1
|
Goleij P, Heidari MM, Tabari MAK, Hadipour M, Rezaee A, Javan A, Sanaye PM, Larsen DS, Daglia M, Khan H. Polycomb repressive complex 2 (PRC2) pathway's role in cancer cell plasticity and drug resistance. Funct Integr Genomics 2025; 25:53. [PMID: 40048009 DOI: 10.1007/s10142-025-01563-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/17/2025] [Accepted: 02/23/2025] [Indexed: 05/13/2025]
Abstract
Polycomb Repressive Complex 2 (PRC2) is a central regulator of gene expression via the trimethylation of histone H3 on lysine 27. This epigenetic modification plays a crucial role in maintaining cell identity and controlling differentiation, while its dysregulation is closely linked to cancer progression. PRC2 silences tumor suppressor genes, promoting cell proliferation, metastasis, epithelial-mesenchymal transition, and cancer stem cell plasticity. Enhancement of zeste homolog 2 (EZH2) overexpression or gain-of-function mutations have been observed in several cancers, including lymphoma, breast, and prostate cancers, driving aggressive tumor behavior and drug resistance. In addition to EZH2, other PRC2 components, such as embryonic ectoderm development (EED) and suppressor of zeste 12, are essential for complex stability and function. EED, in particular, enhances EZH2 activity and has emerged as a therapeutic target. Inhibitors like MAK683 and EED226 disrupt EED's ability to maintain PRC2 activity, thereby reducing H3K27me3 levels and reactivating tumor suppressor genes. Valemetostat, a dual inhibitor of both EZH2 and EED, has shown promising results in aggressive cancers like diffuse large B-cell lymphoma and small-cell lung cancer, underlining the therapeutic potential of targeting multiple PRC2 components. PRC2's role extends beyond gene repression, as it contributes to metabolic reprogramming in tumors, regulating glycolysis and lipid synthesis to fuel cancer growth. Furthermore, PRC2 is implicated in chemoresistance, particularly by modulating DNA damage response and immune evasion. Tazemetostat, a selective EZH2 inhibitor, has demonstrated significant clinical efficacy in EZH2-mutant cancers, such as non-Hodgkin lymphomas and epithelioid sarcoma. However, the compensatory function of enhancer of zeste homolog 1 (EZH1) in some cancers requires dual inhibition strategies, as seen with agents like UNC1999 and Tulmimetostat, which target both EZH1 and EZH2. Given PRC2's multifaceted role in cancer biology, its inhibition represents a promising avenue for therapeutic intervention. The continued development of PRC2 inhibitors and exploration of their use in combination with standard chemotherapy or immunotherapy has great potential for improving patient outcomes in cancers driven by PRC2 dysregulation.
Collapse
Affiliation(s)
- Pouya Goleij
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, 6715847141, Iran.
- Immunology Board for Transplantation and Cell-Based Therapeutics (Immunotact), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Mohammad Mahdi Heidari
- Department of Pediatrics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Mazandaran, 4815733971, Iran
| | - Mahboube Hadipour
- Department of Biochemistry, School of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, 7919693116, Iran
| | - Aryan Rezaee
- School of Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Alireza Javan
- School of Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Pantea Majma Sanaye
- School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, 4513956184, Iran
| | - Danaé S Larsen
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand
| | - Maria Daglia
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
- Department of Pharmacy, Korea University, Sejong, 20019, South Korea.
| |
Collapse
|
2
|
Sebastian-Perez R, Nakagawa S, Tu X, Aranda S, Pesaresi M, Gomez-Garcia PA, Alcoverro-Bertran M, Gomez-Vazquez JL, Carnevali D, Borràs E, Sabidó E, Martin L, Nissim-Rafinia M, Meshorer E, Neguembor MV, Di Croce L, Cosma MP. SMARCAD1 and TOPBP1 contribute to heterochromatin maintenance at the transition from the 2C-like to the pluripotent state. eLife 2025; 12:RP87742. [PMID: 39969508 PMCID: PMC11839162 DOI: 10.7554/elife.87742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025] Open
Abstract
Chromocenters are established after the 2-cell (2C) stage during mouse embryonic development, but the factors that mediate chromocenter formation remain largely unknown. To identify regulators of 2C heterochromatin establishment in mice, we generated an inducible system to convert embryonic stem cells (ESCs) to 2C-like cells. This conversion is marked by a global reorganization and dispersion of H3K9me3-heterochromatin foci, which are then reversibly formed upon re-entry into pluripotency. By profiling the chromatin-bound proteome (chromatome) through genome capture of ESCs transitioning to 2C-like cells, we uncover chromatin regulators involved in de novo heterochromatin formation. We identified TOPBP1 and investigated its binding partner SMARCAD1. SMARCAD1 and TOPBP1 associate with H3K9me3-heterochromatin in ESCs. Interestingly, the nuclear localization of SMARCAD1 is lost in 2C-like cells. SMARCAD1 or TOPBP1 depletion in mouse embryos leads to developmental arrest, reduction of H3K9me3, and remodeling of heterochromatin foci. Collectively, our findings contribute to comprehending the maintenance of chromocenters during early development.
Collapse
Affiliation(s)
- Ruben Sebastian-Perez
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Shoma Nakagawa
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Xiaochuan Tu
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Sergi Aranda
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Martina Pesaresi
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | | | - Marc Alcoverro-Bertran
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Jose Luis Gomez-Vazquez
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Davide Carnevali
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Eva Borràs
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
| | - Eduard Sabidó
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
| | - Laura Martin
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Malka Nissim-Rafinia
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Eran Meshorer
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
- The Edmond and Lily Safra Center for Brain Sciences, Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Maria Victoria Neguembor
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
- ICREABarcelonaSpain
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
- ICREABarcelonaSpain
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical UniversityGuangzhouChina
| |
Collapse
|
3
|
Zhang J, Ataei L, Mittal K, Wu L, Caldwell L, Huynh L, Sarajideen S, Tse K, Simon MM, Mazid MA, Cook DP, Trcka D, Kwan T, Hoffman MM, Wrana JL, Esteban MA, Ramalho-Santos M. LINE1 and PRC2 control nucleolar organization and repression of the 8C state in human ESCs. Dev Cell 2025; 60:186-203.e13. [PMID: 39413784 DOI: 10.1016/j.devcel.2024.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 08/02/2024] [Accepted: 09/19/2024] [Indexed: 10/18/2024]
Abstract
The mechanisms that ensure developmental progression in the early human embryo remain largely unknown. Here, we show that the family of long interspersed nuclear element 1 (LINE1) transposons prevents the reversion of naive human embryonic stem cells (hESCs) to 8-cell-like cells (8CLCs). LINE1 RNA contributes to maintenance of H3K27me3 levels, particularly at chromosome 19 (Chr19). Chr19 is enriched for key 8C regulators, H3K27me3, and genes derepressed upon LINE1 knockdown or PRC2 inhibition. Moreover, Chr19 is strongly associated with the nucleolus in hESCs but less in 8CLCs. Direct inhibition of PRC2 activity induces the 8C program and leads to a relocalization of Chr19 away from the nucleolus. LINE1 KD or PRC2 inhibition induces nucleolar stress, and disruption of nucleolar architecture is sufficient to de-repress the 8C program. These results indicate that LINE1 RNA and PRC2 maintain H3K27me3-mediated gene repression and 3D nuclear organization to prevent developmental reversion of hESCs.
Collapse
Affiliation(s)
- Juan Zhang
- Lunenfeld-Tanenbaum Research Institute and Department of Molecular Genetics, University of Toronto, Toronto, ON M5T 3H7, Canada.
| | - Lamisa Ataei
- Lunenfeld-Tanenbaum Research Institute and Department of Molecular Genetics, University of Toronto, Toronto, ON M5T 3H7, Canada
| | - Kirti Mittal
- Lunenfeld-Tanenbaum Research Institute and Department of Molecular Genetics, University of Toronto, Toronto, ON M5T 3H7, Canada
| | - Liang Wu
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Lauren Caldwell
- Lunenfeld-Tanenbaum Research Institute and Department of Molecular Genetics, University of Toronto, Toronto, ON M5T 3H7, Canada
| | - Linh Huynh
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Shahil Sarajideen
- Department of Biological Sciences, University of Toronto Scarborough, Scarborough, ON M1C 1A4, Canada
| | - Kevin Tse
- Lunenfeld-Tanenbaum Research Institute and Department of Molecular Genetics, University of Toronto, Toronto, ON M5T 3H7, Canada
| | | | - Md Abdul Mazid
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - David P Cook
- Lunenfeld-Tanenbaum Research Institute and Department of Molecular Genetics, University of Toronto, Toronto, ON M5T 3H7, Canada
| | - Daniel Trcka
- Lunenfeld-Tanenbaum Research Institute and Department of Molecular Genetics, University of Toronto, Toronto, ON M5T 3H7, Canada
| | - Tony Kwan
- McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Michael M Hoffman
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, ON M5G 1L7, Canada; Vector Institute for Artificial Intelligence, Toronto, ON M5G 1M1, Canada
| | - Jeffrey L Wrana
- Lunenfeld-Tanenbaum Research Institute and Department of Molecular Genetics, University of Toronto, Toronto, ON M5T 3H7, Canada
| | - Miguel A Esteban
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; BGI-Shenzhen, Shenzhen, China
| | - Miguel Ramalho-Santos
- Lunenfeld-Tanenbaum Research Institute and Department of Molecular Genetics, University of Toronto, Toronto, ON M5T 3H7, Canada.
| |
Collapse
|
4
|
Munawar N, Wynne K, Oliviero G. PRC1 Protein Subcomplexes Architecture: Focus on the Interplay between Distinct PCGF Subunits in Protein Interaction Networks. Int J Mol Sci 2024; 25:9809. [PMID: 39337298 PMCID: PMC11432245 DOI: 10.3390/ijms25189809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
The six PCGF proteins (PCGF1-6) define the biochemical identity of Polycomb repressor complex 1 (PRC1) subcomplexes. While structural and functional studies of PRC1 subcomplexes have revealed their specialized roles in distinct aspects of epigenetic regulation, our understanding of the variation in the protein interaction networks of distinct PCGF subunits in different PRC1 complexes is incomplete. We carried out an affinity purification mass spectrometry (AP-MS) screening of three PCGF subunits, PCGF1 (NSPC1), PCGF2 (MEL18), and PCGF4 (BMI1), to define their interactome and potential cellular function in pluripotent human embryonal carcinoma cell "NT2". The bioinformatic analysis revealed that these interacting proteins cover a range of functional pathways, often involved in cell biology and chromatin regulation. We also found evidence of mutual regulation (at mRNA and protein level) between three distinct PCGF subunits. Furthermore, we confirmed that the disruption of these subunits results in reduced cell proliferation ability. We reveal an interplay between the compositional diversity of the distinct PCGF containing PRC1 complex and the potential role of PCGF proteins within the wider cellular network.
Collapse
Affiliation(s)
- Nayla Munawar
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Kieran Wynne
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, D04 C1P1 Dublin, Ireland;
- Systems Biology Ireland, School of Medicine, University College Dublin, D04 C1P1 Dublin, Ireland
| | - Giorgio Oliviero
- Systems Biology Ireland, School of Medicine, University College Dublin, D04 C1P1 Dublin, Ireland
| |
Collapse
|
5
|
Li J, Zhang S, Li C, Zhang X, Shan Y, Zhang Z, Bo H, Zhang Y. Endurance exercise-induced histone methylation modification involved in skeletal muscle fiber type transition and mitochondrial biogenesis. Sci Rep 2024; 14:21154. [PMID: 39256490 PMCID: PMC11387812 DOI: 10.1038/s41598-024-72088-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024] Open
Abstract
Skeletal muscle is a highly heterogeneous tissue, and its contractile proteins are composed of different isoforms, forming various types of muscle fiber, each of which has its own metabolic characteristics. It has been demonstrated that endurance exercise induces the transition of muscle fibers from fast-twitch to slow-twitch muscle fiber type. Herein, we discover a novel epigenetic mechanism for muscle contractile property tightly coupled to its metabolic capacity during muscle fiber type transition with exercise training. Our results show that an 8-week endurance exercise induces histone methylation remodeling of PGC-1α and myosin heavy chain (MHC) isoforms in the rat gastrocnemius muscle, accompanied by increased mitochondrial biogenesis and an elevated ratio of slow-twitch to fast-twitch fibers. Furthermore, to verify the roles of reactive oxygen species (ROS) and AMPK in exercise-regulated epigenetic modifications and muscle fiber type transitions, mouse C2C12 myotubes were used. It was shown that rotenone activates ROS/AMPK pathway and histone methylation enzymes, which then promote mitochondrial biogenesis and MHC slow isoform expression. Mitoquinone (MitoQ) partially blocking rotenone-treated model confirms the role of ROS in coupling mitochondrial biogenesis with muscle fiber type. In conclusion, endurance exercise couples mitochondrial biogenesis with MHC slow isoform by remodeling histone methylation, which in turn promotes the transition of fast-twitch to slow-twitch muscle fibers. The ROS/AMPK pathway may be involved in the regulation of histone methylation enzymes by endurance exercise.
Collapse
Affiliation(s)
- Jialin Li
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China
| | - Sheng Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China
- Tianjin Hospital, Tianjin, 300299, China
| | - Can Li
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China
- Department of sport science, Tianjin normal university, Tianjin, 300387, China
| | - Xiaoxia Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China
| | - Yuhui Shan
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China
| | - Ziyi Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China.
| | - Hai Bo
- Department of Military Training Medicines, Logistics University of Chinese People's Armed Police Force, Tianjin, 300162, China.
| | - Yong Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China.
| |
Collapse
|
6
|
Chen J, Liu K, Vadas MA, Gamble JR, McCaughan GW. The Role of the MiR-181 Family in Hepatocellular Carcinoma. Cells 2024; 13:1289. [PMID: 39120319 PMCID: PMC11311592 DOI: 10.3390/cells13151289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the fourth-leading cause of cancer-related death worldwide. Due to the high mortality rate in HCC patients, discovering and developing novel systemic treatment options for HCC is a vital unmet medical need. Among the numerous molecular alterations in HCCs, microRNAs (miRNAs) have been increasingly recognised to play critical roles in hepatocarcinogenesis. We and others have recently revealed that members of the microRNA-181 (miR-181) family were up-regulated in some, though not all, human cirrhotic and HCC tissues-this up-regulation induced epithelial-mesenchymal transition (EMT) in hepatocytes and tumour cells, promoting HCC progression. MiR-181s play crucial roles in governing the fate and function of various cells, such as endothelial cells, immune cells, and tumour cells. Previous reviews have extensively covered these aspects in detail. This review aims to give some insights into miR-181s, their targets and roles in modulating signal transduction pathways, factors regulating miR-181 expression and function, and their roles in HCC.
Collapse
Affiliation(s)
- Jinbiao Chen
- Liver Injury and Cancer Program, Cancer Innovations Centre, Centenary Institute, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
| | - Ken Liu
- Liver Injury and Cancer Program, Cancer Innovations Centre, Centenary Institute, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
- Royal Prince Alfred Hospital, Missenden Road, Camperdown, NSW 2050, Australia
| | - Mathew A. Vadas
- Vascular Biology Program, Healthy Ageing Centre, Centenary Institute, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia; (M.A.V.); (J.R.G.)
| | - Jennifer R. Gamble
- Vascular Biology Program, Healthy Ageing Centre, Centenary Institute, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia; (M.A.V.); (J.R.G.)
| | - Geoffrey W. McCaughan
- Liver Injury and Cancer Program, Cancer Innovations Centre, Centenary Institute, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
- Royal Prince Alfred Hospital, Missenden Road, Camperdown, NSW 2050, Australia
| |
Collapse
|
7
|
Veneti Z, Fasoulaki V, Kalavros N, Vlachos IS, Delidakis C, Eliopoulos AG. Polycomb-mediated silencing of miR-8 is required for maintenance of intestinal stemness in Drosophila melanogaster. Nat Commun 2024; 15:1924. [PMID: 38429303 PMCID: PMC10907375 DOI: 10.1038/s41467-024-46119-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 02/15/2024] [Indexed: 03/03/2024] Open
Abstract
Balancing maintenance of self-renewal and differentiation is a key property of adult stem cells. The epigenetic mechanisms controlling this balance remain largely unknown. Herein, we report that the Polycomb Repressive Complex 2 (PRC2) is required for maintenance of the intestinal stem cell (ISC) pool in the adult female Drosophila melanogaster. We show that loss of PRC2 activity in ISCs by RNAi-mediated knockdown or genetic ablation of the enzymatic subunit Enhancer of zeste, E(z), results in loss of stemness and precocious differentiation of enteroblasts to enterocytes. Mechanistically, we have identified the microRNA miR-8 as a critical target of E(z)/PRC2-mediated tri-methylation of histone H3 at Lys27 (H3K27me3) and uncovered a dynamic relationship between E(z), miR-8 and Notch signaling in controlling stemness versus differentiation of ISCs. Collectively, these findings uncover a hitherto unrecognized epigenetic layer in the regulation of stem cell specification that safeguards intestinal homeostasis.
Collapse
Affiliation(s)
- Zoe Veneti
- Institute of Molecular Biology and Biotechnology, Foundation of Research & Technology Hellas, Heraklion, Greece.
- Medical School, University of Crete, Heraklion, Greece.
| | - Virginia Fasoulaki
- Institute of Molecular Biology and Biotechnology, Foundation of Research & Technology Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Nikolaos Kalavros
- Spatial Technologies Unit, Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ioannis S Vlachos
- Spatial Technologies Unit, Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Christos Delidakis
- Institute of Molecular Biology and Biotechnology, Foundation of Research & Technology Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Aristides G Eliopoulos
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| |
Collapse
|
8
|
Mohebbi H, Esbati R, Hamid RA, Akhavanfar R, Radi UK, Siri G, Yazdani O. EZH2-interacting lncRNAs contribute to gastric tumorigenesis; a review on the mechanisms of action. Mol Biol Rep 2024; 51:334. [PMID: 38393645 DOI: 10.1007/s11033-024-09237-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/10/2024] [Indexed: 02/25/2024]
Abstract
Gastric cancer (GC) remains one of the deadliest malignancies worldwide, demanding new targets to improve its diagnosis and treatment. Long non-coding RNAs (lncRNAs) are dysregulated through gastric tumorigenesis and play a significant role in GC progression and development. Recent studies have revealed that lncRNAs can interact with histone-modifying polycomb protein, enhance Zeste Homolog 2 (EZH2), and mediate its site-specific functioning. EZH2, which functions as an oncogene in GC, is the catalytic subunit of the PRC2 complex that induces H3K27 trimethylation and epigenetically represses gene expression. EZH2-interacting lncRNAs can recruit EZH2 to the promoter regions of various tumor suppressor genes and cause their transcriptional deactivation via histone methylation. The interactions between EZH2 and this lncRNA modulate different processes, such as cell cycle, cell proliferation and growth, migration, invasion, metastasis, and drug resistance, in vitro and in vivo GC models. Therefore, EZH2-interacting lncRNAs are exciting targets for developing novel targeted therapies for GC. Subsequently, this review aims to focus on the roles of these interactions in GC progression to understand the therapeutic value of EZH2-interacting lncRNAs further.
Collapse
Affiliation(s)
- Hossein Mohebbi
- Kermanshah University of medical sciences, International branch, Kermanshah, Iran
| | - Romina Esbati
- Department of Medicine, Shahid Beheshti University, Tehran, Iran
| | | | - Roozbeh Akhavanfar
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Usama Kadem Radi
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Goli Siri
- Department of Internal Medicine, Amir Alam Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Omid Yazdani
- Department of Medicine, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
9
|
Zhang J, Wang T, Shi R, Zhao Y, Zhang Y, Zhang C, Xing Q, Zhou T, Shan Y, Yao H, Zhang X, Pan G. YTHDF1 facilitates PRC1-mediated H2AK119ub in human ES cells. J Cell Physiol 2024; 239:152-165. [PMID: 37991435 DOI: 10.1002/jcp.31152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/25/2023] [Accepted: 10/18/2023] [Indexed: 11/23/2023]
Abstract
Polycomb repressive complexes (PRCs) play critical roles in cell fate decisions during normal development as well as disease progression through mediating histone modifications such as H3K27me3 and H2AK119ub. How exactly PRCs recruited to chromatin remains to be fully illuminated. Here, we report that YTHDF1, the N6-methyladenine (m6 A) RNA reader that was previously known to be mainly cytoplasmic, associates with RNF2, a PRC1 protein that mediates H2AK119ub in human embryonic stem cells (hESCs). A portion of YTHDF1 localizes in the nuclei and associates with RNF2/H2AK119ub on a subset of gene loci related to neural development functions. Knock-down YTHDF1 attenuates H2AK119ub modification on these genes and promotes neural differentiation in hESCs. Our findings provide a noncanonical mechanism that YTHDF1 participates in PRC1 functions in hESCs.
Collapse
Affiliation(s)
- Jingyuan Zhang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Department of Basic Science Research, Guangzhou Laboratory, Guangzhou, China
| | - Tianyu Wang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ruona Shi
- University of Chinese Academy of Sciences, Beijing, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Yuan Zhao
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yanqi Zhang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Cong Zhang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qi Xing
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Tiancheng Zhou
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yongli Shan
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Hongjie Yao
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Department of Basic Science Research, Guangzhou Laboratory, Guangzhou, China
| | - Xiaofei Zhang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Guangjin Pan
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
10
|
Hwang J, Kang X, Wolf C, Touma M. Mapping Chromatin Occupancy of Ppp1r1b-lncRNA Genome-Wide Using Chromatin Isolation by RNA Purification (ChIRP)-seq. Cells 2023; 12:2805. [PMID: 38132125 PMCID: PMC10741483 DOI: 10.3390/cells12242805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/23/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023] Open
Abstract
Long non-coding RNA (lncRNA) mediated transcriptional regulation is increasingly recognized as an important gene regulatory mechanism during development and disease. LncRNAs are emerging as critical regulators of chromatin state; yet the nature and the extent of their interactions with chromatin remain to be fully revealed. We have previously identified Ppp1r1b-lncRNA as an essential epigenetic regulator of myogenic differentiation in cardiac and skeletal myocytes in mice and humans. We further demonstrated that Ppp1r1b-lncRNA function is mediated by the interaction with the chromatin-modifying complex polycomb repressive complex 2 (PRC2) at the promoter of myogenic differentiation transcription factors, TBX5 and MyoD1. Herein, we employed unbiased chromatin isolation by RNA purification (ChIRP) and high throughput sequencing to map the repertoire of Ppp1r1b-lncRNA chromatin occupancy genome-wide in the mouse muscle myoblast cell line. We uncovered a total of 99732 true peaks corresponding to Ppp1r1b-lncRNA binding sites at high confidence (p-value < 1E-5) and enrichment score ≥ 10). The Ppp1r1b-lncRNA-binding sites averaged 558 bp in length and were distributed widely within the coding and non-coding regions of the genome. Approximately 46% of these true peaks were mapped to gene elements, of which 1180 were mapped to experimentally validated promoter sequences. Importantly, the promoter-mapped binding sites were enriched in myogenic transcription factors and heart development while exhibiting focal interactions with known motifs of proximal promoters and transcription initiation by RNA Pol-II, including TATA-box, transcription initiator motif, CCAAT-box, and GC-box, supporting Ppp1r1b-lncRNA role in transcription initiation of myogenic regulators. Remarkably, nearly 40% of Ppp1r1b-lncRNA-binding sites mapped to gene introns were enriched with the Homeobox family of transcription factors and exhibited TA-rich motif sequences, suggesting potential motif-specific Ppp1r1b-lncRNA-bound introns. Lastly, more than 136521 enhancer sequences were detected in Ppp1r1b-lncRNA-occupancy sites at high confidence. Among these enhancers, 3390 (12%) exhibited cell type/tissue-specific enrichment in fetal heart and muscles. Together, our findings provide further insights into the genome-wide Ppp1r1b-lncRNA: Chromatin interactome that may dictate its function in myogenic differentiation and potentially other cellular and biological processes.
Collapse
Affiliation(s)
- John Hwang
- Neonatal/Congenital Heart Laboratory, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.H.); (X.K.); (C.W.)
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Children’s Discovery and Innovation Institute, Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Xuedong Kang
- Neonatal/Congenital Heart Laboratory, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.H.); (X.K.); (C.W.)
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Charlotte Wolf
- Neonatal/Congenital Heart Laboratory, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.H.); (X.K.); (C.W.)
- Medical and Life Science, College of Life Science, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Marlin Touma
- Neonatal/Congenital Heart Laboratory, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.H.); (X.K.); (C.W.)
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Children’s Discovery and Innovation Institute, Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, College of Life Science, University of California Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Stem Cell Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
11
|
Barbachowska M, Arimondo PB. To target or not to target? The role of DNA and histone methylation in bacterial infections. Epigenetics 2023; 18:2242689. [PMID: 37731322 PMCID: PMC10515666 DOI: 10.1080/15592294.2023.2242689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 07/25/2023] [Indexed: 09/22/2023] Open
Abstract
Epigenetics describes chemical modifications of the genome that do not alter DNA sequence but participate in the regulation of gene expression and cellular processes such as proliferation, division, and differentiation of eukaryotic cell. Disruption of the epigenome pattern in a human cell is associated with different diseases, including infectious diseases. During infection pathogens induce epigenetic modifications in the host cell. This can occur by controlling expression of genes involved in immune response. That enables bacterial survival and replication within the host and evasion of the immune response. Methylation is an example of epigenetic modification that occurs on DNA and histones. Reasoning that DNA and histone methylation of human host cells plays a crucial role during pathogenesis, these modifications are promising targets for the development of alternative treatment strategies in infectious diseases. Here, we discuss the role of DNA and histone methyltransferases in human host cell upon bacterial infections. We further hypothesize that compounds targeting methyltransferases are tools to study epigenetics in the context of host-pathogen interactions and can open new avenues for the treatment of bacterial infections.
Collapse
Affiliation(s)
- Magdalena Barbachowska
- Institut Pasteur, Université Paris Cité, CNRS UMR n°3523 Chem4Life, Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Paris, France
- Universite Paris Cité, Ecole Doctorale MTCI, Paris, France
- Institut Pasteur, Pasteur- Paris University (PPU)- Oxford International Doctoral Program, Paris, France
| | - Paola B. Arimondo
- Institut Pasteur, Université Paris Cité, CNRS UMR n°3523 Chem4Life, Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Paris, France
| |
Collapse
|
12
|
Kim S, Jo S, Paek SH, Kang SS, Chung H. SUZ12 inhibition attenuates cell proliferation of glioblastoma via post-translational regulation of CDKN1B. Genes Genomics 2023; 45:1623-1632. [PMID: 37856053 DOI: 10.1007/s13258-023-01468-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Human gliomas are aggressive brain tumors characterized by uncontrolled cell proliferation. Differential expression of Polycomb repressive complex 2 (PRC2) has been reported in various subtypes of glioma. However, the role of PRC2 in uncontrolled growth in glioma and its underlying molecular mechanisms remain to be elucidated. OBJECTIVE We aimed to investigate the functional role of PRC2 in human glioblastoma cell growth by silencing SUZ12, the non-catalytic core component of PRC2. METHODS Knockdown of SUZ12 was achieved by infecting T98G cells with lentivirus carrying sequences specifically targeting SUZ12 (shSUZ12). Gene expression was examined by quantitative PCR and western analysis. The impact of shSUZ12 on cell growth was assessed using a cell proliferation assay. Cell cycle distribution was analyzed by flow cytometry, and protein stability was evaluated in cycloheximide-treated cells. Subcellular localization was examined through immunofluorescence staining and biochemical cytoplasmic-nuclear fractionation. Gene expression analysis was also performed on human specimens from normal brain and glioblastoma patients. RESULTS SUZ12 knockdown (SUZ12 KD) led to widespread decrease in the PRC2-specific histone mark, accompanied by a slowdown of cell proliferation through G1 arrest. In SUZ12 KD cells, the degradation of CDKN1B protein was reduced, resulting from alterations in the MYC-SKP2-CDKN1B axis. Furthermore, nuclear localization of CDKN1B was enhanced in SUZ12 KD cells. Analysis of human glioblastoma samples yielded increased expression of EZH2 and MYC along with reduced CDKN1B compared to normal human brain tissue. CONCLUSION Our findings suggest a novel role for SUZ12 in cell proliferation through post-translational regulation of CDKN1B in glioblastoma.
Collapse
Affiliation(s)
- Sojin Kim
- Department of Biomedical Laboratory Science, Daegu Health College, Daegu, 41453, Republic of Korea
| | - Sungsin Jo
- Hanyang University Institute for Rheumatology Research (HYIRR), Seoul, 04763, Republic of Korea
| | - Sun Ha Paek
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Sang Soo Kang
- Department of Anatomy and Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Heekyoung Chung
- Hanyang Biomedical Research Institute, Hanyang University, Seoul, 04763, Republic of Korea.
- Department of Pathology, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
13
|
Anderson JT, Henikoff S, Ahmad K. Chromosome-specific maturation of the epigenome in the Drosophila male germline. eLife 2023; 12:RP89373. [PMID: 38032818 PMCID: PMC10688970 DOI: 10.7554/elife.89373] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023] Open
Abstract
Spermatogenesis in the Drosophila male germline proceeds through a unique transcriptional program controlled both by germline-specific transcription factors and by testis-specific versions of core transcriptional machinery. This program includes the activation of genes on the heterochromatic Y chromosome, and reduced transcription from the X chromosome, but how expression from these sex chromosomes is regulated has not been defined. To resolve this, we profiled active chromatin features in the testes from wildtype and meiotic arrest mutants and integrate this with single-cell gene expression data from the Fly Cell Atlas. These data assign the timing of promoter activation for genes with germline-enriched expression throughout spermatogenesis, and general alterations of promoter regulation in germline cells. By profiling both active RNA polymerase II and histone modifications in isolated spermatocytes, we detail widespread patterns associated with regulation of the sex chromosomes. Our results demonstrate that the X chromosome is not enriched for silencing histone modifications, implying that sex chromosome inactivation does not occur in the Drosophila male germline. Instead, a lack of dosage compensation in spermatocytes accounts for the reduced expression from this chromosome. Finally, profiling uncovers dramatic ubiquitinylation of histone H2A and lysine-16 acetylation of histone H4 across the Y chromosome in spermatocytes that may contribute to the activation of this heterochromatic chromosome.
Collapse
Affiliation(s)
- James T Anderson
- Basic Sciences Division, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer CenterSeattleUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Kami Ahmad
- Basic Sciences Division, Fred Hutchinson Cancer CenterSeattleUnited States
| |
Collapse
|
14
|
Sun B, Reynolds K, Saha SK, Zhang S, McMahon M, Zhou CJ. Ezh2-dependent methylation in oral epithelia promotes secondary palatogenesis. Birth Defects Res 2023; 115:1851-1865. [PMID: 37435868 PMCID: PMC10784412 DOI: 10.1002/bdr2.2216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 07/13/2023]
Abstract
BACKGROUND In addition to genomic risk variants and environmental influences, increasing evidence suggests epigenetic modifications are important for orofacial development and their alterations can contribute to orofacial clefts. Ezh2 encodes a core catalytic component of the Polycomb repressive complex responsible for addition of methyl marks to Histone H3 as a mechanism of repressing target genes. The role of Ezh2 in orofacial clefts remains unknown. AIMS To investigate the epithelial role of Ezh2-dependent methylation in secondary palatogenesis. METHODS We used conditional gene-targeting methods to ablate Ezh2 in the surface ectoderm-derived oral epithelium of mouse embryos. We then performed single-cell RNA sequencing combined with immunofluorescence and RT-qPCR to investigate gene expression in conditional mutant palate. We also employed double knockout analyses of Ezh1 and Ezh2 to address if they have synergistic roles in palatogenesis. RESULTS We found that conditional inactivation of Ezh2 in oral epithelia results in partially penetrant cleft palate. Double knockout analyses revealed that another family member Ezh1 is dispensable in orofacial development, and it does not have synergistic roles with Ezh2 in palatogenesis. Histochemistry and single-cell RNA-seq analyses revealed dysregulation of cell cycle regulators in the palatal epithelia of Ezh2 mutant mouse embryos disrupts palatogenesis. CONCLUSION Ezh2-dependent histone H3K27 methylation represses expression of cell cycle regulator Cdkn1a and promotes proliferation in the epithelium of the developing palatal shelves. Loss of this regulation may perturb movement of the palatal shelves, causing a delay in palate elevation which may result in failure of the secondary palate to close altogether.
Collapse
Affiliation(s)
| | | | - Subbroto Kuma Saha
- Institute for Pediatric Regenerative Medicine of Shriners Hospital for Children – Northern California & Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis, Sacramento, CA 95817, USA
| | - Shuwen Zhang
- Institute for Pediatric Regenerative Medicine of Shriners Hospital for Children – Northern California & Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis, Sacramento, CA 95817, USA
| | - Moira McMahon
- Institute for Pediatric Regenerative Medicine of Shriners Hospital for Children – Northern California & Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis, Sacramento, CA 95817, USA
| | - Chengji J Zhou
- Institute for Pediatric Regenerative Medicine of Shriners Hospital for Children – Northern California & Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis, Sacramento, CA 95817, USA
| |
Collapse
|
15
|
Hwang J, Kang X, Wolf C, Touma M. Mapping Chromatin Occupancy of Ppp1r1b-lncRNA Genome-Wide Using Chromatin Isolation by RNA Purification (ChIRP)-seq. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.04.565657. [PMID: 37961291 PMCID: PMC10635152 DOI: 10.1101/2023.11.04.565657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Long non-coding RNA (lncRNA) mediated transcriptional regulation is increasingly recognized as an important gene regulatory mechanism during development and disease. LncRNAs are emerging as critical regulators of chromatin state; yet the nature and the extent of their interactions with chromatin remain to be fully revealed. We have previously identified Ppp1r1b-lncRNA as an essential epigenetic regulator of myogenic differentiation in cardiac and skeletal myocytes in mice and humans. We further demonstrated that Ppp1r1b-lncRNA function is mediated by the interaction with the chromatin-modifying complex polycomb repressive complex 2 (PRC2) at the promoter of myogenic differentiation transcription factors, TBX5 and MyoD1. Herein, we employed an unbiased chromatin isolation by RNA purification (ChIRP) and high throughput sequencing to map the repertoire of Ppp1r1b-lncRNA chromatin occupancy genome-wide in the mouse muscle myoblast cell line. We uncovered a total of 99732 true peaks corresponding to Ppp1r1b-lncRNA binding sites at high confidence (P-value < 1e-5 and enrichment score ≥ 10). The Ppp1r1b-lncRNA-binding sites averaged 558 bp in length and were distributed widely within the coding and non-coding regions of the genome. Approximately 46% of these true peaks were mapped to gene elements, of which 1180 were mapped to experimentally validated promoter sequences. Importantly, the promoter-mapped binding sites were enriched in myogenic transcription factors and heart development while exhibiting focal interactions with known motifs of proximal promoters and transcription initiation by RNA polII, including TATA, transcription initiator, CCAAT-box, and GC-box, supporting Ppp1r1b-lncRNA role in transcription initiation of myogenic regulators. Remarkably, nearly 40% of Ppp1r1b-lncRNA-binding sites mapped to gene introns, were enriched with the Homeobox family of transcription factors, and exhibited TA-rich motif sequences, suggesting potential motif specific Ppp1r1b-lncRNA-bound introns. Lastly, more than 136521enhancer sequences were detected in Ppp1r1b-lncRNA-occupancy sites at high confidence. Among these enhancers,12% exhibited cell type/tissue-specific enrichment in fetal heart and muscles. Together, our findings provide further insights into the genome-wide Ppp1r1b-lncRNA: Chromatin interactome that may potentially dictate its function in myogenic differentiation and potentially other cellular and biological processes.
Collapse
Affiliation(s)
- John Hwang
- Neonatal/Congenital Heart Laboratory, Cardiovascular Research Laboratory, University of California Los Angeles, Los Angeles, CA
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
- Children’s Discovery and Innovation Institute, Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Xuedong Kang
- Neonatal/Congenital Heart Laboratory, Cardiovascular Research Laboratory, University of California Los Angeles, Los Angeles, CA
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Charlotte Wolf
- Neonatal/Congenital Heart Laboratory, Cardiovascular Research Laboratory, University of California Los Angeles, Los Angeles, CA
- Medical and Life Science, College of Life Science, University of California Los Angeles, Los Angeles, CA
| | - Marlin Touma
- Neonatal/Congenital Heart Laboratory, Cardiovascular Research Laboratory, University of California Los Angeles, Los Angeles, CA
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
- Children’s Discovery and Innovation Institute, Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
- Molecular Biology Institute, College of Life Science, University of California Los Angeles, Los Angeles, CA
- Eli and Edythe Broad Stem Cell Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
16
|
Ong ALC, Kokaji T, Kishi A, Takihara Y, Shinozuka T, Shimamoto R, Isotani A, Shirai M, Sasai N. Acquisition of neural fate by combination of BMP blockade and chromatin modification. iScience 2023; 26:107887. [PMID: 37771660 PMCID: PMC10522999 DOI: 10.1016/j.isci.2023.107887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/07/2023] [Accepted: 09/07/2023] [Indexed: 09/30/2023] Open
Abstract
Neural induction is a process where naive cells are converted into committed cells with neural characteristics, and it occurs at the earliest step during embryogenesis. Although the signaling molecules and chromatin remodeling for neural induction have been identified, the mutual relationships between these molecules are yet to be fully understood. By taking advantage of the neural differentiation system of mouse embryonic stem (ES) cells, we discovered that the BMP signal regulates the expression of several polycomb repressor complex (PRC) component genes. We particularly focused on Polyhomeotic Homolog 1 (Phc1) and established Phc1-knockout (Phc1-KO) ES cells. We found that Phc1-KO failed to acquire the neural fate, and the cells remained in pluripotent or primitive non-neural states. Chromatin accessibility analysis suggests that Phc1 is essential for chromatin packing. Aberrant upregulation of the BMP signal was confirmed in the Phc1 homozygotic mutant embryos. Taken together, Phc1 is required for neural differentiation through epigenetic modification.
Collapse
Affiliation(s)
- Agnes Lee Chen Ong
- Division of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Toshiya Kokaji
- Data-driven biology, NAIST Data Science Center, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Arisa Kishi
- Division of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Yoshihiro Takihara
- Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-0037, Japan
| | - Takuma Shinozuka
- Division of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Ren Shimamoto
- Division of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Ayako Isotani
- Division of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Manabu Shirai
- Omics Research Center (ORC), National Cerebral and Cardiovascular Center, 6-1 Kishibe Shinmachi, Suita, Osaka 564-8565, Japan
| | - Noriaki Sasai
- Division of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| |
Collapse
|
17
|
Anderson J, Henikoff S, Ahmad K. Chromosome-specific maturation of the epigenome in the Drosophila male germline. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.24.529909. [PMID: 37873332 PMCID: PMC10592605 DOI: 10.1101/2023.02.24.529909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Spermatogenesis in the Drosophila male germline proceeds through a unique transcriptional program controlled both by germline-specific transcription factors and by testis-specific versions of core transcriptional machinery. This program includes the activation of genes on the heterochromatic Y chromosome, and reduced transcription from the X chromosome, but how expression from these sex chromosomes is regulated has not been defined. To resolve this, we profiled active chromatin features in the testes from wildtype and meiotic arrest mutants and integrate this with single-cell gene expression data from the Fly Cell Atlas. These data assign the timing of promoter activation for genes with germline-enriched expression throughout spermatogenesis, and general alterations of promoter regulation in germline cells. By profiling both active RNA polymerase II and histone modifications in isolated spermatocytes, we detail widespread patterns associated with regulation of the sex chromosomes. Our results demonstrate that the X chromosome is not enriched for silencing histone modifications, implying that sex chromosome inactivation does not occur in the Drosophila male germline. Instead, a lack of dosage compensation in spermatocytes accounts for the reduced expression from this chromosome. Finally, profiling uncovers dramatic ubiquitinylation of histone H2A and lysine-16 acetylation of histone H4 across the Y chromosome in spermatocytes that may contribute to the activation of this heterochromatic chromosome.
Collapse
Affiliation(s)
- James Anderson
- Basic Sciences Division, Fred Hutchinson Cancer Center; Seattle, WA, 98109, USA
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Center; Seattle, WA, 98109, USA
- Howard Hughes Medical Institute; Chevy Chase, MD, USA
| | - Kami Ahmad
- Basic Sciences Division, Fred Hutchinson Cancer Center; Seattle, WA, 98109, USA
| |
Collapse
|
18
|
Canat A, Veillet A, Batrin R, Dubourg C, Lhoumaud P, Arnau-Romero P, Greenberg MVC, Bonhomme F, Arimondo PB, Illingworth R, Fabre E, Therizols P. DAXX safeguards heterochromatin formation in embryonic stem cells. J Cell Sci 2023; 136:jcs261092. [PMID: 37655670 DOI: 10.1242/jcs.261092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023] Open
Abstract
Genomes comprise a large fraction of repetitive sequences folded into constitutive heterochromatin, which protect genome integrity and cell identity. De novo formation of heterochromatin during preimplantation development is an essential step for preserving the ground-state of pluripotency and the self-renewal capacity of embryonic stem cells (ESCs). However, the molecular mechanisms responsible for the remodeling of constitutive heterochromatin are largely unknown. Here, we identify that DAXX, an H3.3 chaperone essential for the maintenance of mouse ESCs in the ground state, accumulates in pericentromeric regions independently of DNA methylation. DAXX recruits PML and SETDB1 to promote the formation of heterochromatin, forming foci that are hallmarks of ground-state ESCs. In the absence of DAXX or PML, the three-dimensional (3D) architecture and physical properties of pericentric and peripheral heterochromatin are disrupted, resulting in de-repression of major satellite DNA, transposable elements and genes associated with the nuclear lamina. Using epigenome editing tools, we observe that H3.3, and specifically H3.3K9 modification, directly contribute to maintaining pericentromeric chromatin conformation. Altogether, our data reveal that DAXX is crucial for the maintenance and 3D organization of the heterochromatin compartment and protects ESC viability.
Collapse
Affiliation(s)
- Antoine Canat
- Université de Paris, Laboratoire Génomes, Biologie Cellulaire et Thérapeutiques, CNRS UMR7212, INSERM U944, Institut de Recherche St Louis, F-75010 Paris, France
| | - Adeline Veillet
- Université de Paris, Laboratoire Génomes, Biologie Cellulaire et Thérapeutiques, CNRS UMR7212, INSERM U944, Institut de Recherche St Louis, F-75010 Paris, France
| | - Renaud Batrin
- Université de Paris, Laboratoire Génomes, Biologie Cellulaire et Thérapeutiques, CNRS UMR7212, INSERM U944, Institut de Recherche St Louis, F-75010 Paris, France
| | - Clara Dubourg
- Université de Paris, Laboratoire Génomes, Biologie Cellulaire et Thérapeutiques, CNRS UMR7212, INSERM U944, Institut de Recherche St Louis, F-75010 Paris, France
| | | | - Pol Arnau-Romero
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | | | - Frédéric Bonhomme
- Institut Pasteur, Université Paris Cité, CNRS, Epigenetic Chemical Biology, UMR 3523, F-75724 Paris, France
| | - Paola B Arimondo
- Institut Pasteur, Université Paris Cité, CNRS, Epigenetic Chemical Biology, UMR 3523, F-75724 Paris, France
| | - Robert Illingworth
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Emmanuelle Fabre
- Université de Paris, Laboratoire Génomes, Biologie Cellulaire et Thérapeutiques, CNRS UMR7212, INSERM U944, Institut de Recherche St Louis, F-75010 Paris, France
| | - Pierre Therizols
- Université de Paris, Laboratoire Génomes, Biologie Cellulaire et Thérapeutiques, CNRS UMR7212, INSERM U944, Institut de Recherche St Louis, F-75010 Paris, France
| |
Collapse
|
19
|
Liu K, Wang H. Editorial: Epigenetic and molecular control of development and germ cell fate determination. Front Cell Dev Biol 2023; 11:1274602. [PMID: 37711855 PMCID: PMC10497863 DOI: 10.3389/fcell.2023.1274602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023] Open
Affiliation(s)
- Kui Liu
- Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Hengbin Wang
- Division of Hematology, Oncology and Palliative Care, Department of Internal Medicine, Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
20
|
Maezawa S, Yukawa M, Hasegawa K, Sugiyama R, Iizuka M, Hu M, Sakashita A, Vidal M, Koseki H, Barski A, DeFalco T, Namekawa SH. PRC1 suppresses a female gene regulatory network to ensure testicular differentiation. Cell Death Dis 2023; 14:501. [PMID: 37542070 PMCID: PMC10403552 DOI: 10.1038/s41419-023-05996-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/27/2023] [Accepted: 07/13/2023] [Indexed: 08/06/2023]
Abstract
Gonadal sex determination and differentiation are controlled by somatic support cells of testes (Sertoli cells) and ovaries (granulosa cells). In testes, the epigenetic mechanism that maintains chromatin states responsible for suppressing female sexual differentiation remains unclear. Here, we show that Polycomb repressive complex 1 (PRC1) suppresses a female gene regulatory network in postnatal Sertoli cells. We genetically disrupted PRC1 function in embryonic Sertoli cells after sex determination, and we found that PRC1-depleted postnatal Sertoli cells exhibited defective proliferation and cell death, leading to the degeneration of adult testes. In adult Sertoli cells, PRC1 suppressed specific genes required for granulosa cells, thereby inactivating the female gene regulatory network. Chromatin regions associated with female-specific genes were marked by Polycomb-mediated repressive modifications: PRC1-mediated H2AK119ub and PRC2-mediated H3K27me3. Taken together, this study identifies a critical Polycomb-based mechanism that suppresses ovarian differentiation and maintains Sertoli cell fate in adult testes.
Collapse
Affiliation(s)
- So Maezawa
- Reproductive Sciences Center, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, 252-5201, Japan.
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, 278-8510, Japan.
| | - Masashi Yukawa
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Division of Allergy and Immunology, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Sha Tin, New Territories, Hong Kong
| | - Kazuteru Hasegawa
- Reproductive Sciences Center, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Ryo Sugiyama
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, 278-8510, Japan
| | - Mizuho Iizuka
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, 278-8510, Japan
| | - Mengwen Hu
- Reproductive Sciences Center, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, 95616, USA
| | - Akihiko Sakashita
- Reproductive Sciences Center, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Miguel Vidal
- Centro de Investigaciones Biológicas Margarita Salas, Department of Cellular and Molecular Biology, Madrid, 28040, Spain
| | - Haruhiko Koseki
- Developmental Genetics Laboratory, RIKEN Center for Allergy and Immunology, Yokohama, Kanagawa, Japan
| | - Artem Barski
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Division of Allergy and Immunology, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Tony DeFalco
- Reproductive Sciences Center, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Satoshi H Namekawa
- Reproductive Sciences Center, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
21
|
Ge W, Yu C, Li J, Yu Z, Li X, Zhang Y, Liu CP, Li Y, Tian C, Zhang X, Li G, Zhu B, Xu RM. Basis of the H2AK119 specificity of the Polycomb repressive deubiquitinase. Nature 2023; 616:176-182. [PMID: 36991118 DOI: 10.1038/s41586-023-05841-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 02/14/2023] [Indexed: 03/31/2023]
Abstract
Repression of gene expression by protein complexes of the Polycomb group is a fundamental mechanism that governs embryonic development and cell-type specification1-3. The Polycomb repressive deubiquitinase (PR-DUB) complex removes the ubiquitin moiety from monoubiquitinated histone H2A K119 (H2AK119ub1) on the nucleosome4, counteracting the ubiquitin E3 ligase activity of Polycomb repressive complex 1 (PRC1)5 to facilitate the correct silencing of genes by Polycomb proteins and safeguard active genes from inadvertent silencing by PRC1 (refs. 6-9). The intricate biological function of PR-DUB requires accurate targeting of H2AK119ub1, but PR-DUB can deubiquitinate monoubiquitinated free histones and peptide substrates indiscriminately; the basis for its exquisite nucleosome-dependent substrate specificity therefore remains unclear. Here we report the cryo-electron microscopy structure of human PR-DUB, composed of BAP1 and ASXL1, in complex with the chromatosome. We find that ASXL1 directs the binding of the positively charged C-terminal extension of BAP1 to nucleosomal DNA and histones H3-H4 near the dyad, an addition to its role in forming the ubiquitin-binding cleft. Furthermore, a conserved loop segment of the catalytic domain of BAP1 is situated near the H2A-H2B acidic patch. This distinct nucleosome-binding mode displaces the C-terminal tail of H2A from the nucleosome surface, and endows PR-DUB with the specificity for H2AK119ub1.
Collapse
Affiliation(s)
- Weiran Ge
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Cong Yu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jingjing Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhenyu Yu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaorong Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yan Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Chao-Pei Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yingfeng Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Changlin Tian
- Division of Life Sciences and Anhui Provisional Engineering Laboratory of Peptide Drugs, University of Science and Technology of China, Hefei, China
| | - Xinzheng Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bing Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Rui-Ming Xu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
22
|
Wang H, Langlais D, Nijnik A. Histone H2A deubiquitinases in the transcriptional programs of development and hematopoiesis: a consolidated analysis. Int J Biochem Cell Biol 2023; 157:106384. [PMID: 36738766 DOI: 10.1016/j.biocel.2023.106384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Monoubiquitinated lysine 119 of histone H2A (H2AK119ub) is a highly abundant epigenetic mark, associated with gene repression and deposited on chromatin by the polycomb repressor complex 1 (PRC1), which is an essential regulator of diverse transcriptional programs in mammalian development and tissue homeostasis. While multiple deubiquitinases (DUBs) with catalytic activity for H2AK119ub (H2A-DUBs) have been identified, we lack systematic analyses of their roles and cross-talk in transcriptional regulation. Here, we address H2A-DUB functions in epigenetic regulation of mammalian development and tissue maintenance by conducting a meta-analysis of 248 genomics datasets from 32 independent studies, focusing on the mouse model and covering embryonic stem cells (ESCs), hematopoietic, and immune cell lineages. This covers all the publicly available datasets that map genomic H2A-DUB binding and H2AK119ub distributions (ChIP-Seq), and all datasets assessing dysregulation in gene expression in the relevant H2A-DUB knockout models (RNA-Seq). Many accessory datasets for PRC1-2 and DUB-interacting proteins are also analyzed and interpreted, as well as further data assessing chromatin accessibility (ATAC-Seq) and transcriptional activity (RNA-seq). We report co-localization in the binding of H2A-DUBs BAP1, USP16, and to a lesser extent others that is conserved across different cell-types, and also the enrichment of antagonistic PRC1-2 protein complexes at the same genomic locations. Such conserved sites enriched for the H2A-DUBs and PRC1-2 are proximal to transcriptionally active genes that engage in housekeeping cellular functions. Nevertheless, they exhibit H2AK119ub levels significantly above the genomic average that can undergo further increase with H2A-DUB knockout. This indicates a cooperation between H2A-DUBs and PRC1-2 in the modulation of housekeeping transcriptional programs, conserved across many cell types, likely operating through their antagonistic effects on H2AK119ub and the regulation of local H2AK119ub turnover. Our study further highlights existing knowledge gaps and discusses important directions for future work.
Collapse
Affiliation(s)
- HanChen Wang
- Department of Physiology, McGill University, Montreal, QC, Canada; McGill University Research Centre on Complex Traits, McGill University, QC, Canada
| | - David Langlais
- McGill University Research Centre on Complex Traits, McGill University, QC, Canada; Department of Human Genetics, McGill University, Montreal, QC, Canada; McGill Genome Centre, Montreal, QC, Canada.
| | - Anastasia Nijnik
- Department of Physiology, McGill University, Montreal, QC, Canada; McGill University Research Centre on Complex Traits, McGill University, QC, Canada.
| |
Collapse
|
23
|
Zhong J, Jing A, Zheng S, Li S, Zhang X, Ren C. Physiological and molecular mechanisms of insect appendage regeneration. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:9. [PMID: 36859631 PMCID: PMC9978051 DOI: 10.1186/s13619-022-00156-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/21/2022] [Indexed: 03/03/2023]
Abstract
Regeneration, as a fascinating scientific field, refers to the ability of animals replacing lost tissue or body parts. Many metazoan organisms have been reported with the regeneration phenomena, but showing evolutionarily variable abilities. As the most diverse metazoan taxon, hundreds of insects show strong appendage regeneration ability. The regeneration process and ability are dependent on many factors, including macroscopic physiological conditions and microscopic molecular mechanisms. This article reviews research progress on the physiological conditions and internal underlying mechanisms controlling appendage regeneration in insects.
Collapse
Affiliation(s)
- Jiru Zhong
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Andi Jing
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Shaojuan Zheng
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Sheng Li
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631 China ,grid.263785.d0000 0004 0368 7397Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, 514779 China
| | - Xiaoshuai Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| | - Chonghua Ren
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China. .,Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, 514779, China.
| |
Collapse
|
24
|
Puri D, Kelkar A, Gaurishankar B, Subramanyam D. Balance between autophagy and cell death is maintained by Polycomb-mediated regulation during stem cell differentiation. FEBS J 2023; 290:1625-1644. [PMID: 36380631 DOI: 10.1111/febs.16656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/23/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022]
Abstract
Autophagy is a conserved cytoprotective process, aberrations in which lead to numerous degenerative disorders. While the cytoplasmic components of autophagy have been extensively studied, the epigenetic regulation of autophagy genes, especially in stem cells, is less understood. Deciphering the epigenetic regulation of autophagy genes becomes increasingly relevant given the therapeutic benefits of small-molecule epigenetic inhibitors in novel treatment modalities. We observe that, during retinoic acid-mediated differentiation of mouse embryonic stem cells (mESCs), autophagy is induced, and identify the Polycomb group histone methyl transferase EZH2 as a regulator of this process. In mESCs, EZH2 represses several autophagy genes, including the autophagy regulator DNA damage-regulated autophagy modulator protein 1 (Dram1). EZH2 facilitates the formation of a bivalent chromatin domain at the Dram1 promoter, allowing gene expression and autophagy induction during differentiation while retaining the repressive H3K27me3 mark. EZH2 inhibition leads to loss of the bivalent domain, with consequent 'hyper-expression' of Dram1, accompanied by extensive cell death. This study shows that Polycomb group proteins help maintain a balance between autophagy and cell death during stem cell differentiation, in part, by regulating the expression of the Dram1 gene.
Collapse
Affiliation(s)
- Deepika Puri
- National Centre for Cell Science, SP Pune University, India
| | - Aparna Kelkar
- National Centre for Cell Science, SP Pune University, India
| | | | | |
Collapse
|
25
|
Huang L, Li F, Ye L, Yu F, Wang C. Epigenetic regulation of embryonic ectoderm development in stem cell differentiation and transformation during ontogenesis. Cell Prolif 2023; 56:e13413. [PMID: 36727213 PMCID: PMC10068960 DOI: 10.1111/cpr.13413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 02/03/2023] Open
Abstract
Dynamic chromatin accessibility regulates stem cell fate determination and tissue homeostasis via controlling gene expression. As a histone-modifying enzyme that predominantly mediates methylation of lysine 27 in histone H3 (H3K27me1/2/3), Polycomb repressive complex 2 (PRC2) plays the canonical role in targeting developmental regulators during stem cell differentiation and transformation. Embryonic ectoderm development (EED), the core scaffold subunit of PRC2 and as an H3K27me3-recognizing protein, has been broadly implicated with PRC2 stabilization and allosterically stimulated PRC2. Accumulating evidences from experimental data indicate that EED-associating epigenetic modifications are indispensable for stem cell maintenance and differentiation into specific cell lineages. In this review, we discuss the most updated advances to summarize the structural architecture of EED and its contributions and underlying mechanisms to mediating lineage differentiation of different stem cells during epigenetic modification to expand our understanding of PRC2.
Collapse
Affiliation(s)
- Liuyan Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Feifei Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fanyuan Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
26
|
German B, Ellis L. Polycomb Directed Cell Fate Decisions in Development and Cancer. EPIGENOMES 2022; 6:28. [PMID: 36135315 PMCID: PMC9497807 DOI: 10.3390/epigenomes6030028] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
The polycomb group (PcG) proteins are a subset of transcription regulators highly conserved throughout evolution. Their principal role is to epigenetically modify chromatin landscapes and control the expression of master transcriptional programs to determine cellular identity. The two mayor PcG protein complexes that have been identified in mammals to date are Polycomb Repressive Complex 1 (PRC1) and 2 (PRC2). These protein complexes selectively repress gene expression via the induction of covalent post-translational histone modifications, promoting chromatin structure stabilization. PRC2 catalyzes the histone H3 methylation at lysine 27 (H3K27me1/2/3), inducing heterochromatin structures. This activity is controlled by the formation of a multi-subunit complex, which includes enhancer of zeste (EZH2), embryonic ectoderm development protein (EED), and suppressor of zeste 12 (SUZ12). This review will summarize the latest insights into how PRC2 in mammalian cells regulates transcription to orchestrate the temporal and tissue-specific expression of genes to determine cell identity and cell-fate decisions. We will specifically describe how PRC2 dysregulation in different cell types can promote phenotypic plasticity and/or non-mutational epigenetic reprogramming, inducing the development of highly aggressive epithelial neuroendocrine carcinomas, including prostate, small cell lung, and Merkel cell cancer. With this, EZH2 has emerged as an important actionable therapeutic target in such cancers.
Collapse
Affiliation(s)
- Beatriz German
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Leigh Ellis
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
27
|
Haq ZU, Saleem A, Khan AA, Dar MA, Ganaie AM, Beigh YA, Hamadani H, Ahmad SM. Nutrigenomics in livestock sector and its human-animal interface-a review. Vet Anim Sci 2022; 17:100262. [PMID: 35856004 PMCID: PMC9287789 DOI: 10.1016/j.vas.2022.100262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Nutrigenomics unfolds the link between nutrition and gene expression for productivity.expression profile of intramuscular. Nutrigenomics helps scientists discover genes and DNA in each animal's cell or tissue by assisting them in selecting nutrients. It brings out the importance of micronutrition for increasing animal production. Nutrigenomics integrates nutrition, molecular biology, genomics, bioinformatics, molecular medicine, and epidemiology.
Noncommunicable diseases such as cardiovascular disease, obesity, diabetes, and cancer now outnumber all other health ailments in humans globally due to abrupt changes in lifestyle following the industrial revolution. The industrial revolution has also intensified livestock farming, resulting in an increased demand for productivity and stressed animals. The livestock industry faces significant challenges from a projected sharp increase in global food and high animal protein demand. Nutrition genomics holds great promise for the future as its advances have opened up a whole new world of disease understanding and prevention. Nutrigenomics is the study of the interactions between genes and diet. It investigates molecular relationships between nutrients and genes to identify how even minor modifications could potentially alter animal and human health/performance by using techniques like proteomics, transcriptomics, metabolomics, and lipidomics. Dietary modifications mostly studied in livestock focus mainly on health and production traits through protein, fat, mineral, and vitamin supplementation changes. Nutrigenomics meticulously selects nutrients for fine-tuning the expression of genes that match animal/human genotypes for better health, productivity, and the environment. As a step forward, nutrigenomics integrates nutrition, molecular biology, genomics, bioinformatics, molecular medicine, and epidemiology to better understand the role of food as an epigenetic factor in the occurrence of these diseases. This review aims to provide a comprehensive overview of the fundamental concepts, latest advances, and studies in the field of nutrigenomics, emphasizing the interaction of diet with gene expression, and how it relates to human and animal health along with its human-animal interphase.
Collapse
|
28
|
Oss-Ronen L, Sarusi T, Cohen I. Histone Mono-Ubiquitination in Transcriptional Regulation and Its Mark on Life: Emerging Roles in Tissue Development and Disease. Cells 2022; 11:cells11152404. [PMID: 35954248 PMCID: PMC9368181 DOI: 10.3390/cells11152404] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 02/06/2023] Open
Abstract
Epigenetic regulation plays an essential role in driving precise transcriptional programs during development and homeostasis. Among epigenetic mechanisms, histone mono-ubiquitination has emerged as an important post-transcriptional modification. Two major histone mono-ubiquitination events are the mono-ubiquitination of histone H2A at lysine 119 (H2AK119ub), placed by Polycomb repressive complex 1 (PRC1), and histone H2B lysine 120 mono-ubiquitination (H2BK120ub), placed by the heteromeric RNF20/RNF40 complex. Both of these events play fundamental roles in shaping the chromatin epigenetic landscape and cellular identity. In this review we summarize the current understandings of molecular concepts behind histone mono-ubiquitination, focusing on their recently identified roles in tissue development and pathologies.
Collapse
Affiliation(s)
| | | | - Idan Cohen
- Correspondence: ; Tel.: +972-8-6477593; Fax: +972-8-6477626
| |
Collapse
|
29
|
Kurniawan F, Prasanth SG. A BEN-domain protein and polycomb complex work coordinately to regulate transcription. Transcription 2022; 13:82-87. [PMID: 35904285 PMCID: PMC9467525 DOI: 10.1080/21541264.2022.2105128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
Transcription regulation is an important mechanism that controls pluripotency and differentiation. Transcription factors dictate cell fate decisions by functioning cooperatively with chromatin regulators. We have recently demonstrated that BEND3 (BANP, E5R and Nac1 domain) protein regulates the expression of differentiation-associated genes by modulating the chromatin architecture at promoters. We highlight the collaboration of BEND3 with the polycomb repressive complex in coordinating transcription repression and propose a model highlighting the relevance of the BEND3-PRC2 axis in gene regulation and chromatin organization.Abbreviations: BEND3, BANP, E5R and Nac1 domain; rDNA, ribosomal DNA; PRC2, Polycomb Repressive Complex 2; H3K27me3, Histone H3 Lysine 27 methylation; PcG, Polycomb group.
Collapse
Affiliation(s)
- Fredy Kurniawan
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL,USA
| | - Supriya G Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL,USA
| |
Collapse
|
30
|
Fenckova M, Muha V, Mariappa D, Catinozzi M, Czajewski I, Blok LER, Ferenbach AT, Storkebaum E, Schenck A, van Aalten DMF. Intellectual disability-associated disruption of O-GlcNAc cycling impairs habituation learning in Drosophila. PLoS Genet 2022; 18:e1010159. [PMID: 35500025 PMCID: PMC9140282 DOI: 10.1371/journal.pgen.1010159] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 05/27/2022] [Accepted: 03/21/2022] [Indexed: 11/19/2022] Open
Abstract
O-GlcNAcylation is a reversible co-/post-translational modification involved in a multitude of cellular processes. The addition and removal of the O-GlcNAc modification is controlled by two conserved enzymes, O-GlcNAc transferase (OGT) and O-GlcNAc hydrolase (OGA). Mutations in OGT have recently been discovered to cause a novel Congenital Disorder of Glycosylation (OGT-CDG) that is characterized by intellectual disability. The mechanisms by which OGT-CDG mutations affect cognition remain unclear. We manipulated O-GlcNAc transferase and O-GlcNAc hydrolase activity in Drosophila and demonstrate an important role of O-GlcNAcylation in habituation learning and synaptic development at the larval neuromuscular junction. Introduction of patient-specific missense mutations into Drosophila O-GlcNAc transferase using CRISPR/Cas9 gene editing leads to deficits in locomotor function and habituation learning. The habituation deficit can be corrected by blocking O-GlcNAc hydrolysis, indicating that OGT-CDG mutations affect cognition-relevant habituation via reduced protein O-GlcNAcylation. This study establishes a critical role for O-GlcNAc cycling and disrupted O-GlcNAc transferase activity in cognitive dysfunction, and suggests that blocking O-GlcNAc hydrolysis is a potential strategy to treat OGT-CDG.
Collapse
Affiliation(s)
- Michaela Fenckova
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Villo Muha
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Daniel Mariappa
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Marica Catinozzi
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Ignacy Czajewski
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Laura E. R. Blok
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Andrew T. Ferenbach
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Erik Storkebaum
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Daan M. F. van Aalten
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
31
|
Moubarak RS, de Pablos-Aragoneses A, Ortiz-Barahona V, Gong Y, Gowen M, Dolgalev I, Shadaloey SAA, Argibay D, Karz A, Von Itter R, Vega-Sáenz de Miera EC, Sokolova E, Darvishian F, Tsirigos A, Osman I, Hernando E. The histone demethylase PHF8 regulates TGFβ signaling and promotes melanoma metastasis. SCIENCE ADVANCES 2022; 8:eabi7127. [PMID: 35179962 PMCID: PMC8856617 DOI: 10.1126/sciadv.abi7127] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 12/14/2021] [Indexed: 05/17/2023]
Abstract
The contribution of epigenetic dysregulation to metastasis remains understudied. Through a meta-analysis of gene expression datasets followed by a mini-screen, we identified Plant Homeodomain Finger protein 8 (PHF8), a histone demethylase of the Jumonji C protein family, as a previously unidentified prometastatic gene in melanoma. Loss- and gain-of-function approaches demonstrate that PHF8 promotes cell invasion without affecting proliferation in vitro and increases dissemination but not subcutaneous tumor growth in vivo, thus supporting its specific contribution to the acquisition of metastatic potential. PHF8 requires its histone demethylase activity to enhance melanoma cell invasion. Transcriptomic and epigenomic analyses revealed that PHF8 orchestrates a molecular program that directly controls the TGFβ signaling pathway and, as a consequence, melanoma invasion and metastasis. Our findings bring a mechanistic understanding of epigenetic regulation of metastatic fitness in cancer, which may pave the way for improved therapeutic interventions.
Collapse
Affiliation(s)
- Rana S. Moubarak
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
- Interdisciplinary Melanoma Cooperative Group, NYU Cancer Institute, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | | | | | - Yixiao Gong
- Applied Bioinformatics Laboratories, NYU School of Medicine, NY 10016, USA
| | - Michael Gowen
- NYU School of Medicine Institute for Computational Medicine, New York, NY 10016, USA
| | - Igor Dolgalev
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
- Applied Bioinformatics Laboratories, NYU School of Medicine, NY 10016, USA
| | - Sorin A. A. Shadaloey
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
- Interdisciplinary Melanoma Cooperative Group, NYU Cancer Institute, New York, NY 10016, USA
| | - Diana Argibay
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
- Interdisciplinary Melanoma Cooperative Group, NYU Cancer Institute, New York, NY 10016, USA
| | - Alcida Karz
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
- Interdisciplinary Melanoma Cooperative Group, NYU Cancer Institute, New York, NY 10016, USA
| | - Richard Von Itter
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
- Interdisciplinary Melanoma Cooperative Group, NYU Cancer Institute, New York, NY 10016, USA
| | | | - Elena Sokolova
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
- Interdisciplinary Melanoma Cooperative Group, NYU Cancer Institute, New York, NY 10016, USA
| | - Farbod Darvishian
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
- Interdisciplinary Melanoma Cooperative Group, NYU Cancer Institute, New York, NY 10016, USA
| | - Aristotelis Tsirigos
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
- Applied Bioinformatics Laboratories, NYU School of Medicine, NY 10016, USA
- NYU School of Medicine Institute for Computational Medicine, New York, NY 10016, USA
| | - Iman Osman
- Interdisciplinary Melanoma Cooperative Group, NYU Cancer Institute, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
- Ronald O. Perelman Department of Dermatology, NYU School of Medicine, New York, NY 10016, USA
| | - Eva Hernando
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
- Interdisciplinary Melanoma Cooperative Group, NYU Cancer Institute, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| |
Collapse
|
32
|
Giefing M, Gearhart MD, Schneider M, Overbeck B, Klapper W, Hartmann S, Ustaszewski A, Weniger MA, Wiehle L, Hansmann ML, Melnick A, Béguelin W, Sundström C, Küppers R, Bardwell VJ, Siebert R. Loss of function mutations of BCOR in classical Hodgkin lymphoma. Leuk Lymphoma 2021; 63:1080-1090. [DOI: 10.1080/10428194.2021.2015587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Maciej Giefing
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
- Institute of Human Genetics, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Micah D. Gearhart
- Department of Genetics, Cell Biology and Development, Masonic Cancer Center and Developmental Biology Center, University of Minnesota, Minneapolis, USA
| | - Markus Schneider
- Institute of Cell Biology (Cancer Research), Medical Faculty, University of Duisburg-Essen, Essen, Germany, and Deutsches Konsortium für Translationale Krebsforschung (DKTK)
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Essen, Essen, Germany
| | - Birte Overbeck
- Institute of Human Genetics, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Wolfram Klapper
- Department of Pathology, Haematopathology Section and Lymph Node Registry, Christian-Albrechts University Kiel, Kiel, Germany
| | - Sylvia Hartmann
- Reference and Consultant Center of Lymph Node and Lymphoma Pathology at Dr. Senckenberg Institute of Pathology, University of Frankfurt, Medical School, Frankfurt, Germany
| | - Adam Ustaszewski
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Marc A. Weniger
- Institute of Cell Biology (Cancer Research), Medical Faculty, University of Duisburg-Essen, Essen, Germany, and Deutsches Konsortium für Translationale Krebsforschung (DKTK)
| | - Laura Wiehle
- Institute of Human Genetics, University of Ulm and University of Ulm Medical Center, Ulm, Germany
| | - Martin-Leo Hansmann
- Reference and Consultant Center of Lymph Node and Lymphoma Pathology at Dr. Senckenberg Institute of Pathology, University of Frankfurt, Medical School, Frankfurt, Germany
| | - Ari Melnick
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, USA
| | - Wendy Béguelin
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, USA
| | | | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), Medical Faculty, University of Duisburg-Essen, Essen, Germany, and Deutsches Konsortium für Translationale Krebsforschung (DKTK)
| | - Vivian J. Bardwell
- Department of Genetics, Cell Biology and Development, Masonic Cancer Center and Developmental Biology Center, University of Minnesota, Minneapolis, USA
| | - Reiner Siebert
- Institute of Human Genetics, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
- Institute of Human Genetics, University of Ulm and University of Ulm Medical Center, Ulm, Germany
| |
Collapse
|
33
|
Lussier AA, Bodnar TS, Weinberg J. Intersection of Epigenetic and Immune Alterations: Implications for Fetal Alcohol Spectrum Disorder and Mental Health. Front Neurosci 2021; 15:788630. [PMID: 34924946 PMCID: PMC8680672 DOI: 10.3389/fnins.2021.788630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/02/2021] [Indexed: 01/15/2023] Open
Abstract
Prenatal alcohol exposure can impact virtually all body systems, resulting in a host of structural, neurocognitive, and behavioral abnormalities. Among the adverse impacts associated with prenatal alcohol exposure are alterations in immune function, including an increased incidence of infections and alterations in immune/neuroimmune parameters that last throughout the life-course. Epigenetic patterns are also highly sensitive to prenatal alcohol exposure, with widespread alcohol-related alterations to epigenetic profiles, including changes in DNA methylation, histone modifications, and miRNA expression. Importantly, epigenetic programs are crucial for immune system development, impacting key processes such as immune cell fate, differentiation, and activation. In addition to their role in development, epigenetic mechanisms are emerging as attractive candidates for the biological embedding of environmental factors on immune function and as mediators between early-life exposures and long-term health. Here, following an overview of the impact of prenatal alcohol exposure on immune function and epigenetic patterns, we discuss the potential role for epigenetic mechanisms in reprogramming of immune function and the consequences for health and development. We highlight a range of both clinical and animal studies to provide insights into the array of immune genes impacted by alcohol-related epigenetic reprogramming. Finally, we discuss potential consequences of alcohol-related reprogramming of immune/neuroimmune functions and their effects on the increased susceptibility to mental health disorders. Overall, the collective findings from animal models and clinical studies highlight a compelling relationship between the immune system and epigenetic pathways. These findings have important implications for our understanding of the biological mechanisms underlying the long-term and multisystem effects of prenatal alcohol exposure, laying the groundwork for possible novel interventions and therapeutic strategies to treat individuals prenatally exposed to alcohol.
Collapse
Affiliation(s)
- Alexandre A Lussier
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States.,Department of Psychiatry, Harvard Medical School, Boston, MA, United States.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Tamara S Bodnar
- Department of Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Joanne Weinberg
- Department of Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
34
|
Polycomb repressive complex 2 in adult hair follicle stem cells is dispensable for hair regeneration. PLoS Genet 2021; 17:e1009948. [PMID: 34905545 PMCID: PMC8670713 DOI: 10.1371/journal.pgen.1009948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/15/2021] [Indexed: 12/17/2022] Open
Abstract
Hair follicle stem cells (HFSCs) are multipotent cells that cycle through quiescence and activation to continuously fuel the production of hair follicles. Prior genome mapping studies had shown that tri-methylation of histone H3 at lysine 27 (H3K27me3), the chromatin mark mediated by Polycomb Repressive Complex 2 (PRC2), is dynamic between quiescent and activated HFSCs, suggesting that transcriptional changes associated with H3K27me3 might be critical for proper HFSC function. However, functional in vivo studies elucidating the role of PRC2 in adult HFSCs are lacking. In this study, by using in vivo loss-of-function studies we show that, surprisingly, PRC2 plays a non-instructive role in adult HFSCs and loss of PRC2 in HFSCs does not lead to loss of HFSC quiescence or changes in cell identity. Interestingly, RNA-seq and immunofluorescence analyses of PRC2-null quiescent HFSCs revealed upregulation of genes associated with activated state of HFSCs. Altogether, our findings show that transcriptional program under PRC2 regulation is dispensable for maintaining HFSC quiescence and hair regeneration.
Collapse
|
35
|
Liu S, Aldinger KA, Cheng CV, Kiyama T, Dave M, McNamara HK, Zhao W, Stafford JM, Descostes N, Lee P, Caraffi SG, Ivanovski I, Errichiello E, Zweier C, Zuffardi O, Schneider M, Papavasiliou AS, Perry MS, Humberson J, Cho MT, Weber A, Swale A, Badea TC, Mao CA, Garavelli L, Dobyns WB, Reinberg D. NRF1 association with AUTS2-Polycomb mediates specific gene activation in the brain. Mol Cell 2021; 81:4663-4676.e8. [PMID: 34637754 PMCID: PMC8604784 DOI: 10.1016/j.molcel.2021.09.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/21/2021] [Accepted: 09/15/2021] [Indexed: 12/17/2022]
Abstract
The heterogeneous family of complexes comprising Polycomb repressive complex 1 (PRC1) is instrumental for establishing facultative heterochromatin that is repressive to transcription. However, two PRC1 species, ncPRC1.3 and ncPRC1.5, are known to comprise novel components, AUTS2, P300, and CK2, that convert this repressive function to that of transcription activation. Here, we report that individuals harboring mutations in the HX repeat domain of AUTS2 exhibit defects in AUTS2 and P300 interaction as well as a developmental disorder reflective of Rubinstein-Taybi syndrome, which is mainly associated with a heterozygous pathogenic variant in CREBBP/EP300. Moreover, the absence of AUTS2 or mutation in its HX repeat domain gives rise to misregulation of a subset of developmental genes and curtails motor neuron differentiation of mouse embryonic stem cells. The transcription factor nuclear respiratory factor 1 (NRF1) has a novel and integral role in this neurodevelopmental process, being required for ncPRC1.3 recruitment to chromatin.
Collapse
Affiliation(s)
- Sanxiong Liu
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Kimberly A Aldinger
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Chi Vicky Cheng
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Takae Kiyama
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Mitali Dave
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Hanna K McNamara
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Wukui Zhao
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY 10016, USA
| | - James M Stafford
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Nicolas Descostes
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Pedro Lee
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Stefano G Caraffi
- Struttura Semplice Dipartimentale di Genetica Medica, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Ivan Ivanovski
- Struttura Semplice Dipartimentale di Genetica Medica, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy; Institute of Medical Genetics, University of Zürich, Zürich, Switzerland
| | - Edoardo Errichiello
- Dipartimento di Medicina Molecolare, Università di Pavia, Pavia, Italy; IRCCS Mondino Foundation, Pavia, Italy
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 10, 91054 Erlangen, Germany; Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Orsetta Zuffardi
- Dipartimento di Medicina Molecolare, Università di Pavia, Pavia, Italy
| | - Michael Schneider
- Carle Physicians Group, Section of Neurology, St. Christopher's Hospital for Children, Urbana, IL, USA
| | | | - M Scott Perry
- Comprehensive Epilepsy Program, Jane and John Justin Neuroscience Center, Cook Children's Medical Center, Fort Worth, TX 76104, USA
| | - Jennifer Humberson
- Division of Genetics, Department of Pediatrics, University of Virginia Children's Hospital, Charlottesville, VA, USA
| | | | | | - Andrew Swale
- Liverpool Women's Hospital, Liverpool, UK; Manchester Centre for Genomic Medicine, Manchester, UK
| | - Tudor C Badea
- National Eye Institute, NIH, Bethesda, MD 20892, USA; Research and Development Institute, Transilvania University of Brasov, School of Medicine, Brasov, Romania
| | - Chai-An Mao
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Livia Garavelli
- Struttura Semplice Dipartimentale di Genetica Medica, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - William B Dobyns
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics (Genetic Medicine), University of Washington, Seattle, WA, USA
| | - Danny Reinberg
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
36
|
Trotman JB, Braceros KCA, Cherney RE, Murvin MM, Calabrese JM. The control of polycomb repressive complexes by long noncoding RNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 12:e1657. [PMID: 33861025 PMCID: PMC8500928 DOI: 10.1002/wrna.1657] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/12/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023]
Abstract
The polycomb repressive complexes 1 and 2 (PRCs; PRC1 and PRC2) are conserved histone-modifying enzymes that often function cooperatively to repress gene expression. The PRCs are regulated by long noncoding RNAs (lncRNAs) in complex ways. On the one hand, specific lncRNAs cause the PRCs to engage with chromatin and repress gene expression over genomic regions that can span megabases. On the other hand, the PRCs bind RNA with seemingly little sequence specificity, and at least in the case of PRC2, direct RNA-binding has the effect of inhibiting the enzyme. Thus, some RNAs appear to promote PRC activity, while others may inhibit it. The reasons behind this apparent dichotomy are unclear. The most potent PRC-activating lncRNAs associate with chromatin and are predominantly unspliced or harbor unusually long exons. Emerging data imply that these lncRNAs promote PRC activity through internal RNA sequence elements that arise and disappear rapidly in evolutionary time. These sequence elements may function by interacting with common subsets of RNA-binding proteins that recruit or stabilize PRCs on chromatin. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Jackson B. Trotman
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Keean C. A. Braceros
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Mechanistic, Interdisciplinary Studies of Biological Systems, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rachel E. Cherney
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - McKenzie M. Murvin
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - J. Mauro Calabrese
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
37
|
Zhang K, Xu J, Ding Y, Shen C, Lin M, Dai X, Zhou H, Huang X, Xue B, Zheng B. BMI1 promotes spermatogonia proliferation through epigenetic repression of Ptprm. Biochem Biophys Res Commun 2021; 583:169-177. [PMID: 34739857 DOI: 10.1016/j.bbrc.2021.10.074] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/29/2021] [Indexed: 12/31/2022]
Abstract
Spermatogonia are accountable for spermatogenesis and male fertility, but the underlying mechanisms involved in spermatogonia maintenance are not clear. B lymphoma Mo-MLV insertion region 1 (BMI1) is a key component of epigenetic silencers. BMI1 is essential for stem-cell maintenance. Here, we attempted to uncover the role of BMI1 in spermatogonia maintenance using a mouse spermatogonia cell line (GC-1) and Bmi1-knockout (KO) mouse model. We showed that BMI1 promoted the proliferation and inhibited apoptosis of GC-1 cells. Mechanistically, we present in vitro and in vivo evidence to show that BMI1 binds to the promoter region of the Protein tyrosine phosphatase receptor type M (PTPRM) gene, thereby driving chromatin remodeling and gene silencing. Knockdown of Ptprm expression significantly improved spermatogonia proliferation in BMI1-deficient GC-1 cells. Collectively, our data show, for the first time, an epigenetic mechanism involving in BMI1-mediated gene silencing in spermatogonia maintenance, and provide potential targets for the treatment of male infertility.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinfu Xu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Yue Ding
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Cong Shen
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, China
| | - Meng Lin
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Xiuliang Dai
- Center of Clinical Reproductive Medicine, The Affiliated Changzhou Matemity and Child Health Care Hospital of Nanjing Medical University, Changzhou, China
| | - Hui Zhou
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiaoyan Huang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Boxin Xue
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Bo Zheng
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, China.
| |
Collapse
|
38
|
Song X, Wang TX, Zhu XN, Tan SK. Immunological and prognostic significance of CBX2 expression in hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2021; 29:1118-1129. [DOI: 10.11569/wcjd.v29.i19.1118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The number of cases of hepatocellular carcinoma (HCC), the sixth most common malignancy and the third leading cause of cancer death worldwide, has risen from 1.6 to 4.6 per 100000 people worldwide over the past 30 years. Guangxi has a high incidence of HCC in China, and its death rate ranks first in the spectrum of causes of tumor death in Guangxi, accounting for about 40% of all deaths from malignant tumors. Exploring the role of chromobox homolog 2 (CBX2) in HCC immunity will provide potential value for the treatment of this malignancy.
AIM To investigate the expression of CBX2 and analyze its immunological and prognostic significance in HCC.
METHODS The expression of CBX2 in 75 cases of HCC and matched non-tumor tissues was detected by tissue microarray and immunohistochemistry. The relationship of CBX2 expression with the clinicopathologic features of HCC and survival prognosis was analyzed. Then, the differential expression of CBX2 between HCC and normal tissues was verified in The Cancer Genomic Atlas (TCGA). Next, we explored the association between CBX2 expression and immunocyte infiltration, determined the relationship between CBX2 expression and immunosuppressors and immunostimulators, and identified the immune events that CBX2 was involved in through relevant GO and KEGG pathway enrichment analyses. A multi-gene risk prediction model was developed using a COX regression model, thereby generating a risk score that is an independent predictor of survival prognosis. ROC analysis was performed to assess the predictive accuracy of the risk score. Finally, a prognostic model with a calibration curve was constructed to predict the patients' survival probability at 3 and 5 years.
RESULTS The positive expression of CBX2 in HCC tissue was 66.7% (50/75), which was significantly higher than that in matched non-tumor tissues (25.3% (19/75); P < 0.01). The expression of CBX2 was associated with TNM stage and AFP status (P < 0.05). The survival time of patients in the CBX2 positive group was significantly lower than that of the CBX2 negative group, suggesting that CBX2 positive expression may be related to the prognosis of HCC patients. TCGA database verification reached the same conclusion. The expression of CBX2 was positively correlated with the infiltration levels of T helper 2 cells. CBX2 was identified to be associated with 10 immunosuppressors and 23 immunostimulators, and enriched analysis of related GO and KEGG pathways showed that CBX2 was associated with immune events such as intestinal immune network for immunoglobulin A production, cytokine-cytokine receptor interactions, cell adhesion molecules, and rheumatoid arthritis.
CONCLUSION CBX2 positive expression may be a prognostic risk factor in HCC patients. Our findings provide evidence for the role of CBX2 in tumor immunity in HCC, suggesting that CBX2 may be a potential immunoprognostic marker for HCC.
Collapse
Affiliation(s)
- Xin Song
- School of Public Health, Guilin Medical University, Guilin 541199, Guangxi Zhuang Autonomous Region, China
| | - Tian-Xian Wang
- School of Public Health, Guilin Medical University, Guilin 541199, Guangxi Zhuang Autonomous Region, China
| | - Xiao-Nian Zhu
- School of Public Health, Guilin Medical University, Guilin 541199, Guangxi Zhuang Autonomous Region, China
| | - Sheng-Kui Tan
- School of Public Health, Guilin Medical University, Guilin 541199, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
39
|
Okashita N, Tachibana M. Transcriptional Regulation of the Y-Linked Mammalian Testis-Determining Gene SRY. Sex Dev 2021; 15:351-359. [PMID: 34583357 DOI: 10.1159/000519217] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/12/2021] [Indexed: 11/19/2022] Open
Abstract
Mammalian male sex differentiation is triggered during embryogenesis by the activation of the Y-linked testis-determining gene SRY. Since insufficient or delayed expression of SRY results in XY gonadal sex reversal, accurate regulation of SRY is critical for male development in XY animals. In humans, dysregulation of SRY may cause disorders of sex development. Mouse Sry is the most intensively studied mammalian model of sex determination. Sry expression is controlled in a spatially and temporally stringent manner. Several transcription factors play a key role in sex determination as trans-acting factors for Sry expression. In addition, recent studies have shown that several epigenetic modifications of Sry are involved in sex determination as cis-acting factors for Sry expression. Herein, we review the current understanding of transcription factor- and epigenetic modifier-mediated regulation of SRY/Sry expression.
Collapse
Affiliation(s)
- Naoki Okashita
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Makoto Tachibana
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| |
Collapse
|
40
|
Flora P, Dalal G, Cohen I, Ezhkova E. Polycomb Repressive Complex(es) and Their Role in Adult Stem Cells. Genes (Basel) 2021; 12:1485. [PMID: 34680880 PMCID: PMC8535826 DOI: 10.3390/genes12101485] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/13/2021] [Accepted: 09/22/2021] [Indexed: 12/31/2022] Open
Abstract
Populations of resident stem cells (SCs) are responsible for maintaining, repairing, and regenerating adult tissues. In addition to having the capacity to generate all the differentiated cell types of the tissue, adult SCs undergo long periods of quiescence within the niche to maintain themselves. The process of SC renewal and differentiation is tightly regulated for proper tissue regeneration throughout an organisms' lifetime. Epigenetic regulators, such as the polycomb group (PcG) of proteins have been implicated in modulating gene expression in adult SCs to maintain homeostatic and regenerative balances in adult tissues. In this review, we summarize the recent findings that elucidate the composition and function of the polycomb repressive complex machinery and highlight their role in diverse adult stem cell compartments.
Collapse
Affiliation(s)
- Pooja Flora
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA;
| | - Gil Dalal
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel;
| | - Idan Cohen
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel;
| | - Elena Ezhkova
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA;
| |
Collapse
|
41
|
The SUMO E3 ligase CBX4 is identified as a poor prognostic marker of gastric cancer through multipronged OMIC analyses. Genes Dis 2021; 8:827-837. [PMID: 34522711 PMCID: PMC8427259 DOI: 10.1016/j.gendis.2020.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/13/2020] [Accepted: 08/24/2020] [Indexed: 11/21/2022] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies, with an ever-increasing incidence and high mortality rate. Chromobox4 (CBX4), also named hPC2, is a small ubiquitin-related modifier (SUMO) E3 ligase. Previous studies have found that high CBX4 expression is associated with tumor size, pathologic differentiation and decreased patient survival in hepatocellular carcinoma (HCC). However, the expression and prognostic value of CBX4 in GC have not been clarified. In our study, ONCOMINE, UALCAN, Kaplan-Meier Plotter, cBioPortal, DAVID 6.8 and TIMER were utilized. RT-PCR, immunohistochemistry (IHC), Western blot, CCK-8 assay, cell apoptosis assay, cell cycle assay were used to further verify in GC tissue samples or cell line. The transcriptional and protein level of CBX4 in GC tissues was found significantly elevated and a significant association between the expression of CBX4 and clinicopathological parameters was found in GC patients. Low expression of CBX4 in GC patients were correlated with a significantly improved prognosis. The functions of CBX4 are primarily related to the stem cell pluripotency signaling pathway, Hippo signaling pathway, HTLV-I infection, Notch signaling pathway, and N-glycan biosynthesis. Our results may provide novel insights for the selection of therapeutic targets and prognostic biomarkers for GC.
Collapse
|
42
|
A Novel Epigenetic Regulator ZRF1: Insight into Its Functions in Plants. Genes (Basel) 2021; 12:genes12081245. [PMID: 34440419 PMCID: PMC8393682 DOI: 10.3390/genes12081245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 11/28/2022] Open
Abstract
Recently, Zuotin-related factor 1 (ZRF1), an epigenetic regulator, was found to be involved in transcriptional regulation. In animals and humans, ZRF1 specifically binds to monoubiquitinated histone H2A through a ubiquitin-binding domain and derepresses Polycomb target genes at the beginning of cellular differentiation. In addition, ZRF1 can work as a tumor suppressor. According to bioinformatics analysis, ZRF1 homologs are widely found in plants. However, the current studies on ZRF1 in higher plants are limited and few in-depth studies of its functions have been reported. In this review, we aim to summarize the key role of AtZRF1a/b in Arabidopsis thaliana growth and development, as well as the research progress in this field in recent years.
Collapse
|
43
|
López H, Schmitz G, Thoma R, Theres K. Super determinant1A, a RAWULdomain-containing protein, modulates axillary meristem formation and compound leaf development in tomato. THE PLANT CELL 2021; 33:2412-2430. [PMID: 34009392 PMCID: PMC8364250 DOI: 10.1093/plcell/koab121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 04/22/2021] [Indexed: 05/28/2023]
Abstract
Shoot branching and complex leaf development relies on the establishment of boundaries that precedes the formation of axillary meristems (AMs) and leaflets. The tomato (Solanum lycopersicum) super determinant mutant is compromised in both processes, due to a mutation in Sde1A. Sde1A encodes a protein with a RAWUL domain, which is also present in Polycomb Group Repressive Complex 1 (PRC1) RING finger proteins and WD Repeat Domain 48 proteins. Genetic analysis revealed that Sde1A and Bmi1A cooperate, whereas Bmi1C antagonizes both activities, indicating the existence of functionally opposing PRC1 complexes that interact with Sde1A. Sde1A is expressed at early stages of boundary development in a small group of cells in the center of the leaf-axil boundary, but its activity is required for meristem formation at later stages. This suggests that Sde1A and Bmi1A promote AM formation and complex leaf development by safeguarding a pool of cells in the developing boundary zones. Genetic and protein interaction analyses showed that Sde1A and Lateral suppressor (Ls) are components of the same genetic pathway. In contrast to ls, sde1a mutants are not compromised in inflorescence branching, suggesting that Sde1A is a potential target for breeding tomato cultivars with reduced side-shoot formation during vegetative development.
Collapse
Affiliation(s)
- Hernán López
- Max Planck Institute for Plant Breeding Research, Cologne D-50931, Germany
| | - Gregor Schmitz
- Max Planck Institute for Plant Breeding Research, Cologne D-50931, Germany
| | - Rahere Thoma
- Max Planck Institute for Plant Breeding Research, Cologne D-50931, Germany
| | - Klaus Theres
- Max Planck Institute for Plant Breeding Research, Cologne D-50931, Germany
| |
Collapse
|
44
|
Kim HJ, Park JW, Kang JY, Seo SB. Negative Regulation of Erythroid Differentiation via the CBX8-TRIM28 Axis. Mol Cells 2021; 44:444-457. [PMID: 34253692 PMCID: PMC8334346 DOI: 10.14348/molcells.2021.0012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 12/26/2022] Open
Abstract
Although the mechanism of chronic myeloid leukemia (CML) initiation through BCR/ABL oncogene has been well characterized, CML cell differentiation into erythroid lineage cells remains poorly understood. Using CRISPR-Cas9 screening, we identify Chromobox 8 (CBX8) as a negative regulator of K562 cell differentiation into erythrocytes. CBX8 is degraded via proteasomal pathway during K562 cell differentiation, which activates the expression of erythroid differentiation-related genes that are repressed by CBX8 in the complex of PRC1. During the differentiation process, the serine/threonine-protein kinase PIM1 phosphorylates serine 196 on CBX8, which contributes to CBX8 reduction. When CD235A expression levels are analyzed, the result reveals that the knockdown of PIM1 inhibits K562 cell differentiation. We also identify TRIM28 as another interaction partner of CBX8 by proteomic analysis. Intriguingly, TRIM28 maintains protein stability of CBX8 and TRIM28 loss significantly induces proteasomal degradation of CBX8, resulting in an acceleration of erythroid differentiation. Here, we demonstrate the involvement of the CBX8-TRIM28 axis during CML cell differentiation, suggesting that CBX8 and TRIM28 are promising novel targets for CML research.
Collapse
Affiliation(s)
- Hyun Jeong Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Korea
| | - Jin Woo Park
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Korea
| | - Joo-Young Kang
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Korea
| | - Sang-Beom Seo
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
45
|
Freire-Benéitez V, Pomella N, Millner TO, Dumas AA, Niklison-Chirou MV, Maniati E, Wang J, Rajeeve V, Cutillas P, Marino S. Elucidation of the BMI1 interactome identifies novel regulatory roles in glioblastoma. NAR Cancer 2021; 3:zcab009. [PMID: 34316702 PMCID: PMC8210184 DOI: 10.1093/narcan/zcab009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/27/2021] [Accepted: 02/28/2021] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive intrinsic brain tumour in adults. Epigenetic mechanisms controlling normal brain development are often dysregulated in GBM. Among these, BMI1, a structural component of the Polycomb Repressive Complex 1 (PRC1), which promotes the H2AK119ub catalytic activity of Ring1B, is upregulated in GBM and its tumorigenic role has been shown in vitro and in vivo. Here, we have used protein and chromatin immunoprecipitation followed by mass spectrometry (MS) analysis to elucidate the protein composition of PRC1 in GBM and transcriptional silencing of defining interactors in primary patient-derived GIC lines to assess their functional impact on GBM biology. We identify novel regulatory functions in mRNA splicing and cholesterol transport which could represent novel targetable mechanisms in GBM.
Collapse
Affiliation(s)
- Verónica Freire-Benéitez
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT, London, UK
| | - Nicola Pomella
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT, London, UK
| | - Thomas O Millner
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT, London, UK
| | - Anaëlle A Dumas
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT, London, UK
| | - Maria Victoria Niklison-Chirou
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT, London, UK
| | - Eleni Maniati
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6AS UK
| | - Jun Wang
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6AS UK
| | - Vinothini Rajeeve
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6AS UK
| | - Pedro Cutillas
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6AS UK
| | - Silvia Marino
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT, London, UK
| |
Collapse
|
46
|
Zhou H, Xiong Y, Liu Z, Hou S, Zhou T. Expression and prognostic significance of CBX2 in colorectal cancer: database mining for CBX family members in malignancies and vitro analyses. Cancer Cell Int 2021; 21:402. [PMID: 34321009 PMCID: PMC8317347 DOI: 10.1186/s12935-021-02106-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 07/21/2021] [Indexed: 11/23/2022] Open
Abstract
Background The Chromobox (CBX) domain protein family, a core component of polycomb repressive complexes 1, is involved in transcriptional repression, cell differentiation, and program development by binding to methylated histone tails. Each CBX family member plays a distinct role in various biological processes through their own specific chromatin domains, due to differences in conserved sequences of the CBX proteins. It has been demonstrated that colorectal cancer (CRC) is a multiple-step biological evolutionary process, whereas the roles of the CBX family in CRC remain largely unclear. Methods In the present study, the expression and prognostic significance of the CBX family in CRC were systematically analyzed through a series of online databases, including Cancer Cell Line Encyclopedia (CCLE), Oncomine, Human Protein Atlas (HPA), and Gene Expression Profiling Interactive Analysis (GEPIA). For in vitro verification, we performed cell cloning, flow cytometry and transwell experiments to verify the proliferation and invasion ability of CRC cells after knocking down CBX2. Results Most CBX proteins were found to be highly expressed in CRC, but only the elevated expression of CBX2 could be associated with poor prognosis in patients with CRC. Further examination of the role of CBX2 in CRC was performed through several in vitro experiments. CBX2 was overexpressed in CRC cell lines via the CCLE database and the results were verified by RT-qPCR. Moreover, the knockdown of CBX2 significantly suppressed CRC cell proliferation and invasion. Furthermore, the downregulation of CBX2 was found to promote CRC cell apoptosis. Conclusions Based on these findings, CBX2 may function as an oncogene and potential prognostic biomarker. Thus, the association between the abnormal expression of CBX2 and the initiation of CRC deserves further exploration.
Collapse
Affiliation(s)
- He Zhou
- The Second Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Nanchong, 637000, Sichuan Province, China.,Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Yongfu Xiong
- The First Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China.,Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Zuoliang Liu
- The Second Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Nanchong, 637000, Sichuan Province, China.,Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Songlin Hou
- The Second Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Nanchong, 637000, Sichuan Province, China.,Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Tong Zhou
- The Second Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Nanchong, 637000, Sichuan Province, China. .,Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, 637000, Sichuan, China.
| |
Collapse
|
47
|
Pillay S, Takahashi H, Carninci P, Kanhere A. Antisense RNAs during early vertebrate development are divided in groups with distinct features. Genome Res 2021; 31:995-1010. [PMID: 33795334 PMCID: PMC8168585 DOI: 10.1101/gr.262964.120] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/29/2021] [Indexed: 01/15/2023]
Abstract
Long noncoding RNAs or lncRNAs are a class of non-protein-coding RNAs that are >200 nt in length. Almost 50% of lncRNAs during zebrafish development are transcribed in an antisense direction to a protein-coding gene. However, the role of these natural antisense transcripts (NATs) during development remains enigmatic. To understand NATs in early vertebrate development, we took a computational biology approach and analyzed existing as well as novel data sets. Our analysis indicates that zebrafish NATs can be divided into two major classes based on their coexpression patterns with respect to the overlapping protein-coding genes. Group 1 NATs have characteristics similar to maternally deposited RNAs in that their levels decrease as development progresses. Group 1 NAT levels are negatively correlated with that of overlapping sense-strand protein-coding genes. Conversely, Group 2 NATs are coexpressed with overlapping protein-coding genes. In contrast to Group 1, which is enriched in genes involved in developmental pathways, Group 2 protein-coding genes are enriched in housekeeping functions. Group 1 NATs also show larger overlap and higher complementarity with the sense-strand mRNAs compared to other NATs. In addition, our transcriptomics data, quantifying RNA levels from cytoplasmic and nuclear compartments, indicates that Group 1 NATs are more abundant in the cytosol. Based on their expression pattern, cytosolic nature, and their higher complementarity to the overlapping developmental mRNAs, we speculate that Group 1 NATs function post-transcriptionally to silence spurious expression of developmental genes.
Collapse
Affiliation(s)
- Sanjana Pillay
- Department of Cell, Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | - Hazuki Takahashi
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Piero Carninci
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
- Fondazione Human Technopole, 20157 Milan, Italy
| | - Aditi Kanhere
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 3GE, United Kingdom
| |
Collapse
|
48
|
Su D, Wang W, Hou Y, Wang L, Yi X, Cao C, Wang Y, Gao H, Wang Y, Yang C, Liu B, Chen X, Wu X, Wu J, Yan D, Wei S, Han L, Liu S, Wang Q, Shi L, Shan L. Bimodal regulation of the PRC2 complex by USP7 underlies tumorigenesis. Nucleic Acids Res 2021; 49:4421-4440. [PMID: 33849069 PMCID: PMC8096222 DOI: 10.1093/nar/gkab209] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/01/2021] [Indexed: 12/27/2022] Open
Abstract
Although overexpression of EZH2, a catalytic subunit of the polycomb repressive complex 2 (PRC2), is an eminent feature of various cancers, the regulation of its abundance and function remains insufficiently understood. We report here that the PRC2 complex is physically associated with ubiquitin-specific protease USP7 in cancer cells where USP7 acts to deubiquitinate and stabilize EZH2. Interestingly, we found that USP7-catalyzed H2BK120ub1 deubiquitination is a prerequisite for chromatin loading of PRC2 thus H3K27 trimethylation, and this process is not affected by H2AK119 ubiquitination catalyzed by PRC1. Genome-wide analysis of the transcriptional targets of the USP7/PRC2 complex identified a cohort of genes including FOXO1 that are involved in cell growth and proliferation. We demonstrated that the USP7/PRC2 complex drives cancer cell proliferation and tumorigenesis in vitro and in vivo. We showed that the expression of both USP7 and EZH2 elevates during tumor progression, corresponding to a diminished FOXO1 expression, and the level of the expression of USP7 and EZH2 strongly correlates with histological grades and prognosis of tumor patients. These results reveal a dual role for USP7 in the regulation of the abundance and function of EZH2, supporting the pursuit of USP7 as a therapeutic target for cancer intervention.
Collapse
Affiliation(s)
- Dongxue Su
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.,State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Wenjuan Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yongqiang Hou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Liyong Wang
- Core Facilities for Molecular Biology, Capital Medical University, Beijing 100069, China
| | - Xianfu Yi
- School of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, China
| | - Cheng Cao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yuejiao Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Huan Gao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yue Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Chao Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Beibei Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xing Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiaodi Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Jiajing Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Dong Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Shuqi Wei
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Lulu Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Shumeng Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Qian Wang
- Tianjin Medical University Cancer Institute and Hospital, Tianjin Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Lei Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Lin Shan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
49
|
Vodnala M, Choi EB, Fong YW. Low complexity domains, condensates, and stem cell pluripotency. World J Stem Cells 2021; 13:416-438. [PMID: 34136073 PMCID: PMC8176841 DOI: 10.4252/wjsc.v13.i5.416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
Biological reactions require self-assembly of factors in the complex cellular milieu. Recent evidence indicates that intrinsically disordered, low-complexity sequence domains (LCDs) found in regulatory factors mediate diverse cellular processes from gene expression to DNA repair to signal transduction, by enriching specific biomolecules in membraneless compartments or hubs that may undergo liquid-liquid phase separation (LLPS). In this review, we discuss how embryonic stem cells take advantage of LCD-driven interactions to promote cell-specific transcription, DNA damage response, and DNA repair. We propose that LCD-mediated interactions play key roles in stem cell maintenance and safeguarding genome integrity.
Collapse
Affiliation(s)
- Munender Vodnala
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Eun-Bee Choi
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Yick W Fong
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
- Harvard Stem Cell Institute, Cambridge, MA 02138, United States.
| |
Collapse
|
50
|
Abstract
AbstractIn the developing Drosophila CNS, two pools of neural stem cells, the symmetrically dividing progenitors in the neuroepithelium (NE) and the asymmetrically dividing neuroblasts (NBs) generate the majority of the neurons that make up the adult central nervous system (CNS). The generation of a correct sized brain depends on maintaining the fine balance between neural stem cell self-renewal and differentiation, which are regulated by cell-intrinsic and cell-extrinsic cues. In this review, we will discuss our current understanding of how self-renewal and differentiation are regulated in the two neural stem cell pools, and the consequences of the deregulation of these processes.
Collapse
Affiliation(s)
- Francesca Froldi
- Peter MacCallum Cancer Centre, East Melbourne, Victoria, 3002, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria, 3010, Australia
| | - Milán Szuperák
- Peter MacCallum Cancer Centre, East Melbourne, Victoria, 3002, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria, 3010, Australia
| | - Louise Y. Cheng
- Peter MacCallum Cancer Centre, East Melbourne, Victoria, 3002, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|