1
|
Wu H, Shang J, Bao Y, Liu H, Zhang H, Xiao Y, Li Y, Huang Z, Cheng X, Ma Z, Zhang W, Mo P, Wang D, Zhang M, Zhan Y. Identification of a novel prognostic marker ADGRG6 in pancreatic adenocarcinoma: multi-omics analysis and experimental validation. Front Immunol 2025; 16:1530789. [PMID: 40226617 PMCID: PMC11986822 DOI: 10.3389/fimmu.2025.1530789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/10/2025] [Indexed: 04/15/2025] Open
Abstract
Background Pancreatic adenocarcinoma (PAAD) ranks among the most lethal malignancies worldwide. Current treatment options have limited efficacy, underscoring the need for new therapeutic targets. Methods This study employed a multi-omics analytical framework to delve into the expression profiles and prognostic implications of ADGRG6 within the pan-cancer dataset of The Cancer Genome Atlas (TCGA) database, highlighting the prognostic value and potential carcinogenic role of ADGRG6 in PAAD, which was further validated using data from multiple PAAD cohorts in the Gene Expression Omnibus (GEO) database. To assess the role of ADGRG6 in the tumor microenvironment of PAAD, we evaluated immune infiltration using CIBERSORT, ssGSEA, xCell and Tracking Tumor Immunophenotype (TIP), and utilized single-cell sequencing data to explore cell-cell interactions. Further cellular and animal experiments, such as colony formation assay, transwell assay, western blot, real-time PCR, and tumor xenograft experiments, were used to investigate the effect of ADGRG6 on the proliferation, metastatic potential and immune marker expression of PAAD and the underlying mechanisms. Results ADGRG6 emerged as a potential prognostic biomarker and a therapeutic target for PAAD, which was further corroborated by data extracted from multiple PAAD cohorts archived in the GEO database. Single-cell sequencing and immune infiltration analyses predicted the positive correlation of ADGRG6 with the infiltration of immune cells and with the interaction between malignant cells and fibroblasts/macrophages within the PAAD microenvironment. In vitro cell assays demonstrated that ADGRG6 promoted the proliferation, metastatic potential and immune marker expression of PAAD cells by increasing protein level of mutated p53 (mutp53), which activated a spectrum of gain-of-functions to promote cancer progression via the EGFR, AMPK and NF-κB signaling cascades. Furthermore, subcutaneous xenograft experiments in mice demonstrated that ADGRG6 knockdown substantially suppressed the growth of engrafted PAAD tumors. Conclusions ADGRG6 may serve as a novel prognostic marker and a therapeutic targets for PAAD, playing a crucial role in the proliferation, metastasis, and immune marker regulation of PAAD through elevating protein level of mutated p53.
Collapse
Affiliation(s)
- Han Wu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Gastroenterology, The 909th Hospital, School of Medicine, Xiamen University, Zhangzhou, Fujian, China
| | - Jin Shang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yuanyan Bao
- Department of Gastroenterology, The 909th Hospital, School of Medicine, Xiamen University, Zhangzhou, Fujian, China
| | - Huajie Liu
- Department of Gastroenterology, The 909th Hospital, School of Medicine, Xiamen University, Zhangzhou, Fujian, China
| | - Haoran Zhang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yaosheng Xiao
- Department of Infectious Disease, Xiang’an Hospital Affiliated to Xiamen University, Xiamen, Fujian, China
| | - Yangtaobo Li
- Department of Gastroenterology, The 909th Hospital, School of Medicine, Xiamen University, Zhangzhou, Fujian, China
| | - Zhaozhang Huang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xiaolei Cheng
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Zixuan Ma
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Wenqing Zhang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Pingli Mo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Science, Xiamen University, Xiamen, Fujian, China
| | - Daxuan Wang
- Provincial College of Clinical Medicine, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Mingqing Zhang
- Department of Gastroenterology, The 909th Hospital, School of Medicine, Xiamen University, Zhangzhou, Fujian, China
| | - Yanyan Zhan
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
2
|
Schumacher N, Vandenbosch R, Franzen R. Peripheral myelin: From development to maintenance. J Neurochem 2025; 169:e16268. [PMID: 39655795 DOI: 10.1111/jnc.16268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 12/18/2024]
Abstract
Peripheral myelin is synthesized by glial cells called Schwann cells (SCs). SC development and differentiation must be tightly regulated to avoid any pathological consequence affecting peripheral nerve function. Neuropathic symptoms can arise from developmental issues in SCs, as well as in adult life through processes affecting mature SCs. In this review we focus on SC differentiation from the immature towards the myelinating and non-myelinating SC stages, defining molecular mechanisms outlining radial sorting, a multi-stepped event essential for immature SC differentiation and myelination. We also describe mechanisms regulating myelin sheath maintenance and SC homeostasis during aging. Finally, we will conclude with some remaining questions in the field of SC biology.
Collapse
Affiliation(s)
- Nathalie Schumacher
- Laboratory of Nervous System Disorders and Therapies, GIGA Institute, University of Liège, Liège, Belgium
| | - Renaud Vandenbosch
- Laboratory of Developmental Neurobiology, GIGA Institute, University of Liège, Liège, Belgium
| | - Rachelle Franzen
- Laboratory of Nervous System Disorders and Therapies, GIGA Institute, University of Liège, Liège, Belgium
| |
Collapse
|
3
|
Chen F, Zhao J, Mo R, Ding X, Zhang Y, Huang L, Xie T, Ding Y. Genetic Variants in the Adhesive G Protein-Coupled Receptor ADGRG6 are Associated with Increased Susceptibility to COPD in the Elderly Han Chinese Population of Southern China. Int J Chron Obstruct Pulmon Dis 2024; 19:2599-2610. [PMID: 39650745 PMCID: PMC11624663 DOI: 10.2147/copd.s478095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/14/2024] [Indexed: 12/11/2024] Open
Abstract
Background Mutations in ADGRG6 are associated with a variety of cancers and multiple types of diseases. However, the impact of genetic variations in ADGRG6 on chronic obstructive pulmonary disease (COPD) susceptibility has not yet been evaluated. Methods Considering the high prevalence of COPD among the elderly population in China, this study specifically targets the elderly Han population in Southern China as the study subject. Following the acquisition of participants' whole-genome DNA, genotyping was conducted using the Agena MassARRAY platform. The online tool 'SNPStats', which utilizes logistic regression, was employed to analyze and assess the correlation. Multi-factor dimensionality reduction was utilized to clarify the impact of "SNP-SNP" interactions on COPD risk. The False-Positive Report Probability (FPRP) was applied to determine whether significant results are noteworthy findings. Results The mutant allele "C" of rs11155242 was a protective genetic factor against COPD susceptibility (OR = 0.57, 95% CI = 0.36 to 0.91, p = 0.017). The heterozygous mutant genotype "CA" of rs11155242 was found to be significantly associated with reduced COPD risk (CA Vs AA: OR = 0.53, 95% CI = 0.32 to 0.90, p = 0.018). ADGRG6-rs11155242 was found to be strongly associated with a reduced risk of COPD in males, non-smokers, and subjects with a BMI below 24 kg/m2 (OR < 1, p < 0.05). The FPRP analysis indicated that the positive results identified in this study are noteworthy new findings. Conclusion The mutant allele "C" and mutant genotype "CA" of rs11155242 act as protective genetic factors against COPD susceptibility. This study will provide a new research direction for the personalized prevention and treatment of COPD in the elderly Han population in southern China, and lay a potential scientific basis.
Collapse
Affiliation(s)
- Fei Chen
- Department of Respiratory and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou City, Hainan Province, People’s Republic of China
- Department of General Practice, Bai Majing Town Central Health Center, Danzhou City, Hainan Province, People’s Republic of China
| | - Jie Zhao
- Department of Respiratory and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou City, Hainan Province, People’s Republic of China
| | - Rubing Mo
- Department of Respiratory and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou City, Hainan Province, People’s Republic of China
| | - Xiuxiu Ding
- Department of Respiratory and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou City, Hainan Province, People’s Republic of China
| | - Yue Zhang
- Department of Respiratory and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou City, Hainan Province, People’s Republic of China
| | - Linhui Huang
- Department of Respiratory and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou City, Hainan Province, People’s Republic of China
| | - Tian Xie
- Department of Respiratory and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou City, Hainan Province, People’s Republic of China
| | - Yipeng Ding
- Department of Respiratory and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou City, Hainan Province, People’s Republic of China
| |
Collapse
|
4
|
Li Q, Huo A, Li M, Wang J, Yin Q, Chen L, Chu X, Qin Y, Qi Y, Li Y, Cui H, Cong Q. Structure, ligands, and roles of GPR126/ADGRG6 in the development and diseases. Genes Dis 2024; 11:294-305. [PMID: 37588228 PMCID: PMC10425801 DOI: 10.1016/j.gendis.2023.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/24/2022] [Accepted: 02/05/2023] [Indexed: 03/29/2023] Open
Abstract
Adhesion G protein-coupled receptors (aGPCRs) are the second largest diverse group within the GPCR superfamily, which play critical roles in many physiological and pathological processes through cell-cell and cell-extracellular matrix interactions. The adhesion GPCR Adgrg6, also known as GPR126, is one of the better-characterized aGPCRs. GPR126 was previously found to have critical developmental roles in Schwann cell maturation and its mediated myelination in the peripheral nervous system in both zebrafish and mammals. Current studies have extended our understanding of GPR126-mediated roles during development and in human diseases. In this review, we highlighted these recent advances in GPR126 in expression profile, molecular structure, ligand-receptor interactions, and associated physiological and pathological functions in development and diseases.
Collapse
Affiliation(s)
- Qi Li
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Anran Huo
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Mengqi Li
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jiali Wang
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qiao Yin
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Lumiao Chen
- Department of Nephrology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Xin Chu
- Department of Emergency Center, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Yuan Qin
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yuwan Qi
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yang Li
- Department of Neurology, Huzhou Central Hospital, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang 313000, China
| | - Hengxiang Cui
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Qifei Cong
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| |
Collapse
|
5
|
Asad A, Shahidan NO, de la Vega de León A, Wiggin GR, Whitfield TT, Baxendale S. A screen of pharmacologically active compounds to identify modulators of the Adgrg6/Gpr126 signalling pathway in zebrafish embryos. Basic Clin Pharmacol Toxicol 2023; 133:364-377. [PMID: 37394692 PMCID: PMC10952222 DOI: 10.1111/bcpt.13923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023]
Abstract
Adhesion G protein-coupled receptors (GPCRs) are an underrepresented class of GPCRs in drug discovery. We previously developed an in vivo drug screening pipeline to identify compounds with agonist activity for Adgrg6 (Gpr126), an adhesion GPCR required for myelination of the peripheral nervous system in vertebrates. The screening assay tests for rescue of an ear defect found in adgrg6tb233c-/- hypomorphic homozygous mutant zebrafish, using the expression of versican b (vcanb) mRNA as an easily identifiable phenotype. In the current study, we used the same assay to screen a commercially available library of 1280 diverse bioactive compounds (Sigma LOPAC). Comparison with published hits from two partially overlapping compound collections (Spectrum, Tocris) confirms that the screening assay is robust and reproducible. Using a modified counter screen for myelin basic protein (mbp) gene expression, we have identified 17 LOPAC compounds that can rescue both inner ear and myelination defects in adgrg6tb233c-/- hypomorphic mutants, three of which (ebastine, S-methylisothiourea hemisulfate, and thapsigargin) are new hits. A further 25 LOPAC hit compounds were effective at rescuing the otic vcanb expression but not mbp. Together, these and previously identified hits provide a wealth of starting material for the development of novel and specific pharmacological modulators of Adgrg6 receptor activity.
Collapse
Affiliation(s)
- Anzar Asad
- School of BiosciencesUniversity of SheffieldSheffieldUK
| | | | | | | | | | - Sarah Baxendale
- School of BiosciencesUniversity of SheffieldSheffieldUK
- Sheffield Zebrafish Screening Facility, School of BiosciencesUniversity of SheffieldSheffieldUK
| |
Collapse
|
6
|
Lei X, Tian X, Wang H, Xu X, Li G, Liu W, Wang D, Xiao Z, Zhang M, Li MJ, Zhang Z, Ma Z, Liu Z. Noncoding SNP at rs1663689 represses ADGRG6 via interchromosomal interaction and reduces lung cancer progression. EMBO Rep 2023; 24:e56212. [PMID: 37154297 PMCID: PMC10328068 DOI: 10.15252/embr.202256212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 04/05/2023] [Accepted: 04/18/2023] [Indexed: 05/10/2023] Open
Abstract
A previous genome-wide association study (GWAS) revealed an association of the noncoding SNP rs1663689 with susceptibility to lung cancer in the Chinese population. However, the underlying mechanism is unknown. In this study, using allele-specific 4C-seq in heterozygous lung cancer cells combined with epigenetic information from CRISPR/Cas9-edited cell lines, we show that the rs1663689 C/C variant represses the expression of ADGRG6, a gene located on a separate chromosome, through an interchromosomal interaction of the rs1663689 bearing region with the ADGRG6 promoter. This reduces downstream cAMP-PKA signaling and subsequently tumor growth both in vitro and in xenograft models. Using patient-derived organoids, we show that rs1663689 T/T-but not C/C-bearing lung tumors are sensitive to the PKA inhibitor H89, potentially informing therapeutic strategies. Our study identifies a genetic variant-mediated interchromosomal interaction underlying ADGRG6 regulation and suggests that targeting the cAMP-PKA signaling pathway may be beneficial in lung cancer patients bearing the homozygous risk genotype at rs1663689.
Collapse
Affiliation(s)
- Xinyue Lei
- Department of Lung Cancer CenterTianjin Medical University Cancer Institute and HospitalHaihe Laboratory of Cell EcosystemState Key Laboratory of Experimental HematologyDepartment of UrologyThe Second Hospital of Tianjin Medical UniversityKey Laboratory of Immune Microenvironment and Disease of the Ministry of EducationDepartment of ImmunologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Xiaoling Tian
- Department of Lung Cancer CenterTianjin Medical University Cancer Institute and HospitalHaihe Laboratory of Cell EcosystemState Key Laboratory of Experimental HematologyDepartment of UrologyThe Second Hospital of Tianjin Medical UniversityKey Laboratory of Immune Microenvironment and Disease of the Ministry of EducationDepartment of ImmunologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Hao Wang
- Department of Lung Cancer CenterTianjin Medical University Cancer Institute and HospitalHaihe Laboratory of Cell EcosystemState Key Laboratory of Experimental HematologyDepartment of UrologyThe Second Hospital of Tianjin Medical UniversityKey Laboratory of Immune Microenvironment and Disease of the Ministry of EducationDepartment of ImmunologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Xinran Xu
- Department of Pharmacology, School of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Guoli Li
- Department of Lung Cancer CenterTianjin Medical University Cancer Institute and HospitalHaihe Laboratory of Cell EcosystemState Key Laboratory of Experimental HematologyDepartment of UrologyThe Second Hospital of Tianjin Medical UniversityKey Laboratory of Immune Microenvironment and Disease of the Ministry of EducationDepartment of ImmunologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Wenxu Liu
- Department of Lung Cancer CenterTianjin Medical University Cancer Institute and HospitalHaihe Laboratory of Cell EcosystemState Key Laboratory of Experimental HematologyDepartment of UrologyThe Second Hospital of Tianjin Medical UniversityKey Laboratory of Immune Microenvironment and Disease of the Ministry of EducationDepartment of ImmunologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Dan Wang
- Department of Lung Cancer CenterTianjin Medical University Cancer Institute and HospitalHaihe Laboratory of Cell EcosystemState Key Laboratory of Experimental HematologyDepartment of UrologyThe Second Hospital of Tianjin Medical UniversityKey Laboratory of Immune Microenvironment and Disease of the Ministry of EducationDepartment of ImmunologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Zengtuan Xiao
- Department of Lung Cancer CenterTianjin Medical University Cancer Institute and HospitalHaihe Laboratory of Cell EcosystemState Key Laboratory of Experimental HematologyDepartment of UrologyThe Second Hospital of Tianjin Medical UniversityKey Laboratory of Immune Microenvironment and Disease of the Ministry of EducationDepartment of ImmunologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Mengzhe Zhang
- Department of Lung Cancer CenterTianjin Medical University Cancer Institute and HospitalHaihe Laboratory of Cell EcosystemState Key Laboratory of Experimental HematologyDepartment of UrologyThe Second Hospital of Tianjin Medical UniversityKey Laboratory of Immune Microenvironment and Disease of the Ministry of EducationDepartment of ImmunologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Mulin Jun Li
- Department of Pharmacology, School of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Zhenfa Zhang
- Department of Lung Cancer CenterTianjin Medical University Cancer Institute and HospitalHaihe Laboratory of Cell EcosystemState Key Laboratory of Experimental HematologyDepartment of UrologyThe Second Hospital of Tianjin Medical UniversityKey Laboratory of Immune Microenvironment and Disease of the Ministry of EducationDepartment of ImmunologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Zhenyi Ma
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Cell Biology, School of Basic Medical SciencesHangzhou Normal UniversityHangzhouChina
| | - Zhe Liu
- Department of Lung Cancer CenterTianjin Medical University Cancer Institute and HospitalHaihe Laboratory of Cell EcosystemState Key Laboratory of Experimental HematologyDepartment of UrologyThe Second Hospital of Tianjin Medical UniversityKey Laboratory of Immune Microenvironment and Disease of the Ministry of EducationDepartment of ImmunologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
- Department of Pharmacology, School of Basic Medical SciencesTianjin Medical UniversityTianjinChina
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Cell Biology, School of Basic Medical SciencesHangzhou Normal UniversityHangzhouChina
- Collaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjingChina
| |
Collapse
|
7
|
Schepers M, Malheiro A, Gamardo AS, Hellings N, Prickaerts J, Moroni L, Vanmierlo T, Wieringa P. Phosphodiesterase (PDE) 4 inhibition boosts Schwann cell myelination in a 3D regeneration model. Eur J Pharm Sci 2023; 185:106441. [PMID: 37004962 DOI: 10.1016/j.ejps.2023.106441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/14/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Phosphodiesterase 4 (PDE4) inhibitors have been extensively researched for their anti-inflammatory and neuroregenerative properties. Despite the known neuroplastic and myelin regenerative properties of nonselective PDE4 inhibitors on the central nervous system, the direct impact on peripheral remyelination and subsequent neuroregeneration has not yet been investigated. Therefore, to examine the possible therapeutic effect of PDE4 inhibition on peripheral glia, we assessed the differentiation of primary rat Schwann cells exposed in vitro to the PDE4 inhibitor roflumilast. To further investigate the differentiation promoting effects of roflumilast, we developed a 3D model of rat Schwann cell myelination that closely resembles the in vivo situation. Using these in vitro models, we demonstrated that pan-PDE4 inhibition using roflumilast significantly promoted differentiation of Schwann cells towards a myelinating phenotype, as indicated by the upregulation of myelin proteins, including MBP and MAG. Additionally, we created a unique regenerative model comprised of a 3D co-culture of rat Schwann cells and human iPSC-derived neurons. Schwann cells treated with roflumilast enhanced axonal outgrowth of iPSC-derived nociceptive neurons, which was accompanied by an accelerated myelination speed, thereby showing not only phenotypic but also functional changes of roflumilast-treated Schwann cells. Taken together, the PDE4 inhibitor roflumilast possesses a therapeutic benefit to stimulate Schwann cell differentiation and, subsequently myelination, as demonstrated in the biologically relevant in vitro platform used in this study. These results can aid in the development of novel PDE4 inhibition-based therapies in the advancement of peripheral regenerative medicine.
Collapse
Affiliation(s)
- Melissa Schepers
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, MD 6200, the Netherlands; Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium; University MS Center (UMSC) Hasselt-Pelt, Hasselt, Belgium
| | - Afonso Malheiro
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, the Netherlands
| | - Adrián Seijas Gamardo
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, the Netherlands
| | - Niels Hellings
- Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium; University MS Center (UMSC) Hasselt-Pelt, Hasselt, Belgium
| | - Jos Prickaerts
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, MD 6200, the Netherlands
| | - Lorenzo Moroni
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, the Netherlands
| | - Tim Vanmierlo
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, MD 6200, the Netherlands; Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium; University MS Center (UMSC) Hasselt-Pelt, Hasselt, Belgium.
| | - Paul Wieringa
- University MS Center (UMSC) Hasselt-Pelt, Hasselt, Belgium
| |
Collapse
|
8
|
Hörner SJ, Couturier N, Gueiber DC, Hafner M, Rudolf R. Development and In Vitro Differentiation of Schwann Cells. Cells 2022; 11:3753. [PMID: 36497014 PMCID: PMC9739763 DOI: 10.3390/cells11233753] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Schwann cells are glial cells of the peripheral nervous system. They exist in several subtypes and perform a variety of functions in nerves. Their derivation and culture in vitro are interesting for applications ranging from disease modeling to tissue engineering. Since primary human Schwann cells are challenging to obtain in large quantities, in vitro differentiation from other cell types presents an alternative. Here, we first review the current knowledge on the developmental signaling mechanisms that determine neural crest and Schwann cell differentiation in vivo. Next, an overview of studies on the in vitro differentiation of Schwann cells from multipotent stem cell sources is provided. The molecules frequently used in those protocols and their involvement in the relevant signaling pathways are put into context and discussed. Focusing on hiPSC- and hESC-based studies, different protocols are described and compared, regarding cell sources, differentiation methods, characterization of cells, and protocol efficiency. A brief insight into developments regarding the culture and differentiation of Schwann cells in 3D is given. In summary, this contribution provides an overview of the current resources and methods for the differentiation of Schwann cells, it supports the comparison and refinement of protocols and aids the choice of suitable methods for specific applications.
Collapse
Affiliation(s)
- Sarah Janice Hörner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
| | - Nathalie Couturier
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
| | - Daniele Caroline Gueiber
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Department of Electronics Engineering, Federal University of Technology Paraná, Ponta Grossa 84017-220, Brazil
| | - Mathias Hafner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Institute of Medical Technology, Heidelberg University and Mannheim University of Applied Sciences, 69117 Heidelberg, Germany
| | - Rüdiger Rudolf
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Institute of Medical Technology, Heidelberg University and Mannheim University of Applied Sciences, 69117 Heidelberg, Germany
| |
Collapse
|
9
|
Suo N, He B, Cui S, Yang Y, Wang M, Yuan Q, Xie X. The orphan G protein-coupled receptor GPR149 is a negative regulator of myelination and remyelination. Glia 2022; 70:1992-2008. [PMID: 35758525 DOI: 10.1002/glia.24233] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/09/2022] [Accepted: 06/16/2022] [Indexed: 12/14/2022]
Abstract
Myelin sheath, formed by oligodendrocytes (OLs) in the central nervous system (CNS) and Schwann cells in periphery, plays a critical role in supporting neuronal functions. OLs, differentiated from oligodendrocyte precursor cells (OPCs), are important for myelination during development and myelin repair in CNS demyelinating disease. To identify mechanisms of myelin development and remyelination after myelin damage is of great clinical interest. Here we show that the orphan G protein-coupled receptor GPR149, enriched in OPCs, negatively regulate OPC to OL differentiation, myelination, as well as remyelination. The expression of GPR149 is downregulated during OPCs differentiation into OLs. GPR149 deficiency does not affect the number of OPCs, but promotes OPC to OL differentiation which results in earlier development of myelin. In cuprizone-induced demyelination model, GPR149 deficiency significantly enhances myelin regeneration. Further study indicates that GPR149 may regulate OL differentiation and myelin formation via MAPK/ERK pathway. Our study suggests that deleting or blocking GPR149 might be an intriguing way to promote myelin repair in demyelinating diseases.
Collapse
Affiliation(s)
- Na Suo
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Bingqing He
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shihao Cui
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Yang
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Min Wang
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qianting Yuan
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xin Xie
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
10
|
Torregrosa-Carrión R, Piñeiro-Sabarís R, Siguero-Álvarez M, Grego-Bessa J, Luna-Zurita L, Fernandes VS, MacGrogan D, Stainier DYR, de la Pompa JL. Adhesion G protein-coupled receptor Gpr126/Adgrg6 is essential for placental development. SCIENCE ADVANCES 2021; 7:eabj5445. [PMID: 34767447 PMCID: PMC8589310 DOI: 10.1126/sciadv.abj5445] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Mutations in the G protein–coupled receptor GPR126/ADGRG6 cause human diseases, including defective peripheral nervous system (PNS) myelination. To study GPR126 function, we generated new genetic mice and zebrafish models. Murine Gpr126 is expressed in developing heart endocardium, and global Gpr126 inactivation is embryonically lethal, with mutants having thin-walled ventricles but unaffected heart patterning or maturation. Endocardial-specific Gpr126 deletion does not affect heart development or function, and transgenic endocardial GPR126 expression fails to rescue lethality in Gpr126-null mice. Zebrafish gpr126 mutants display unaffected heart development. Gpr126 is also expressed in placental trophoblast giant cells. Gpr126-null mice with a heterozygous placenta survive but exhibit GPR126-defective PNS phenotype. In contrast, Gpr126-null embryos with homozygous mutant placenta die but are rescued by placental GPR126 expression. Gpr126-deficient placentas display down-regulation of preeclampsia markers Mmp9, Cts7, and Cts8. We propose that the placenta-heart axis accounts for heart abnormalities secondary to placental defects in Gpr126 mutants.
Collapse
Affiliation(s)
- Rebeca Torregrosa-Carrión
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, 28029 Madrid, Spain
| | - Rebeca Piñeiro-Sabarís
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, 28029 Madrid, Spain
| | - Marcos Siguero-Álvarez
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, 28029 Madrid, Spain
| | - Joaquím Grego-Bessa
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, 28029 Madrid, Spain
| | - Luis Luna-Zurita
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, 28029 Madrid, Spain
| | - Vitor Samuel Fernandes
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, 28029 Madrid, Spain
| | - Donal MacGrogan
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, 28029 Madrid, Spain
| | - Didier Y. R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - José Luis de la Pompa
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, 28029 Madrid, Spain
- Corresponding author.
| |
Collapse
|
11
|
Lv X, Xu J, Jiang J, Wu P, Tan R, Wang B. Genetic animal models of scoliosis: A systematical review. Bone 2021; 152:116075. [PMID: 34174503 DOI: 10.1016/j.bone.2021.116075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023]
Abstract
Scoliosis is a complex disease with undetermined pathogenesis and has a strong relationship with genetics. Models of scoliosis in animals have been established for better comprehending its pathogenesis and treatment. In this review, we searched all the genetic animal models with body curvature in databases, and reviewed the related genes and scoliosis types. Meanwhile, we also summarized the pathogenesis of scoliosis reported so far. Summarizing the positive phenotypic animal models contributes to a better understanding on the pathogenesis of scoliosis and facilitates the selection of experimental models when a possible pathogenic factor is concerned.
Collapse
Affiliation(s)
- Xin Lv
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Jinghong Xu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Jiajiong Jiang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Pengfei Wu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Renchun Tan
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Bing Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
12
|
Abstract
Myelin is a key evolutionary specialization and adaptation of vertebrates formed by the plasma membrane of glial cells, which insulate axons in the nervous system. Myelination not only allows rapid and efficient transmission of electric impulses in the axon by decreasing capacitance and increasing resistance but also influences axonal metabolism and the plasticity of neural circuits. In this review, we will focus on Schwann cells, the glial cells which form myelin in the peripheral nervous system. Here, we will describe the main extrinsic and intrinsic signals inducing Schwann cell differentiation and myelination and how myelin biogenesis is achieved. Finally, we will also discuss how the study of human disorders in which molecules and pathways relevant for myelination are altered has enormously contributed to the current knowledge on myelin biology.
Collapse
Affiliation(s)
- Alessandra Bolino
- Human Inherited Neuropathies Unit, Institute of Experimental Neurology INSPE, Division of Neuroscience, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy.
| |
Collapse
|
13
|
Hall RJ, O'Loughlin J, Billington CK, Thakker D, Hall IP, Sayers I. Functional genomics of GPR126 in airway smooth muscle and bronchial epithelial cells. FASEB J 2021; 35:e21300. [PMID: 34165809 DOI: 10.1096/fj.202002073r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022]
Abstract
GPR126 is an adhesion G protein-coupled receptor which lies on chromosome 6q24. Genetic variants in this region are reproducibly associated with lung function and COPD in genome wide association studies (GWAS). The aims of this study were to define the role of GPR126 in the human lung and in pulmonary disease and identify possible casual variants. Online tools (GTEx and LDlink) identified SNPs which may have effects on GPR126 function/ expression, including missense variant Ser123Gly and an intronic variant that shows eQTL effects on GPR126 expression. GPR126 signaling via cAMP-mediated pathways was identified in human structural airway cells when activated with the tethered agonist, stachel. RNA-seq was used to identify downstream genes/ pathways affected by stachel-mediated GPR126 activation in human airway smooth muscle cells. We identified ~350 differentially expressed genes at 4 and 24 hours post stimulation with ~20% overlap. We identified that genes regulated by GPR126 activation include IL33, CTGF, and SERPINE1, which already have known roles in lung biology. Pathways altered by GPR126 included those involved in cell cycle progression and cell proliferation. Here, we suggest a role for GPR126 in airway remodeling.
Collapse
Affiliation(s)
- Robert J Hall
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Jonathan O'Loughlin
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Charlotte K Billington
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Dhruma Thakker
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Ian P Hall
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Ian Sayers
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| |
Collapse
|
14
|
Kamenev D, Sunadome K, Shirokov M, Chagin AS, Singh A, Irion U, Adameyko I, Fried K, Dyachuk V. Schwann cell precursors generate sympathoadrenal system during zebrafish development. J Neurosci Res 2021; 99:2540-2557. [PMID: 34184294 DOI: 10.1002/jnr.24909] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/24/2021] [Accepted: 06/01/2021] [Indexed: 11/07/2022]
Abstract
The autonomic portion of the peripheral nervous system orchestrates tissue homeostasis through direct innervation of internal organs, and via release of adrenalin and noradrenalin into the blood flow. The developmental mechanisms behind the formation of autonomic neurons and chromaffin cells are not fully understood. Using genetic tracing, we discovered that a significant proportion of sympathetic neurons in zebrafish originates from Schwann cell precursors (SCPs) during a defined period of embryonic development. Moreover, SCPs give rise to the main portion of the chromaffin cells, as well as to a significant proportion of enteric and other autonomic neurons associated with internal organs. The conversion of SCPs into neuronal and chromaffin cells is ErbB receptor dependent, as the pharmacological inhibition of the ErbB pathway effectively perturbed this transition. Finally, using genetic ablations, we revealed that SCPs producing neurons and chromaffin cells migrate along spinal motor axons to reach appropriate target locations. This study reveals the evolutionary conservation of SCP-to-neuron and SCP-to-chromaffin cell transitions over significant growth periods in fish and highlights relevant cellular-genetic mechanisms. Based on this, we anticipate that multipotent SCPs might be present in postnatal vertebrate tissues, retaining the capacity to regenerate autonomic neurons and chromaffin cells.
Collapse
Affiliation(s)
- Dmitrii Kamenev
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Kazunori Sunadome
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Maxim Shirokov
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Andrey S Chagin
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Ajeet Singh
- Max-Planck-Institut für Entwicklungsbiologie, Tübingen, Germany
| | - Uwe Irion
- Max-Planck-Institut für Entwicklungsbiologie, Tübingen, Germany
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Kaj Fried
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Vyacheslav Dyachuk
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
15
|
Baxendale S, Asad A, Shahidan NO, Wiggin GR, Whitfield TT. The adhesion GPCR Adgrg6 (Gpr126): Insights from the zebrafish model. Genesis 2021; 59:e23417. [PMID: 33735533 PMCID: PMC11475505 DOI: 10.1002/dvg.23417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022]
Abstract
Adhesion GPCRs are important regulators of conserved developmental processes and represent an untapped pool of potential targets for drug discovery. The adhesion GPCR Adgrg6 (Gpr126) has critical developmental roles in Schwann cell maturation and inner ear morphogenesis in the zebrafish embryo. Mutations in the human ADGRG6 gene can result in severe deficits in peripheral myelination, and variants have been associated with many other disease conditions. Here, we review work on the zebrafish Adgrg6 signaling pathway and its potential as a disease model. Recent advances have been made in the analysis of the structure of the Adgrg6 receptor, demonstrating alternative structural conformations and the presence of a conserved calcium-binding site within the CUB domain of the extracellular region that is critical for receptor function. Homozygous zebrafish adgrg6 hypomorphic mutants have been used successfully as a whole-animal screening platform, identifying candidate molecules that can influence signaling activity and rescue mutant phenotypes. These compounds offer promise for further development as small molecule modulators of Adgrg6 pathway activity.
Collapse
Affiliation(s)
- Sarah Baxendale
- Department of Biomedical Science, Bateson Centre and Neuroscience InstituteUniversity of SheffieldSheffieldUK
| | - Anzar Asad
- Department of Biomedical Science, Bateson Centre and Neuroscience InstituteUniversity of SheffieldSheffieldUK
| | - Nahal O. Shahidan
- Department of Biomedical Science, Bateson Centre and Neuroscience InstituteUniversity of SheffieldSheffieldUK
| | | | - Tanya T. Whitfield
- Department of Biomedical Science, Bateson Centre and Neuroscience InstituteUniversity of SheffieldSheffieldUK
| |
Collapse
|
16
|
Cui H, Yu W, Yu M, Luo Y, Yang M, Cong R, Chu X, Gao G, Zhong M. GPR126 regulates colorectal cancer cell proliferation by mediating HDAC2 and GLI2 expression. Cancer Sci 2021; 112:1798-1810. [PMID: 33629464 PMCID: PMC8088945 DOI: 10.1111/cas.14868] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/20/2021] [Accepted: 02/20/2021] [Indexed: 12/15/2022] Open
Abstract
The G‐protein‐coupled receptor 126 (GPR126) may play an important role in tumor development, although its role remains poorly understood. We found that GPR126 had higher expression in most colorectal cancer cell lines than in normal colon epithelial cell lines, and higher expression levels in colorectal cancer tissues than in normal adjacent colon tissues. GPR126 knockdown induced by shRNA inhibited cell viability and colony formation in HT‐29, HCT116, and LoVo cells, decreased BrdU incorporation into newly synthesized proliferating HT‐29 cells, led to an arrest of cell cycle progression at the G1 phase in HCT‐116 and HT‐29 cells, and suppressed tumorigenesis of HT‐29, HCT116, and LoVo cells in nude mouse xenograft models. GPR126 knockdown engendered decreased transcription and translation of histone deacetylase 2 (HDAC2), previously implicated in the activation of GLI1 and GLI2 in the Hedgehog signaling pathway. Ectopic expression of HDAC2 in GPR126‐silenced cells restored cell viability and proliferation, GLI2 luciferase reporter activity, partially recovered GLI2 expression, and reduced the cell cycle arrest. HDAC2 regulated GLI2 expression and, along with GLI2, it bound to the PTCH1 promoter, as evidenced by a chip assay with HT‐29 cells. Purmorphamine, a hedgehog agonist, largely restored the cell viability and expression of GLI2 proteins in GPR126‐silenced HT‐29 cells, whereas GANT61, a hedgehog inhibitor, further enhanced the GPR126 knockdown‐induced inhibitory effects. Our findings demonstrate that GPR126 regulates colorectal cancer cell proliferation by mediating the expression of HDAC2 and GLI2, therefore it may represent a suitable therapeutic target for colorectal cancer treatment.
Collapse
Affiliation(s)
- Hengxiang Cui
- Medical Research Center, Second Affiliated Hospital of Nantong University, Nantong, China.,Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Wenjie Yu
- Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Minhao Yu
- Department of Gastrointestinal Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Luo
- Department of Gastrointestinal Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Mingming Yang
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong, China
| | - Ruochen Cong
- Medical Research Center, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Xin Chu
- Medical Research Center, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Ganglong Gao
- Department of Gastrointestinal Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Zhong
- Department of Gastrointestinal Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
17
|
Muppirala AN, Limbach LE, Bradford EF, Petersen SC. Schwann cell development: From neural crest to myelin sheath. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 10:e398. [PMID: 33145925 DOI: 10.1002/wdev.398] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/16/2022]
Abstract
Vertebrate nervous system function requires glial cells, including myelinating glia that insulate axons and provide trophic support that allows for efficient signal propagation by neurons. In vertebrate peripheral nervous systems, neural crest-derived glial cells known as Schwann cells (SCs) generate myelin by encompassing and iteratively wrapping membrane around single axon segments. SC gliogenesis and neurogenesis are intimately linked and governed by a complex molecular environment that shapes their developmental trajectory. Changes in this external milieu drive developing SCs through a series of distinct morphological and transcriptional stages from the neural crest to a variety of glial derivatives, including the myelinating sublineage. Cues originate from the extracellular matrix, adjacent axons, and the developing SC basal lamina to trigger intracellular signaling cascades and gene expression changes that specify stages and transitions in SC development. Here, we integrate the findings from in vitro neuron-glia co-culture experiments with in vivo studies investigating SC development, particularly in zebrafish and mouse, to highlight critical factors that specify SC fate. Ultimately, we connect classic biochemical and mutant studies with modern genetic and visualization tools that have elucidated the dynamics of SC development. This article is categorized under: Signaling Pathways > Cell Fate Signaling Nervous System Development > Vertebrates: Regional Development.
Collapse
Affiliation(s)
- Anoohya N Muppirala
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neuroscience, Kenyon College, Gambier, Ohio, USA
| | | | | | - Sarah C Petersen
- Department of Neuroscience, Kenyon College, Gambier, Ohio, USA.,Department of Biology, Kenyon College, Gambier, Ohio, USA
| |
Collapse
|
18
|
Arreguin AJ, Colognato H. Brain Dysfunction in LAMA2-Related Congenital Muscular Dystrophy: Lessons From Human Case Reports and Mouse Models. Front Mol Neurosci 2020; 13:118. [PMID: 32792907 PMCID: PMC7390928 DOI: 10.3389/fnmol.2020.00118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/09/2020] [Indexed: 12/26/2022] Open
Abstract
Laminin α2 gene (LAMA2)-related Congenital Muscular Dystrophy (CMD) was distinguished by a defining central nervous system (CNS) abnormality—aberrant white matter signals by MRI—when first described in the 1990s. In the past 25 years, researchers and clinicians have expanded our knowledge of brain involvement in LAMA2-related CMD, also known as Congenital Muscular Dystrophy Type 1A (MDC1A). Neurological changes in MDC1A can be structural, including lissencephaly and agyria, as well as functional, including epilepsy and intellectual disability. Mouse models of MDC1A include both spontaneous and targeted LAMA2 mutations and range from a partial loss of LAMA2 function (e.g., dy2J/dy2J), to a complete loss of LAMA2 expression (dy3K/dy3K). Diverse cellular and molecular changes have been reported in the brains of MDC1A mouse models, including blood-brain barrier dysfunction, altered neuro- and gliogenesis, changes in synaptic plasticity, and decreased myelination, providing mechanistic insight into potential neurological dysfunction in MDC1A. In this review article, we discuss selected studies that illustrate the potential scope and complexity of disturbances in brain development in MDC1A, and as well as highlight mechanistic insights that are emerging from mouse models.
Collapse
Affiliation(s)
- Andrea J Arreguin
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States.,Medical Scientist Training Program (MSTP), Stony Brook University, Stony Brook, NY, United States
| | - Holly Colognato
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
19
|
Wilson ER, Della-Flora Nunes G, Weaver MR, Frick LR, Feltri ML. Schwann cell interactions during the development of the peripheral nervous system. Dev Neurobiol 2020; 81:464-489. [PMID: 32281247 DOI: 10.1002/dneu.22744] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/14/2020] [Accepted: 04/06/2020] [Indexed: 12/21/2022]
Abstract
Schwann cells play a critical role in the development of the peripheral nervous system (PNS), establishing important relationships both with the extracellular milieu and other cell types, particularly neurons. In this review, we discuss various Schwann cell interactions integral to the proper establishment, spatial arrangement, and function of the PNS. We include signals that cascade onto Schwann cells from axons and from the extracellular matrix, bidirectional signals that help to establish the axo-glial relationship and how Schwann cells in turn support the axon. Further, we speculate on how Schwann cell interactions with other components of the developing PNS ultimately promote the complete construction of the peripheral nerve.
Collapse
Affiliation(s)
- Emma R Wilson
- Hunter James Kelly Research Institute, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Gustavo Della-Flora Nunes
- Hunter James Kelly Research Institute, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Michael R Weaver
- Hunter James Kelly Research Institute, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Luciana R Frick
- Hunter James Kelly Research Institute, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - M Laura Feltri
- Hunter James Kelly Research Institute, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
20
|
Maser RL, Calvet JP. Adhesion GPCRs as a paradigm for understanding polycystin-1 G protein regulation. Cell Signal 2020; 72:109637. [PMID: 32305667 DOI: 10.1016/j.cellsig.2020.109637] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 12/21/2022]
Abstract
Polycystin-1, whose mutation is the most frequent cause of autosomal dominant polycystic kidney disease, is an extremely large and multi-faceted membrane protein whose primary or proximal cyst-preventing function remains undetermined. Accumulating evidence supports the idea that modulation of cellular signaling by heterotrimeric G proteins is a critical function of polycystin-1. The presence of a cis-autocatalyzed, G protein-coupled receptor (GPCR) proteolytic cleavage site, or GPS, in its extracellular N-terminal domain immediately preceding the first transmembrane domain is one of the notable conserved features of the polycystin-1-like protein family, and also of the family of cell adhesion GPCRs. Adhesion GPCRs are one of five families within the GPCR superfamily and are distinguished by a large N-terminal extracellular region consisting of multiple adhesion modules with a GPS-containing GAIN domain and bimodal functions in cell adhesion and signal transduction. Recent advances from studies of adhesion GPCRs provide a new paradigm for unraveling the mechanisms by which polycystin-1-associated G protein signaling contributes to the pathogenesis of polycystic kidney disease. This review highlights the structural and functional features shared by polycystin-1 and the adhesion GPCRs and discusses the implications of such similarities for our further understanding of the functions of this complicated protein.
Collapse
Affiliation(s)
- Robin L Maser
- Department of Clinical Laboratory Sciences, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160, USA; Jared Grantham Kidney Institute, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160, USA.
| | - James P Calvet
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160, USA; Jared Grantham Kidney Institute, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160, USA.
| |
Collapse
|
21
|
Sun P, He L, Jia K, Yue Z, Li S, Jin Y, Li Z, Siwko S, Xue F, Su J, Liu M, Luo J. Regulation of body length and bone mass by Gpr126/Adgrg6. SCIENCE ADVANCES 2020; 6:eaaz0368. [PMID: 32219165 PMCID: PMC7083604 DOI: 10.1126/sciadv.aaz0368] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/26/2019] [Indexed: 05/24/2023]
Abstract
Adhesion G protein-coupled receptor G6 (Adgrg6; also named GPR126) single-nucleotide polymorphisms are associated with human height in multiple populations. However, whether and how GPR126 regulates body height is unknown. In this study, we found that mouse body length was specifically decreased in Osx-Cre;Gpr126fl/fl mice. Deletion of Gpr126 in osteoblasts resulted in a remarkable delay in osteoblast differentiation and mineralization during embryonic bone formation. Postnatal bone formation, bone mass, and bone strength were also significantly affected in Gpr126 osteoblast deletion mice because of defects in osteoblast proliferation, differentiation, and ossification. Furthermore, type IV collagen functioned as an activating ligand of Gpr126 to regulate osteoblast differentiation and function by stimulating cAMP signaling. Moreover,the cAMP activator PTH(1-34), could partially restore the inhibition of osteoblast differentiation and the body length phenotype induced by Gpr126 deletion.Together, our results demonstrated that COLIV-Gpr126 regulated body length and bone mass through cAMP-CREB signaling pathway.
Collapse
Affiliation(s)
- Peng Sun
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, P.R. China
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention of the Ministry of Education, East China Normal University, Shanghai 200241, P.R. China
| | - Liang He
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, P.R. China
| | - Kunhang Jia
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, P.R. China
| | - Zhiying Yue
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, P.R. China
| | - Shichang Li
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention of the Ministry of Education, East China Normal University, Shanghai 200241, P.R. China
| | - Yunyun Jin
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, P.R. China
| | - Zhenxi Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, P.R. China
| | - Stefan Siwko
- Department of Molecular and Cellular Medicine, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA
| | - Feng Xue
- Shanghai Fengxian District Central Hospital and East China Normal University Joint Center for Translational Medicine, Shanghai Fengxian District Central Hospital, Shanghai 201400, P.R. China
| | - Jiacan Su
- Department of Orthopaedics Trauma, Changhai Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, P.R. China
| | - Jian Luo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, P.R. China
| |
Collapse
|
22
|
G Protein-Coupling of Adhesion GPCRs ADGRE2/EMR2 and ADGRE5/CD97, and Activation of G Protein Signalling by an Anti-EMR2 Antibody. Sci Rep 2020; 10:1004. [PMID: 31969668 PMCID: PMC6976652 DOI: 10.1038/s41598-020-57989-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/02/2020] [Indexed: 11/25/2022] Open
Abstract
The experimental evidence that Adhesion G Protein-Coupled Receptors (aGPCRs) functionally couple to heterotrimeric G proteins has been emerging in incremental steps, but attributing biological significance to their G protein signalling function still presents a major challenge. Here, utilising activated truncated forms of the receptors, we show that ADGRE2/EMR2 and ADGRE5/CD97 are G protein-coupled in a variety of recombinant systems. In a yeast-based assay, where heterologous GPCRs are coupled to chimeric G proteins, EMR2 showed broad G protein-coupling, whereas CD97 coupled more specifically to Gα12, Gα13, Gα14 and Gαz chimeras. Both receptors induced pertussis-toxin (PTX) insensitive inhibition of cyclic AMP (cAMP) levels in mammalian cells, suggesting coupling to Gαz. EMR2 was shown to signal via Gα16, and via a Gα16/Gαz chimera, to stimulate IP1 accumulation. Finally, using an NFAT reporter assay, we identified a polyclonal antibody that activates EMR2 G protein signalling in vitro. Our results highlight the potential for the development of soluble agonists to understand further the biological effects and therapeutic opportunities for ADGRE receptor-mediated G protein signalling.
Collapse
|
23
|
Jablonka-Shariff A, Lu CY, Campbell K, Monk KR, Snyder-Warwick AK. Gpr126/Adgrg6 contributes to the terminal Schwann cell response at the neuromuscular junction following peripheral nerve injury. Glia 2019; 68:1182-1200. [PMID: 31873966 DOI: 10.1002/glia.23769] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 12/03/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022]
Abstract
Gpr126/Adgrg6 is an adhesion G protein-coupled receptor essential for Schwann cell (SC) myelination with important contributions to repair after nerve crush injury. Despite critical functions in myelinating SCs, the role of Gpr126 within nonmyelinating terminal Schwann cells (tSCs) at the neuromuscular junction (NMJ), is not known. tSCs have important functions in synaptic maintenance and reinnervation, and after injury tSCs extend cytoplasmic processes to guide regenerating axons to the denervated NMJ. In this study, we show that Gpr126 is expressed in tSCs, and that absence of Gpr126 in SCs (SC-specific Gpr126 knockout, cGpr126) results in a NMJ maintenance defect in the hindlimbs of aged mice, but not in young adult mice. After nerve transection and repair, cGpr126 mice display delayed NMJ reinnervation, altered tSC morphology with decreased S100β expression, and reduced tSC cytoplasmic process extensions. The immune response promoting reinnervation at the NMJ following nerve injury is also altered with decreased macrophage infiltration, Tnfα, and anomalous cytokine expression compared to NMJs of control mice. In addition, Vegfa expression is decreased in muscle, suggesting that cGpr126 non-cell autonomously modulates angiogenesis after nerve injury. In sum, cGpr126 mice demonstrated delayed NMJ reinnervation and decreased muscle mass following nerve transection and repair compared to control littermates. The integral function of Gpr126 in tSCs at the NMJ provides the framework for new therapeutic targets for neuromuscular disease.
Collapse
Affiliation(s)
- Albina Jablonka-Shariff
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Chuieng-Yi Lu
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri.,Division of Reconstructive Microsurgery, Department of Plastic Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Katherine Campbell
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Kelly R Monk
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri.,Vollum Institute, Oregon Health & Science University, Portland, Oregon
| | - Alison K Snyder-Warwick
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
24
|
Bradley EC, Cunningham RL, Wilde C, Morgan RK, Klug EA, Letcher SM, Schöneberg T, Monk KR, Liebscher I, Petersen SC. In vivo identification of small molecules mediating Gpr126/Adgrg6 signaling during Schwann cell development. Ann N Y Acad Sci 2019; 1456:44-63. [PMID: 31529518 PMCID: PMC7189964 DOI: 10.1111/nyas.14233] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/30/2019] [Accepted: 08/26/2019] [Indexed: 12/13/2022]
Abstract
Gpr126/Adgrg6, an adhesion family G protein-coupled receptor (aGPCR), is required for the development of myelinating Schwann cells in the peripheral nervous system. Myelin supports and insulates vertebrate axons to permit rapid signal propagation throughout the nervous system. In mammals and zebrafish, mutations in Gpr126 arrest Schwann cells at early developmental stages. We exploited the optical and pharmacological tractability of larval zebrafish to uncover drugs that mediate myelination by activating Gpr126 or functioning in parallel. Using a fluorescent marker of mature myelinating glia (Tg[mbp:EGFP-CAAX]), we screened hypomorphic gpr126 mutant larvae for restoration of myelin basic protein (mbp) expression along peripheral nerves following small molecule treatment. Our screens identified five compounds sufficient to promote mbp expression in gpr126 hypomorphs. Using an allelic series of gpr126 mutants, we parsed the ability of small molecules to restore mbp, suggesting differences in drug efficacy dependent on Schwann cell developmental state. Finally, we identify apomorphine hydrochloride as a direct small molecule activator of Gpr126 using combined in vivo/in vitro assays and show that aporphine class compounds promote Schwann cell development in vivo. Our results demonstrate the utility of in vivo screening for aGPCR modulators and identify small molecules that interact with the gpr126-mediated myelination program.
Collapse
Affiliation(s)
| | - Rebecca L. Cunningham
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Caroline Wilde
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Rory K. Morgan
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Emma A. Klug
- Department of Neuroscience, Kenyon College, Gambier, OH, USA
| | | | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Kelly R. Monk
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Sarah C. Petersen
- Department of Neuroscience, Kenyon College, Gambier, OH, USA
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| |
Collapse
|
25
|
Musa G, Cazorla‐Vázquez S, Amerongen MJ, Stemmler MP, Eckstein M, Hartmann A, Braun T, Brabletz T, Engel FB. Gpr126 (Adgrg6)
is expressed in cell types known to be exposed to mechanical stimuli. Ann N Y Acad Sci 2019; 1456:96-108. [DOI: 10.1111/nyas.14135] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/29/2019] [Accepted: 05/16/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Gentian Musa
- Experimental Renal and Cardiovascular Research, Department of NephropathologyInstitute of Pathology, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Salvador Cazorla‐Vázquez
- Experimental Renal and Cardiovascular Research, Department of NephropathologyInstitute of Pathology, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Machteld J. Amerongen
- Department of Cardiac Development and RemodellingMax‐Planck‐Institute for Heart and Lung Research Bad Nauheim Germany
| | - Marc P. Stemmler
- Department of Experimental Medicine I, Nikolaus‐Fiebiger‐CenterFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Markus Eckstein
- Department of Pathology and AnatomyFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Arndt Hartmann
- Department of Pathology and AnatomyFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Thomas Braun
- Department of Cardiac Development and RemodellingMax‐Planck‐Institute for Heart and Lung Research Bad Nauheim Germany
| | - Thomas Brabletz
- Department of Experimental Medicine I, Nikolaus‐Fiebiger‐CenterFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Felix B. Engel
- Experimental Renal and Cardiovascular Research, Department of NephropathologyInstitute of Pathology, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Erlangen Germany
- Department of Cardiac Development and RemodellingMax‐Planck‐Institute for Heart and Lung Research Bad Nauheim Germany
| |
Collapse
|
26
|
Diamantopoulou E, Baxendale S, de la Vega de León A, Asad A, Holdsworth CJ, Abbas L, Gillet VJ, Wiggin GR, Whitfield TT. Identification of compounds that rescue otic and myelination defects in the zebrafish adgrg6 ( gpr126) mutant. eLife 2019; 8:44889. [PMID: 31180326 PMCID: PMC6598766 DOI: 10.7554/elife.44889] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 06/08/2019] [Indexed: 12/18/2022] Open
Abstract
Adgrg6 (Gpr126) is an adhesion class G protein-coupled receptor with a conserved role in myelination of the peripheral nervous system. In the zebrafish, mutation of adgrg6 also results in defects in the inner ear: otic tissue fails to down-regulate versican gene expression and morphogenesis is disrupted. We have designed a whole-animal screen that tests for rescue of both up- and down-regulated gene expression in mutant embryos, together with analysis of weak and strong alleles. From a screen of 3120 structurally diverse compounds, we have identified 68 that reduce versican b expression in the adgrg6 mutant ear, 41 of which also restore myelin basic protein gene expression in Schwann cells of mutant embryos. Nineteen compounds unable to rescue a strong adgrg6 allele provide candidates for molecules that may interact directly with the Adgrg6 receptor. Our pipeline provides a powerful approach for identifying compounds that modulate GPCR activity, with potential impact for future drug design.
Collapse
Affiliation(s)
- Elvira Diamantopoulou
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Sarah Baxendale
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | | | - Anzar Asad
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Celia J Holdsworth
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Leila Abbas
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Valerie J Gillet
- Information School, University of Sheffield, Sheffield, United Kingdom
| | | | - Tanya T Whitfield
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
27
|
Alavi MS, Karimi G, Roohbakhsh A. The role of orphan G protein-coupled receptors in the pathophysiology of multiple sclerosis: A review. Life Sci 2019; 224:33-40. [PMID: 30904492 DOI: 10.1016/j.lfs.2019.03.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 01/19/2023]
Abstract
G protein-coupled receptors (GPCRs) are a large family of transmembrane proteins that are expressed in many organs and serve as important drug targets. A new subgroup, namely orphan GPCRs, comprising many of these receptors has been discovered. These receptors exhibit diverse physiological functions and have been considered in many neurological disorders including Alzheimer's disease, Parkinson's disease, and multiple sclerosis (MS). GPR17, GPR30, GPR37, GPR40, GPR50, GPR54, GPR56, GPR65, GPR68, GPR75, GPR84, GPR97, GPR109, GPR124, and GPR126 are orphan GPCRs that have been reported with considerable effects in the prevention and/or treatment of MS in preclinical studies. In the present article, we reviewed the most recent findings regarding the role of orphan GPCRs in the treatment of MS.
Collapse
Affiliation(s)
- Mohaddeseh Sadat Alavi
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
28
|
Monje PV. Scalable Differentiation and Dedifferentiation Assays Using Neuron-Free Schwann Cell Cultures. Methods Mol Biol 2019; 1739:213-232. [PMID: 29546710 DOI: 10.1007/978-1-4939-7649-2_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This chapter describes protocols to establish simplified in vitro assays of Schwann cell (SC) differentiation in the absence of neurons. The assays are based on the capacity of isolated primary SCs to increase or decrease the expression of myelination-associated genes in response to the presence or absence of cell permeable analogs of cyclic adenosine monophosphate (cAMP). No special conditions of media or substrates beyond the administration or removal of cAMP analogs are required to obtain a synchronous response on differentiation and dedifferentiation. The assays are cost-effective and far easier to implement than traditional myelinating SC-neuron cultures. They are scalable to a variety of plate formats suited for downstream experimentation and analysis. These cell-based assays can be used as drug discovery platforms for the evaluation of novel agents controlling the onset, maintenance, and reversal of the differentiated state using any typical adherent SC population.
Collapse
Affiliation(s)
- Paula V Monje
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
29
|
Wang G, Ding L, Gao C, Zhang N, Gan D, Sun Y, Xu L, Luo Q, Jiang Z. Neuroprotective effect of l-serine against white matter demyelination by harnessing and modulating inflammation in mice. Neuropharmacology 2018; 146:39-49. [PMID: 30452956 DOI: 10.1016/j.neuropharm.2018.11.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 11/02/2018] [Accepted: 11/15/2018] [Indexed: 12/31/2022]
Abstract
Demyelination in white matter is the end product of numerous pathological processes. This study was designed to evaluate the neuroprotective effect of l-serine and the underlying mechanisms against the demyelinating injury of white matter. A model of focal demyelinating lesions (FDL) was established using the two-point stereotactic injection of 0.25% lysophosphatidylcholine (LPC, 10 μg per point) into the corpus callosum of mice. Mice were then intraperitoneally injected with one of three doses of l-serine (114, 342, or 1026 mg/kg) 2 h after FDL, and then twice daily for the next five days. Behavior tests and histological analysis were assessed for up to twenty-eight days post-FDL induction. Electron microscopy was used for ultrastructural investigation. In vitro, we applied primary co-cultures of microglia and oligodendrocytes for oxygen glucose deprivation (OGD). After establishing FDL, l-serine treatment: 1) improved spatial learning, memory and cognitive ability in mice, and relieved anxiety for 4 weeks post-FDL induction; 2) reduced abnormally dephosphorylated neurofilament proteins, increased myelin basic protein, and preserved anatomic myelinated axons; 3) inhibited microglia activation and reduced the release of inflammatory factors; 4) promoted recruitment and proliferation of oligodendrocyte progenitor cells, and the efficiency of subsequent remyelination on day twenty-eight post-FDL induction. In vitro experiments, showed that l-serine not only directly protected against oligodendrocytes from OGD damage, but also provided an indirect protective effect by regulating microglia. In our study, l-serine offered long-lasting behavioral and oligodendrocyte protection and promoted remyelination. Therefore, l-serine may be an effective clinical treatment aganist white matter injury.
Collapse
Affiliation(s)
- Guohua Wang
- Department of Neurophysiology and Neuropharmacology, Institute of Nautical Medicine and Co-innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226019, China.
| | - Lingzhi Ding
- Department of Neurophysiology and Neuropharmacology, Institute of Nautical Medicine and Co-innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226019, China
| | - Chunyi Gao
- Department of Neurophysiology and Neuropharmacology, Institute of Nautical Medicine and Co-innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226019, China
| | - Nianjiao Zhang
- Department of Neurophysiology and Neuropharmacology, Institute of Nautical Medicine and Co-innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226019, China
| | - Deqiang Gan
- Department of Neurophysiology and Neuropharmacology, Institute of Nautical Medicine and Co-innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226019, China
| | - Yechao Sun
- Department of Neurophysiology and Neuropharmacology, Institute of Nautical Medicine and Co-innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226019, China
| | - Lihua Xu
- Department of Neurophysiology and Neuropharmacology, Institute of Nautical Medicine and Co-innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226019, China
| | - Qianqian Luo
- Department of Neurophysiology and Neuropharmacology, Institute of Nautical Medicine and Co-innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226019, China
| | - Zhenglin Jiang
- Department of Neurophysiology and Neuropharmacology, Institute of Nautical Medicine and Co-innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226019, China.
| |
Collapse
|
30
|
Damasceno S, Menezes NBD, Rocha CDS, Matos AHBD, Vieira AS, Moraes MFD, Martins AS, Lopes-Cendes I, Godard ALB. Transcriptome of the Wistar audiogenic rat (WAR) strain following audiogenic seizures. Epilepsy Res 2018; 147:22-31. [DOI: 10.1016/j.eplepsyres.2018.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/24/2018] [Accepted: 08/27/2018] [Indexed: 12/18/2022]
|
31
|
Ackerman SD, Luo R, Poitelon Y, Mogha A, Harty BL, D'Rozario M, Sanchez NE, Lakkaraju AKK, Gamble P, Li J, Qu J, MacEwan MR, Ray WZ, Aguzzi A, Feltri ML, Piao X, Monk KR. GPR56/ADGRG1 regulates development and maintenance of peripheral myelin. J Exp Med 2018; 215:941-961. [PMID: 29367382 PMCID: PMC5839751 DOI: 10.1084/jem.20161714] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/03/2017] [Accepted: 12/15/2017] [Indexed: 01/26/2023] Open
Abstract
Myelin is a multilamellar sheath generated by specialized glia called Schwann cells (SCs) in the peripheral nervous system (PNS), which serves to protect and insulate axons for rapid neuronal signaling. In zebrafish and rodent models, we identify GPR56/ADGRG1 as a conserved regulator of PNS development and health. We demonstrate that, during SC development, GPR56-dependent RhoA signaling promotes timely radial sorting of axons. In the mature PNS, GPR56 is localized to distinct SC cytoplasmic domains, is required to establish proper myelin thickness, and facilitates organization of the myelin sheath. Furthermore, we define plectin-a scaffolding protein previously linked to SC domain organization, myelin maintenance, and a series of disorders termed "plectinopathies"-as a novel interacting partner of GPR56. Finally, we show that Gpr56 mutants develop progressive neuropathy-like symptoms, suggesting an underlying mechanism for peripheral defects in some human patients with GPR56 mutations. In sum, we define Gpr56 as a new regulator in the development and maintenance of peripheral myelin.
Collapse
Affiliation(s)
- Sarah D Ackerman
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO
| | - Rong Luo
- Division of Newborn Medicine, Department of Medicine, Children's Hospital and Harvard Medical School, Boston, MA
| | - Yannick Poitelon
- Departments of Biochemistry and Neurology, Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY
| | - Amit Mogha
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO
| | - Breanne L Harty
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO
| | - Mitchell D'Rozario
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO
| | - Nicholas E Sanchez
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO
| | | | - Paul Gamble
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO
| | - Jun Li
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY
| | - Matthew R MacEwan
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO
| | - Wilson Zachary Ray
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zürich, Switzerland
| | - M Laura Feltri
- Departments of Biochemistry and Neurology, Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY
| | - Xianhua Piao
- Division of Newborn Medicine, Department of Medicine, Children's Hospital and Harvard Medical School, Boston, MA
| | - Kelly R Monk
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
32
|
Ghidinelli M, Poitelon Y, Shin YK, Ameroso D, Williamson C, Ferri C, Pellegatta M, Espino K, Mogha A, Monk K, Podini P, Taveggia C, Nave KA, Wrabetz L, Park HT, Feltri ML. Laminin 211 inhibits protein kinase A in Schwann cells to modulate neuregulin 1 type III-driven myelination. PLoS Biol 2017. [PMID: 28636612 PMCID: PMC5479503 DOI: 10.1371/journal.pbio.2001408] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Myelin is required for proper nervous system function. Schwann cells in developing nerves depend on extrinsic signals from the axon and from the extracellular matrix to first sort and ensheathe a single axon and then myelinate it. Neuregulin 1 type III (Nrg1III) and laminin α2β1γ1 (Lm211) are the key axonal and matrix signals, respectively, but how their signaling is integrated and if each molecule controls both axonal sorting and myelination is unclear. Here, we use a series of epistasis experiments to show that Lm211 modulates neuregulin signaling to ensure the correct timing and amount of myelination. Lm211 can inhibit Nrg1III by limiting protein kinase A (PKA) activation, which is required to initiate myelination. We provide evidence that excessive PKA activation amplifies promyelinating signals downstream of neuregulin, including direct activation of the neuregulin receptor ErbB2 and its effector Grb2-Associated Binder-1 (Gab1), thereby elevating the expression of the key transcription factors Oct6 and early growth response protein 2 (Egr2). The inhibitory effect of Lm211 is seen only in fibers of small caliber. These data may explain why hereditary neuropathies associated with decreased laminin function are characterized by focally thick and redundant myelin.
Collapse
Affiliation(s)
- Monica Ghidinelli
- Hunter James Kelly Research Institute, Department of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York at Buffalo, Buffalo, New York, United States of America
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, DIBIT, Milano, Italy
- UniSR, Vita Salute San Raffaele University, Milan, Italy
| | - Yannick Poitelon
- Hunter James Kelly Research Institute, Department of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Yoon Kyoung Shin
- Department of Physiology, Peripheral Neuropathy Research Center, Dong-A University Medical School, Busan, South Korea
| | - Dominique Ameroso
- Hunter James Kelly Research Institute, Department of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Courtney Williamson
- Hunter James Kelly Research Institute, Department of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Cinzia Ferri
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, DIBIT, Milano, Italy
| | - Marta Pellegatta
- Hunter James Kelly Research Institute, Department of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York at Buffalo, Buffalo, New York, United States of America
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, DIBIT, Milano, Italy
- UniSR, Vita Salute San Raffaele University, Milan, Italy
| | - Kevin Espino
- Hunter James Kelly Research Institute, Department of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Amit Mogha
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kelly Monk
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Paola Podini
- Division of Neuroscience and INSPE, San Raffaele Scientific Institute, DIBIT, Milano, Italy
| | - Carla Taveggia
- Division of Neuroscience and INSPE, San Raffaele Scientific Institute, DIBIT, Milano, Italy
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Lawrence Wrabetz
- Hunter James Kelly Research Institute, Department of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York at Buffalo, Buffalo, New York, United States of America
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, DIBIT, Milano, Italy
| | - Hwan Tae Park
- Department of Physiology, Peripheral Neuropathy Research Center, Dong-A University Medical School, Busan, South Korea
- * E-mail: (MLF); (HTP)
| | - Maria Laura Feltri
- Hunter James Kelly Research Institute, Department of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York at Buffalo, Buffalo, New York, United States of America
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, DIBIT, Milano, Italy
- * E-mail: (MLF); (HTP)
| |
Collapse
|
33
|
Motor Nerve Arborization Requires Proteolytic Domain of Damage-Induced Neuronal Endopeptidase (DINE) during Development. J Neurosci 2017; 36:4744-57. [PMID: 27122033 DOI: 10.1523/jneurosci.3811-15.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 03/14/2016] [Indexed: 01/23/2023] Open
Abstract
UNLABELLED Damage-induced neuronal endopeptidase (DINE)/endothelin-converting enzyme-like 1 (ECEL1) is a membrane-bound metalloprotease, which we originally identified as a nerve regeneration-associated molecule. Abundant expression of DINE is observed in regenerating neurons, as well as in developing spinal motor neurons. In line with this, DINE-deficient (DINE KO) embryos fail to arborize phrenic motor nerves in the diaphragm and to form proper neuromuscular junctions (NMJ), which lead to death shortly after birth. However, it is unclear whether protease activity of DINE is involved in motor nerve terminal arborization and how DINE participates in the process. To address these issues, we performed an in vivo rescue experiment in which three types of motor-neuron specific DINE transgenic mice were crossed with DINE KO mice. The DINE KO mice, which overexpressed wild-type DINE in motor neurons, succeeded in rescuing the aberrant nerve terminal arborization and lethality after birth, while those overexpressing two types of protease domain-mutated DINE failed. Further histochemical analysis showed abnormal behavior of immature Schwann cells along the DINE-deficient axons. Coculture experiments of motor neurons and Schwann cells ensured that the protease domain of neuronal DINE was required for proper alignment of immature Schwann cells along the axon. These findings suggest that protease activity of DINE is crucial for intramuscular innervation of motor nerves and subsequent NMJ formation, as well as proper control of interactions between axons and immature Schwann cells. SIGNIFICANCE STATEMENT Damage-induced neuronal endopeptidase (DINE) is a membrane-bound metalloprotease; expression is abundant in developing spinal motor neurons, as well as in nerve-injured neurons. DINE-deficient (KO) embryos fail to arborize phrenic motor nerves in the diaphragm and to form a neuromuscular junction, leading to death immediately after birth. To address whether proteolytic activity of DINE is involved in this process, we performed in vivo rescue experiments with DINE KO mice. Transgenic rescue of DINE KO mice was accomplished by overexpression of wild-type DINE, but not by protease domain-mutated DINE. Immature Schwann cells were abnormally aligned along the DINE protease-deficient axons. Thus, the protease activity of DINE is crucial for motor axon arborization, as well as the interaction between axons and immature Schwann cells.
Collapse
|
34
|
Scholz N, Monk KR, Kittel RJ, Langenhan T. Adhesion GPCRs as a Putative Class of Metabotropic Mechanosensors. Handb Exp Pharmacol 2017; 234:221-247. [PMID: 27832490 DOI: 10.1007/978-3-319-41523-9_10] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Adhesion GPCRs as mechanosensors. Different aGPCR homologs and their cognate ligands have been described in settings, which suggest that they function in a mechanosensory capacity. For details, see text G protein-coupled receptors (GPCRs) constitute the most versatile superfamily of biosensors. This group of receptors is formed by hundreds of GPCRs, each of which is tuned to the perception of a specific set of stimuli a cell may encounter emanating from the outside world or from internal sources. Most GPCRs are receptive for chemical compounds such as peptides, proteins, lipids, nucleotides, sugars, and other organic compounds, and this capacity is utilized in several sensory organs to initiate visual, olfactory, gustatory, or endocrine signals. In contrast, GPCRs have only anecdotally been implicated in the perception of mechanical stimuli. Recent studies, however, show that the family of adhesion GPCRs (aGPCRs), which represents a large panel of over 30 homologs within the GPCR superfamily, displays molecular design and expression patterns that are compatible with receptivity toward mechanical cues (Fig. 1). Here, we review physiological and molecular principles of established mechanosensors, discuss their relevance for current research of the mechanosensory function of aGPCRs, and survey the current state of knowledge on aGPCRs as mechanosensing molecules.
Collapse
Affiliation(s)
- Nicole Scholz
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, Röntgenring 9, Würzburg, 97070, Germany.
| | - Kelly R Monk
- Department of Developmental Biology, Hope Center for Neurologic Disorders, Washington University School of Medicine, St. Louis, 63110, MO, USA
| | - Robert J Kittel
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, Röntgenring 9, Würzburg, 97070, Germany
| | - Tobias Langenhan
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, Röntgenring 9, Würzburg, 97070, Germany.
| |
Collapse
|
35
|
Castle AR, Gill AC. Physiological Functions of the Cellular Prion Protein. Front Mol Biosci 2017; 4:19. [PMID: 28428956 PMCID: PMC5382174 DOI: 10.3389/fmolb.2017.00019] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/22/2017] [Indexed: 01/09/2023] Open
Abstract
The prion protein, PrPC, is a small, cell-surface glycoprotein notable primarily for its critical role in pathogenesis of the neurodegenerative disorders known as prion diseases. A hallmark of prion diseases is the conversion of PrPC into an abnormally folded isoform, which provides a template for further pathogenic conversion of PrPC, allowing disease to spread from cell to cell and, in some circumstances, to transfer to a new host. In addition to the putative neurotoxicity caused by the misfolded form(s), loss of normal PrPC function could be an integral part of the neurodegenerative processes and, consequently, significant research efforts have been directed toward determining the physiological functions of PrPC. In this review, we first summarise important aspects of the biochemistry of PrPC before moving on to address the current understanding of the various proposed functions of the protein, including details of the underlying molecular mechanisms potentially involved in these functions. Over years of study, PrPC has been associated with a wide array of different cellular processes and many interacting partners have been suggested. However, recent studies have cast doubt on the previously well-established links between PrPC and processes such as stress-protection, copper homeostasis and neuronal excitability. Instead, the functions best-supported by the current literature include regulation of myelin maintenance and of processes linked to cellular differentiation, including proliferation, adhesion, and control of cell morphology. Intriguing connections have also been made between PrPC and the modulation of circadian rhythm, glucose homeostasis, immune function and cellular iron uptake, all of which warrant further investigation.
Collapse
|
36
|
Comparison of DNA Methylation in Schwann Cells before and after Peripheral Nerve Injury in Rats. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5393268. [PMID: 28459064 PMCID: PMC5385226 DOI: 10.1155/2017/5393268] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/23/2017] [Accepted: 03/08/2017] [Indexed: 01/13/2023]
Abstract
This study aims to find the difference of genomewide DNA methylation in Schwann cells (SCs) before and after peripheral nerve system (PNS) injury by Methylated DNA Immunoprecipitation Sequencing (MeDIP-Seq) and seek meaningful differentially methylated genes related to repairment of injured PNS. SCs harvested from sciatic nerve were named as activated Schwann cells (ASCs), and the ones harvested from brachial plexus were named as normal Schwann cells (NSCs). Genomic DNA of ASCs and NSCs were isolated and MeDIP-Seq was conducted. Differentially methylated genes and regions were discovered and analyzed by bioinformatic methods. MeDIP-Seq analysis showed methylation differences were identified between ASCs and NSCs. The distribution of differentially methylated regions (DMRs) peaks in different components of genome was mainly located in distal intergenic regions. GO and KEGG analysis of these methylated genes were also conducted. The expression patterns of hypermethylated genes (Dgcr8, Zeb2, Dixdc1, Sox2, and Shh) and hypomethylated genes (Gpr126, Birc2) detected by qRT-PCR were opposite to the MeDIP analysis data with significance (p < 0.05), which proved MeDIP analysis data were real and believable. Our data serve as a basis for understanding the injury-induced epigenetic changes in SCs and the foundation for further studies on repair of PNS injury.
Collapse
|
37
|
Snaidero N, Simons M. The logistics of myelin biogenesis in the central nervous system. Glia 2017; 65:1021-1031. [DOI: 10.1002/glia.23116] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/06/2016] [Accepted: 12/12/2016] [Indexed: 01/28/2023]
Affiliation(s)
- Nicolas Snaidero
- Institute of Neuronal Cell Biology, Technical University Munich; Munich 80805 Germany
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich; Munich 80805 Germany
- German Center for Neurodegenerative Disease (DZNE); Munich 6250 Germany
- Cellular Neuroscience; Max Planck Institute of Experimental Medicine; Göttingen 37075 Germany
- Munich Cluster for Systems Neurology (SyNergy); Munich 81377 Germany
| |
Collapse
|
38
|
Grove M, Kim H, Santerre M, Krupka AJ, Han SB, Zhai J, Cho JY, Park R, Harris M, Kim S, Sawaya BE, Kang SH, Barbe MF, Cho SH, Lemay MA, Son YJ. YAP/TAZ initiate and maintain Schwann cell myelination. eLife 2017; 6:e20982. [PMID: 28124973 PMCID: PMC5287714 DOI: 10.7554/elife.20982] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/22/2017] [Indexed: 12/12/2022] Open
Abstract
Nuclear exclusion of the transcriptional regulators and potent oncoproteins, YAP/TAZ, is considered necessary for adult tissue homeostasis. Here we show that nuclear YAP/TAZ are essential regulators of peripheral nerve development and myelin maintenance. To proliferate, developing Schwann cells (SCs) require YAP/TAZ to enter S-phase and, without them, fail to generate sufficient SCs for timely axon sorting. To differentiate, SCs require YAP/TAZ to upregulate Krox20 and, without them, completely fail to myelinate, resulting in severe peripheral neuropathy. Remarkably, in adulthood, nuclear YAP/TAZ are selectively expressed by myelinating SCs, and conditional ablation results in severe peripheral demyelination and mouse death. YAP/TAZ regulate both developmental and adult myelination by driving TEAD1 to activate Krox20. Therefore, YAP/TAZ are crucial for SCs to myelinate developing nerve and to maintain myelinated nerve in adulthood. Our study also provides a new insight into the role of nuclear YAP/TAZ in homeostatic maintenance of an adult tissue.
Collapse
Affiliation(s)
- Matthew Grove
- Shriners Hospitals Pediatric Research Center, Center for Neural Repair, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| | - Hyukmin Kim
- Shriners Hospitals Pediatric Research Center, Center for Neural Repair, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| | - Maryline Santerre
- FELS Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| | - Alexander J Krupka
- Department of Bioengineering, Temple University, Philadelphia, United States
| | - Seung Baek Han
- Shriners Hospitals Pediatric Research Center, Center for Neural Repair, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| | - Jinbin Zhai
- Shriners Hospitals Pediatric Research Center, Center for Neural Repair, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| | - Jennifer Y Cho
- Shriners Hospitals Pediatric Research Center, Center for Neural Repair, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| | - Raehee Park
- Shriners Hospitals Pediatric Research Center, Center for Neural Repair, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| | - Michele Harris
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| | - Seonhee Kim
- Shriners Hospitals Pediatric Research Center, Center for Neural Repair, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| | - Bassel E Sawaya
- FELS Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| | - Shin H Kang
- Shriners Hospitals Pediatric Research Center, Center for Neural Repair, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| | - Mary F Barbe
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| | - Seo-Hee Cho
- Shriners Hospitals Pediatric Research Center, Center for Neural Repair, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| | - Michel A Lemay
- Department of Bioengineering, Temple University, Philadelphia, United States
| | - Young-Jin Son
- Shriners Hospitals Pediatric Research Center, Center for Neural Repair, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| |
Collapse
|
39
|
Mehta P, Piao X. Adhesion G-protein coupled receptors and extracellular matrix proteins: Roles in myelination and glial cell development. Dev Dyn 2017; 246:275-284. [PMID: 27859941 DOI: 10.1002/dvdy.24473] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/08/2016] [Accepted: 11/10/2016] [Indexed: 01/05/2023] Open
Abstract
Adhesion G protein-coupled receptors (aGPCRs) are a large family of transmembrane proteins that play important roles in many processes during development, primarily through cell-cell and cell-extracellular matrix (ECM) interactions. In the nervous system, they have been linked to the complex process of myelination, both in the central and peripheral nervous system. GPR126 is essential in Schwann cell-mediated myelination in the peripheral nervous system (PNS), while GPR56 is involved in oligodendrocyte development central nervous system (CNS) myelination. VLGR1 is another aGPCR that is associated with the expression of myelin-associated glycoprotein (MAG) which has inhibitory effects on the process of nerve repair. The ECM is composed of a vast array of structural proteins, three of which interact specifically with aGPCRs: collagen III/GPR56, collagen IV/GPR126, and laminin-211/GPR126. As druggable targets, aGPCRs are valuable in their ability to unlock treatment for a wide variety of currently debilitating myelin disorders. Developmental Dynamics 246:275-284, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Paulomi Mehta
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Xianhua Piao
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
40
|
Abstract
Myelination by oligodendrocytes in the central nervous system (CNS) and Schwann cells in the peripheral nervous system is essential for nervous system function and health. Despite its importance, we have a relatively poor understanding of the molecular and cellular mechanisms that regulate myelination in the living animal, particularly in the CNS. This is partly due to the fact that myelination commences around birth in mammals, by which time the CNS is complex and largely inaccessible, and thus very difficult to image live in its intact form. As a consequence, in recent years much effort has been invested in the use of smaller, simpler, transparent model organisms to investigate mechanisms of myelination in vivo. Although the majority of such studies have employed zebrafish, the Xenopus tadpole also represents an important complementary system with advantages for investigating myelin biology in vivo. Here we review how the natural features of zebrafish embryos and larvae and Xenopus tadpoles make them ideal systems for experimentally interrogating myelination by live imaging. We outline common transgenic technologies used to generate zebrafish and Xenopus that express fluorescent reporters, which can be used to image myelination. We also provide an extensive overview of the imaging modalities most commonly employed to date to image the nervous system in these transparent systems, and also emerging technologies that we anticipate will become widely used in studies of zebrafish and Xenopus myelination in the near future.
Collapse
Affiliation(s)
- Jenea M Bin
- Centre for Neuroregeneration, MS Society Centre for Translational Research, Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - David A Lyons
- Centre for Neuroregeneration, MS Society Centre for Translational Research, Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
41
|
Mogha A, Harty BL, Carlin D, Joseph J, Sanchez NE, Suter U, Piao X, Cavalli V, Monk KR. Gpr126/Adgrg6 Has Schwann Cell Autonomous and Nonautonomous Functions in Peripheral Nerve Injury and Repair. J Neurosci 2016; 36:12351-12367. [PMID: 27927955 PMCID: PMC5148226 DOI: 10.1523/jneurosci.3854-15.2016] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 09/25/2016] [Accepted: 10/12/2016] [Indexed: 11/21/2022] Open
Abstract
Schwann cells (SCs) are essential for proper peripheral nerve development and repair, although the mechanisms regulating these processes are incompletely understood. We previously showed that the adhesion G protein-coupled receptor Gpr126/Adgrg6 is essential for SC development and myelination. Interestingly, the expression of Gpr126 is maintained in adult SCs, suggestive of a function in the mature nerve. We therefore investigated the role of Gpr126 in nerve repair by studying an inducible SC-specific Gpr126 knock-out mouse model. Here, we show that remyelination is severely delayed after nerve-crush injury. Moreover, we also observe noncell-autonomous defects in macrophage recruitment and axon regeneration in injured nerves following loss of Gpr126 in SCs. This work demonstrates that Gpr126 has critical SC-autonomous and SC-nonautonomous functions in remyelination and peripheral nerve repair. SIGNIFICANCE STATEMENT Lack of robust remyelination represents one of the major barriers to recovery of neurological functions in disease or following injury in many disorders of the nervous system. Here we show that the adhesion class G protein-coupled receptor (GPCR) Gpr126/Adgrg6 is required for remyelination, macrophage recruitment, and axon regeneration following nerve injury. At least 30% of all approved drugs target GPCRs; thus, Gpr126 represents an attractive potential target to stimulate repair in myelin disease or following nerve injury.
Collapse
Affiliation(s)
| | | | | | | | | | - Ueli Suter
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, Zurich, ETH Zurich, CH-8093 Zurich, Switzerland, and
| | - Xianhua Piao
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Valeria Cavalli
- Department of Neuroscience, and
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Kelly R Monk
- Department of Developmental Biology,
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
42
|
Abstract
Myelin is a lipid-rich sheath formed by the spiral wrapping of specialized glial cells around axon segments. Myelinating glia allow for rapid transmission of nerve impulses and metabolic support of axons, and the absence of or disruption to myelin results in debilitating motor, cognitive, and emotional deficits in humans. Because myelin is a jawed vertebrate innovation, zebrafish are one of the simplest vertebrate model systems to study the genetics and development of myelinating glia. The morphogenetic cellular movements and genetic program that drive myelination are conserved between zebrafish and mammals, and myelin develops rapidly in zebrafish larvae, within 3-5days postfertilization. Myelin ultrastructure can be visualized in the zebrafish from larval to adult stages via transmission electron microscopy, and the dynamic development of myelinating glial cells may be observed in vivo via transgenic reporter lines in zebrafish larvae. Zebrafish are amenable to genetic and pharmacological screens, and screens for myelinating glial phenotypes have revealed both genes and drugs that promote myelin development, many of which are conserved in mammalian glia. Recently, zebrafish have been employed as a model to understand the complex dynamics of myelinating glia during development and regeneration. In this chapter, we describe these key methodologies and recent insights into mechanisms that regulate myelination using the zebrafish model.
Collapse
Affiliation(s)
- M D'Rozario
- Washington University School of Medicine, St. Louis, MO, United States
| | - K R Monk
- Washington University School of Medicine, St. Louis, MO, United States; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, United States
| | | |
Collapse
|
43
|
Mogha A, D'Rozario M, Monk KR. G Protein-Coupled Receptors in Myelinating Glia. Trends Pharmacol Sci 2016; 37:977-987. [PMID: 27670389 DOI: 10.1016/j.tips.2016.09.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 09/02/2016] [Accepted: 09/06/2016] [Indexed: 12/21/2022]
Abstract
The G protein-coupled receptor (GPCR) superfamily represents the largest class of functionally selective drug targets for disease modulation and therapy. GPCRs have been studied in great detail in central nervous system (CNS) neurons, but these important molecules have been relatively understudied in glia. In recent years, however, exciting new roles for GPCRs in glial cell biology have emerged. We focus here on the key roles of GPCRs in a specialized subset of glia, myelinating glia. We highlight recent work firmly establishing GPCRs as regulators of myelinating glial cell development and myelin repair. These advances expand our understanding of myelinating glial cell biology and underscore the utility of targeting GPCRs to promote myelin repair in human disease.
Collapse
Affiliation(s)
- Amit Mogha
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mitchell D'Rozario
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kelly R Monk
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
44
|
Liu X, Zhao Y, Peng S, Zhang S, Wang M, Chen Y, Zhang S, Yang Y, Sun C. BMP7 retards peripheral myelination by activating p38 MAPK in Schwann cells. Sci Rep 2016; 6:31049. [PMID: 27491681 PMCID: PMC4974506 DOI: 10.1038/srep31049] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 07/13/2016] [Indexed: 11/09/2022] Open
Abstract
Schwann cell (SC) myelination is pivotal for the proper physiological functioning of the nervous system, but the underlying molecular mechanism remains less well understood. Here, we showed that the expression of bone morphogenetic protein 7 (BMP7) inversely correlates with myelin gene expression during peripheral myelination, which suggests that BMP7 is likely a negative regulator for myelin gene expression. Our experiments further showed that the application of BMP7 attenuates the cAMP induced myelin gene expression in SCs. Downstream pathway analysis suggested that both p38 MAPK and SMAD are activated by exogenous BMP7 in SCs. The pharmacological intervention and gene silence studies revealed that p38 MAPK, not SMAD, is responsible for BMP7-mediated suppression of myelin gene expression. In addition, c-Jun, a potential negative regulator for peripheral myelination, was up-regulated by BMP7. In vivo experiments showed that BMP7 treatment greatly impaired peripheral myelination in newborn rats. Together, our results established that BMP7 is a negative regulator for peripheral myelin gene expression and that p38 MAPK/c-Jun axis might be the main downstream target of BMP7 in this process.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, P.R. China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yahong Zhao
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, P.R. China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Su Peng
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, P.R. China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Shuqiang Zhang
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, P.R. China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Meihong Wang
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, P.R. China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yeyue Chen
- School of Medicine, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Shan Zhang
- School of Medicine, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Yumin Yang
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, P.R. China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Cheng Sun
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, P.R. China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
45
|
Schwann cells–axon interaction in myelination. Curr Opin Neurobiol 2016; 39:24-9. [DOI: 10.1016/j.conb.2016.03.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 01/01/2023]
|
46
|
Langenhan T, Piao X, Monk KR. Adhesion G protein-coupled receptors in nervous system development and disease. Nat Rev Neurosci 2016; 17:550-61. [DOI: 10.1038/nrn.2016.86] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
47
|
Adhesion GPCRs as Novel Actors in Neural and Glial Cell Functions: From Synaptogenesis to Myelination. Handb Exp Pharmacol 2016; 234:275-298. [PMID: 27832492 DOI: 10.1007/978-3-319-41523-9_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adhesion G-protein-coupled receptors (aGPCRs) are emerging as key regulators of nervous system development and health. aGPCRs can regulate many aspects of neural development, including cell signaling, cell-cell and cell-matrix interactions, and, potentially, mechanosensation. Here, we specifically focus on the roles of several aGPCRs in synapse biology, dendritogenesis, and myelinating glial cell development. The lessons learned from these examples may be extrapolated to other contexts in the nervous system and beyond.
Collapse
|
48
|
The scales and tales of myelination: using zebrafish and mouse to study myelinating glia. Brain Res 2015; 1641:79-91. [PMID: 26498880 DOI: 10.1016/j.brainres.2015.10.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 01/06/2023]
Abstract
Myelin, the lipid-rich sheath that insulates axons to facilitate rapid conduction of action potentials, is an evolutionary innovation of the jawed-vertebrate lineage. Research efforts aimed at understanding the molecular mechanisms governing myelination have primarily focused on rodent models; however, with the advent of the zebrafish model system in the late twentieth century, the use of this genetically tractable, yet simpler vertebrate for studying myelination has steadily increased. In this review, we compare myelinating glial cell biology during development and regeneration in zebrafish and mouse and enumerate the advantages and disadvantages of using each model to study myelination. This article is part of a Special Issue entitled SI: Myelin Evolution.
Collapse
|
49
|
Sidik H, Talbot WS. A zinc finger protein that regulates oligodendrocyte specification, migration and myelination in zebrafish. Development 2015; 142:4119-28. [PMID: 26459222 DOI: 10.1242/dev.128215] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/01/2015] [Indexed: 12/21/2022]
Abstract
Precise control of oligodendrocyte migration and development is crucial for myelination of axons in the central nervous system (CNS), but important questions remain unanswered about the mechanisms controlling these processes. In a zebrafish screen for myelination mutants, we identified a mutation in zinc finger protein 16-like (znf16l). znf16l mutant larvae have reduced myelin basic protein (mbp) expression and reduced CNS myelin. Marker, time-lapse and ultrastructural studies indicated that oligodendrocyte specification, migration and myelination are disrupted in znf16l mutants. Transgenic studies indicated that znf16l acts autonomously in oligodendrocytes. Expression of Zfp488 from mouse rescued mbp expression in znf16l mutants, indicating that these homologs have overlapping functions. Our results defined the function of a new zinc finger protein with specific function in oligodendrocyte specification, migration and myelination in the developing CNS.
Collapse
Affiliation(s)
- Harwin Sidik
- Department of Developmental Biology, Stanford University, CA 94305, USA
| | - William S Talbot
- Department of Developmental Biology, Stanford University, CA 94305, USA
| |
Collapse
|
50
|
Schöneberg T, Liebscher I, Luo R, Monk KR, Piao X. Tethered agonists: a new mechanism underlying adhesion G protein-coupled receptor activation. J Recept Signal Transduct Res 2015; 35:220-3. [PMID: 26366621 DOI: 10.3109/10799893.2015.1072978] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The family of adhesion G protein-coupled receptors (aGPCRs) comprises 33 members in the human genome, which are subdivided into nine subclasses. Many aGPCRs undergo an autoproteolytic process via their GPCR Autoproteolysis-INducing (GAIN) domain during protein maturation to generate an N- and a C-terminal fragments, NTF and CTF, respectively. The NTF and CTF are non-covalently reassociated on the plasma membrane to form a single receptor unit. How aGPCRs are activated upon ligand binding remains one of the leading questions in the field of aGPCR research. Recent work from our labs and others shows that ligand binding can remove the NTF from the plasma membrane-bound CTF, exposing a tethered agonist which potently activates downstream signaling.
Collapse
Affiliation(s)
- Torsten Schöneberg
- a Institute of Biochemistry, Medical Faculty, University of Leipzig , Leipzig , Germany
| | - Ines Liebscher
- a Institute of Biochemistry, Medical Faculty, University of Leipzig , Leipzig , Germany
| | - Rong Luo
- b Division of Newborn Medicine, Department of Medicine , Children's Hospital and Harvard Medical School , Boston , MA , USA
| | - Kelly R Monk
- c Department of Developmental Biology , Washington University School of Medicine , St. Louis , MO , USA , and.,d Hope Center for Neurological Disorders, Washington University School of Medicine , St. Louis , MO , USA
| | - Xianhua Piao
- b Division of Newborn Medicine, Department of Medicine , Children's Hospital and Harvard Medical School , Boston , MA , USA
| |
Collapse
|