] [Indexed: 02/08/2023] Open
Abstract
Background In C. elegans, in order to equalize gene expression between the sexes and balance X and autosomal expression, two steps are believed to be required. First, an unknown mechanism is hypothesized to upregulate the X chromosome in both sexes. This mechanism balances the X to autosomal expression in males, but creates X overexpression in hermaphrodites. Therefore, to restore the balance, hermaphrodites downregulate gene expression twofold on both X chromosomes. While many studies have focused on X chromosome downregulation, the mechanism of X upregulation is not known. Results To gain more insight into X upregulation, we studied the effects of chromatin condensation and histone acetylation on gene expression levels in male C. elegans. We have found that the H4K16 histone acetyltransferase MYS-1/Tip60 mediates dramatic decondensation of the male X chromosome as measured by FISH. However, RNA-seq analysis revealed that MYS-1 contributes only slightly to upregulation of gene expression on the X chromosome. These results suggest that the level of chromosome decondensation does not necessarily correlate with the degree of gene expression change in vivo. Furthermore, the X chromosome is more sensitive to MYS-1-mediated decondensation than the autosomes, despite similar levels of H4K16ac on all chromosomes, as measured by ChIP-seq. H4K16ac levels weakly correlate with gene expression levels on both the X and the autosomes, but highly expressed genes on the X chromosome do not contain exceptionally high levels of H4K16ac. Conclusion These results indicate that H4K16ac and chromosome decondensation influence regulation of the male X chromosome; however, they do not fully account for the high levels of gene expression observed on the X chromosomes. Electronic supplementary material The online version of this article (doi:10.1186/s13072-016-0097-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alyssa C Lau
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University Ave., Ann Arbor, MI 48109-1048 USA ; Genome Technologies, The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
| | - Kevin P Zhu
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University Ave., Ann Arbor, MI 48109-1048 USA
| | - Elizabeth A Brouhard
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University Ave., Ann Arbor, MI 48109-1048 USA
| | - Michael B Davis
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University Ave., Ann Arbor, MI 48109-1048 USA
| | - Györgyi Csankovszki
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University Ave., Ann Arbor, MI 48109-1048 USA
| |
Collapse
|
7
|
H2A.Z.1 Monoubiquitylation Antagonizes BRD2 to Maintain Poised Chromatin in ESCs. Cell Rep 2016; 14:1142-1155. [PMID: 26804911 DOI: 10.1016/j.celrep.2015.12.100] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 10/16/2015] [Accepted: 12/22/2015] [Indexed: 12/13/2022] Open
Abstract
Histone variant H2A.Z occupies the promoters of active and poised, bivalent genes in embryonic stem cells (ESCs) to regulate developmental programs, yet how it contributes to these contrasting states is poorly understood. Here, we investigate the function of H2A.Z.1 monoubiquitylation (H2A.Z.1ub) by mutation of the PRC1 target residues (H2A.Z.1(K3R3)). We show that H2A.Z.1(K3R3) is properly incorporated at target promoters in murine ESCs (mESCs), but loss of monoubiquitylation leads to de-repression of bivalent genes, loss of Polycomb binding, and faulty lineage commitment. Using quantitative proteomics, we find that tandem bromodomain proteins, including the BET family member BRD2, are enriched in H2A.Z.1 chromatin. We further show that BRD2 is gained at de-repressed promoters in H2A.Z.1(K3R3) mESCs, whereas BRD2 inhibition restores gene silencing at these sites. Together, our study reveals an antagonistic relationship between H2A.Z.1ub and BRD2 to regulate the transcriptional balance at bivalent genes to enable proper execution of developmental programs.
Collapse
|
8
|
Chemical “Diversity” of Chromatin Through Histone Variants and Histone Modifications. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s40610-015-0005-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Jiang J, Lau AC, Csankovszki G. Pluripotent cells will not dosage compensate. WORM 2014; 3:e29051. [PMID: 25254152 DOI: 10.4161/worm.29051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/17/2014] [Accepted: 04/28/2014] [Indexed: 11/19/2022]
Abstract
Dosage compensation is the mechanism that balances gene expression levels between males and females as well as between the X chromosome and autosomes. In mammals, loss of pluripotency and differentiation are closely linked with the onset of dosage compensation. Pluripotency factors negatively regulate Xist (the non-coding RNA that triggers X chromosome inactivation) and positively regulate Tsix, a repressor of Xist, to inhibit dosage compensation. In addition, X chromosome dose also regulates exit from the pluripotent state. A double dose of X chromosomes in undifferentiated female cells inhibits the MAPK and Gsk3 signaling pathways and activates the Akt pathway, thereby blocking differentiation. Here we review our recent report, which showed that the onset of dosage compensation is also linked to the loss of pluripotency in C. elegans. We discuss these findings in light of what is known about pluripotency and differentiation in this organism.
Collapse
Affiliation(s)
- Jianhao Jiang
- Department of Molecular, Cellular and Developmental Biology; University of Michigan; Ann Arbor, MI USA
| | - Alyssa C Lau
- Department of Molecular, Cellular and Developmental Biology; University of Michigan; Ann Arbor, MI USA
| | - Györgyi Csankovszki
- Department of Molecular, Cellular and Developmental Biology; University of Michigan; Ann Arbor, MI USA
| |
Collapse
|
10
|
Shibata Y, Nishiwaki K. Maintenance of cell fates through acetylated histone and the histone variant H2A.z in C. elegans. WORM 2014; 3:e29048. [PMID: 25254151 DOI: 10.4161/worm.29048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/17/2014] [Accepted: 04/28/2014] [Indexed: 01/04/2023]
Abstract
Maintenance of cell fates is essential for the development and homeostasis of multicellular organisms and involves the preservation of the expression status of selector genes that control many target genes. Epigenetic marks have pivotal roles in the maintenance of gene expression status, as occurs with methylation on lysine 27 of histone H3 (H3K27me) for Hox gene regulation. In contrast, because the levels of histone acetylation decrease during the mitotic phase, acetylated histone has not been believed to contribute to the maintenance of cell fates. Because members of the bromodomain and extra terminal (BET) family bind to acetylated histones localized on mitotic chromosomes, it is possible that they may regulate the transcriptional status of genes throughout the cell cycle. In this commentary, we discuss the recent analyses of C. elegans BET family protein BET-1, which contributes to the maintenance of cell fates through the histone H2A variant HTZ-1/H2A.z. This mechanism represses transcription of selector genes in the genomic region where lysine 27 of histone H3 (H3K27) is demethylated by histone demethylase UTX-1. We discuss the possibility that BET-1 and HTZ-1 maintain the poised state of RNA polymerase II in the cell such that it is ready to respond to differentiation signals.
Collapse
Affiliation(s)
- Yukimasa Shibata
- Department of Bioscience; Kwansei Gakuin University; Sanda, Hyogo, Japan
| | - Kiyoji Nishiwaki
- Department of Bioscience; Kwansei Gakuin University; Sanda, Hyogo, Japan
| |
Collapse
|