1
|
Jiao Y, Sengodan K, Chen J, Palli SR. Role of histone methylation in insect development: KMT5A regulates ecdysteroid biosynthesis during metamorphosis of Tribolium castaneum. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 180:104316. [PMID: 40287070 PMCID: PMC12066215 DOI: 10.1016/j.ibmb.2025.104316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/09/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Methylation levels of core histones play important roles in the regulation of gene expression and impact animal development. However, the methyltransferases and demethylases that determine histone methylation levels remain largely unexplored in insects. Most of our current understanding of histone methylation comes from mammalian studies. In this study, we first identified potential histone methyltransferases and demethylases encoded in the genome of the red flour beetle Tribolium castaneum. The function of these histone methylation enzymes in the metamorphosis was investigated by knocking down genes coding for these enzymes using RNA interference (RNAi). Our results showed that a lysine methyltransferase, KMT5A, plays a critical role in T. castaneum metamorphosis by regulating the biosynthesis of ecdysteroids. Treating KMT5A-knockdown larvae with 20 hydroxyecdysone can partially rescue T. castaneum pupation. Western blot analysis showed that KMT5A catalyzes H4K20 mono-methylation. However, further studies suggest that KMT5A may regulate T. castaneum pupation through mechanisms independent of H4K20 methylation. These data uncovered the roles of histone methylation enzymes in T. castaneum metamorphosis and KMT5A as a critical regulator of ecdysteroid biosynthesis.
Collapse
Affiliation(s)
- Yaoyu Jiao
- Department of Entomology, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA.
| | - Karthi Sengodan
- Department of Entomology, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Jiasheng Chen
- Department of Entomology, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Subba Reddy Palli
- Department of Entomology, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
2
|
Wang H, Helin K. Roles of H3K4 methylation in biology and disease. Trends Cell Biol 2025; 35:115-128. [PMID: 38909006 DOI: 10.1016/j.tcb.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/13/2024] [Accepted: 06/03/2024] [Indexed: 06/24/2024]
Abstract
Epigenetic modifications, including posttranslational modifications of histones, are closely linked to transcriptional regulation. Trimethylated H3 lysine 4 (H3K4me3) is one of the most studied histone modifications owing to its enrichment at the start sites of transcription and its association with gene expression and processes determining cell fate, development, and disease. In this review, we focus on recent studies that have yielded insights into how levels and patterns of H3K4me3 are regulated, how H3K4me3 contributes to the regulation of specific phases of transcription such as RNA polymerase II initiation, pause-release, heterogeneity, and consistency. The conclusion from these studies is that H3K4me3 by itself regulates gene expression and its precise regulation is essential for normal development and preventing disease.
Collapse
Affiliation(s)
- Hua Wang
- Peking University International Cancer Institute, Peking University Cancer Hospital and Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing, 100191, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | | |
Collapse
|
3
|
Mertens M, Khalife L, Ma X, Bodamer O. Animal models of Kabuki syndrome and their applicability to novel drug discovery. Expert Opin Drug Discov 2025; 20:253-265. [PMID: 39862154 DOI: 10.1080/17460441.2025.2457624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 11/27/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
INTRODUCTION Kabuki Syndrome (KS) is a rare genetic disorder characterized by distinctive facial features, intellectual disability, and multiple congenital anomalies. It is caused by pathogenic variants in the KMT2D and KDM6A genes. Despite its significant disease burden, there are currently no approved therapies for KS, highlighting the need for advanced research and therapeutic development. AREAS COVERED This review examines the use of animal models in KS research, including mice, fish, frogs, and nematodes. These models replicate key mechanistic and clinical aspects of Kabuki Syndrome, facilitating preclinical studies to demonstrate therapeutic efficacy. The literature search focused on identifying studies that utilized these models to investigate the pathophysiology of Kabuki Syndrome and evaluate potential treatments. EXPERT OPINION Refining animal models is essential to enhance their relevance to human disease and accelerate the development of effective therapies for Kabuki Syndrome. Insights from these models are invaluable in understanding underlying molecular mechanisms and identifying therapeutic targets. Continued research and collaboration are crucial to translating these findings into clinical practice, offering hope for future treatments.
Collapse
Affiliation(s)
- Mareike Mertens
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Leen Khalife
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Xiaoting Ma
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Olaf Bodamer
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| |
Collapse
|
4
|
Yu Y, Wang S, Wang Z, Gao R, Lee J. Arabidopsis thaliana: a powerful model organism to explore histone modifications and their upstream regulations. Epigenetics 2023; 18:2211362. [PMID: 37196184 DOI: 10.1080/15592294.2023.2211362] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/07/2023] [Accepted: 04/28/2023] [Indexed: 05/19/2023] Open
Abstract
Histones are subjected to extensive covalent modifications that affect inter-nucleosomal interactions as well as alter chromatin structure and DNA accessibility. Through switching the corresponding histone modifications, the level of transcription and diverse downstream biological processes can be regulated. Although animal systems are widely used in studying histone modifications, the signalling processes that occur outside the nucleus prior to histone modifications have not been well understood due to the limitations including non viable mutants, partial lethality, and infertility of survivors. Here, we review the benefits of using Arabidopsis thaliana as the model organism to study histone modifications and their upstream regulations. Similarities among histones and key histone modifiers such as the Polycomb group (PcG) and Trithorax group (TrxG) in Drosophila, Human, and Arabidopsis are examined. Furthermore, prolonged cold-induced vernalization system has been well-studied and revealed the relationship between the controllable environment input (duration of vernalization), its chromatin modifications of FLOWERING LOCUS C (FLC), following gene expression, and the corresponding phenotypes. Such evidence suggests that research on Arabidopsis can bring insights into incomplete signalling pathways outside of the histone box, which can be achieved through viable reverse genetic screenings based on the phenotypes instead of direct monitoring of histone modifications among individual mutants. The potential upstream regulators in Arabidopsis can provide cues or directions for animal research based on the similarities between them.
Collapse
Affiliation(s)
- Yang Yu
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Sihan Wang
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Ziqin Wang
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Renwei Gao
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Joohyun Lee
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| |
Collapse
|
5
|
Hong LYQ, Yeung ESH, Tran DT, Yerra VG, Kaur H, Kabir MDG, Advani SL, Liu Y, Batchu SN, Advani A. Altered expression, but small contribution, of the histone demethylase KDM6A in obstructive uropathy in mice. Dis Model Mech 2023; 16:dmm049991. [PMID: 37655466 PMCID: PMC10482012 DOI: 10.1242/dmm.049991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 08/04/2023] [Indexed: 09/02/2023] Open
Abstract
Epigenetic processes have emerged as important modulators of kidney health and disease. Here, we studied the role of KDM6A (a histone demethylase that escapes X-chromosome inactivation) in kidney tubule epithelial cells. We initially observed an increase in tubule cell Kdm6a mRNA in male mice with unilateral ureteral obstruction (UUO). However, tubule cell knockout of KDM6A had relatively minor consequences, characterized by a small reduction in apoptosis, increase in inflammation and downregulation of the peroxisome proliferator-activated receptor (PPAR) signaling pathway. In proximal tubule lineage HK-2 cells, KDM6A knockdown decreased PPARγ coactivator-1α (PGC-1α) protein levels and mRNA levels of the encoding gene, PPARGC1A. Tubule cell Kdm6a mRNA levels were approximately 2-fold higher in female mice than in male mice, both under sham and UUO conditions. However, kidney fibrosis after UUO was similar in both sexes. The findings demonstrate Kdm6a to be a dynamically regulated gene in the kidney tubule, varying in expression levels by sex and in response to injury. Despite the context-dependent variation in Kdm6a expression, knockout of tubule cell KDM6A has subtle (albeit non-negligible) effects in the adult kidney, at least in males.
Collapse
Affiliation(s)
- Lisa Y. Q. Hong
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada
| | - Emily S. H. Yeung
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada
| | - Duc Tin Tran
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada
| | - Veera Ganesh Yerra
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada
| | - Harmandeep Kaur
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada
| | - M. D. Golam Kabir
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada
| | - Suzanne L. Advani
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada
| | - Youan Liu
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada
| | - Sri Nagarjun Batchu
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada
| | - Andrew Advani
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada
| |
Collapse
|
6
|
Rots D, Jakub TE, Keung C, Jackson A, Banka S, Pfundt R, de Vries BBA, van Jaarsveld RH, Hopman SMJ, van Binsbergen E, Valenzuela I, Hempel M, Bierhals T, Kortüm F, Lecoquierre F, Goldenberg A, Hertz JM, Andersen CB, Kibæk M, Prijoles EJ, Stevenson RE, Everman DB, Patterson WG, Meng L, Gijavanekar C, De Dios K, Lakhani S, Levy T, Wagner M, Wieczorek D, Benke PJ, Lopez Garcia MS, Perrier R, Sousa SB, Almeida PM, Simões MJ, Isidor B, Deb W, Schmanski AA, Abdul-Rahman O, Philippe C, Bruel AL, Faivre L, Vitobello A, Thauvin C, Smits JJ, Garavelli L, Caraffi SG, Peluso F, Davis-Keppen L, Platt D, Royer E, Leeuwen L, Sinnema M, Stegmann APA, Stumpel CTRM, Tiller GE, Bosch DGM, Potgieter ST, Joss S, Splitt M, Holden S, Prapa M, Foulds N, Douzgou S, Puura K, Waltes R, Chiocchetti AG, Freitag CM, Satterstrom FK, De Rubeis S, Buxbaum J, Gelb BD, Branko A, Kushima I, Howe J, Scherer SW, Arado A, Baldo C, Patat O, Bénédicte D, Lopergolo D, Santorelli FM, Haack TB, Dufke A, Bertrand M, Falb RJ, Rieß A, Krieg P, Spranger S, Bedeschi MF, Iascone M, Josephi-Taylor S, Roscioli T, Buckley MF, Liebelt J, Dagli AI, Aten E, Hurst ACE, Hicks A, et alRots D, Jakub TE, Keung C, Jackson A, Banka S, Pfundt R, de Vries BBA, van Jaarsveld RH, Hopman SMJ, van Binsbergen E, Valenzuela I, Hempel M, Bierhals T, Kortüm F, Lecoquierre F, Goldenberg A, Hertz JM, Andersen CB, Kibæk M, Prijoles EJ, Stevenson RE, Everman DB, Patterson WG, Meng L, Gijavanekar C, De Dios K, Lakhani S, Levy T, Wagner M, Wieczorek D, Benke PJ, Lopez Garcia MS, Perrier R, Sousa SB, Almeida PM, Simões MJ, Isidor B, Deb W, Schmanski AA, Abdul-Rahman O, Philippe C, Bruel AL, Faivre L, Vitobello A, Thauvin C, Smits JJ, Garavelli L, Caraffi SG, Peluso F, Davis-Keppen L, Platt D, Royer E, Leeuwen L, Sinnema M, Stegmann APA, Stumpel CTRM, Tiller GE, Bosch DGM, Potgieter ST, Joss S, Splitt M, Holden S, Prapa M, Foulds N, Douzgou S, Puura K, Waltes R, Chiocchetti AG, Freitag CM, Satterstrom FK, De Rubeis S, Buxbaum J, Gelb BD, Branko A, Kushima I, Howe J, Scherer SW, Arado A, Baldo C, Patat O, Bénédicte D, Lopergolo D, Santorelli FM, Haack TB, Dufke A, Bertrand M, Falb RJ, Rieß A, Krieg P, Spranger S, Bedeschi MF, Iascone M, Josephi-Taylor S, Roscioli T, Buckley MF, Liebelt J, Dagli AI, Aten E, Hurst ACE, Hicks A, Suri M, Aliu E, Naik S, Sidlow R, Coursimault J, Nicolas G, Küpper H, Petit F, Ibrahim V, Top D, Di Cara F, Louie RJ, Stolerman E, Brunner HG, Vissers LELM, Kramer JM, Kleefstra T. The clinical and molecular spectrum of the KDM6B-related neurodevelopmental disorder. Am J Hum Genet 2023; 110:963-978. [PMID: 37196654 PMCID: PMC10257005 DOI: 10.1016/j.ajhg.2023.04.008] [Show More Authors] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/24/2023] [Indexed: 05/19/2023] Open
Abstract
De novo variants are a leading cause of neurodevelopmental disorders (NDDs), but because every monogenic NDD is different and usually extremely rare, it remains a major challenge to understand the complete phenotype and genotype spectrum of any morbid gene. According to OMIM, heterozygous variants in KDM6B cause "neurodevelopmental disorder with coarse facies and mild distal skeletal abnormalities." Here, by examining the molecular and clinical spectrum of 85 reported individuals with mostly de novo (likely) pathogenic KDM6B variants, we demonstrate that this description is inaccurate and potentially misleading. Cognitive deficits are seen consistently in all individuals, but the overall phenotype is highly variable. Notably, coarse facies and distal skeletal anomalies, as defined by OMIM, are rare in this expanded cohort while other features are unexpectedly common (e.g., hypotonia, psychosis, etc.). Using 3D protein structure analysis and an innovative dual Drosophila gain-of-function assay, we demonstrated a disruptive effect of 11 missense/in-frame indels located in or near the enzymatic JmJC or Zn-containing domain of KDM6B. Consistent with the role of KDM6B in human cognition, we demonstrated a role for the Drosophila KDM6B ortholog in memory and behavior. Taken together, we accurately define the broad clinical spectrum of the KDM6B-related NDD, introduce an innovative functional testing paradigm for the assessment of KDM6B variants, and demonstrate a conserved role for KDM6B in cognition and behavior. Our study demonstrates the critical importance of international collaboration, sharing of clinical data, and rigorous functional analysis of genetic variants to ensure correct disease diagnosis for rare disorders.
Collapse
Affiliation(s)
- Dmitrijs Rots
- Radboudumc, Department of Human Genetics, Nijmegen, the Netherlands
| | - Taryn E Jakub
- Dalhousie University, Department of Biochemistry and Molecular Biology, Faculty of Medicine, Halifax, NS, Canada
| | - Crystal Keung
- Dalhousie University, Department of Biochemistry and Molecular Biology, Faculty of Medicine, Halifax, NS, Canada
| | - Adam Jackson
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Siddharth Banka
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Rolph Pfundt
- Radboudumc, Department of Human Genetics, Nijmegen, the Netherlands
| | | | | | - Saskia M J Hopman
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ellen van Binsbergen
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Irene Valenzuela
- Hospital Universitari Vall D'Hebron, Clinical and Molecular Genetics Unit, Barcelona, Catalonia, Spain
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tatjana Bierhals
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fanny Kortüm
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Francois Lecoquierre
- University Rouen Normandie, Inserm U1245 and CHU Rouen, Department of Genetics and Reference Center for Developmental Disorders, 76000 Rouen, France
| | - Alice Goldenberg
- University Rouen Normandie, Inserm U1245 and CHU Rouen, Department of Genetics and Reference Center for Developmental Disorders, 76000 Rouen, France
| | - Jens Michael Hertz
- Odense University Hospital, Department of Clinical Genetics, Odense, Denmark; University of Southern Denmark, Department of Clinical Research, Odense, Denmark
| | | | - Maria Kibæk
- Department of Pediatrics, Odense University Hospital, Odense, Denmark
| | | | | | | | | | - Linyan Meng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics Laboratories, Houston, TX 77021, USA
| | - Charul Gijavanekar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics Laboratories, Houston, TX 77021, USA
| | - Karl De Dios
- Division of Medical Genetics, Dayton Children's Hospital, Dayton, OH, USA
| | - Shenela Lakhani
- Center for Neurogenetics, Weill Cornell Medicine, Brain and Mind Research Institute, New York, NY, USA
| | - Tess Levy
- Center for Neurogenetics, Weill Cornell Medicine, Brain and Mind Research Institute, New York, NY, USA
| | - Matias Wagner
- Institute of Human Genetics, School of Medicine, Technical University Munich, Munich, Germany; Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany; Division of Pediatric Neurology, Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, Munich, Germany
| | - Dagmar Wieczorek
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Paul J Benke
- Division of Genetics, Joe DiMaggio Children's Hospital, Hollywood, FL, USA
| | | | - Renee Perrier
- Department of Medical Genetics, Alberta Children's Hospital and Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Sergio B Sousa
- Medical Genetics Unit, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Pedro M Almeida
- Medical Genetics Unit, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Maria José Simões
- CBR Genomics, Cantanhede, Portugal; Genoinseq, Next-Generation Sequencing Unit, Biocant, Cantanhede, Portugal
| | - Bertrand Isidor
- Service de Génétique Médicale, CHU Nantes, 44093 Nantes, France; Université de Nantes, CHU Nantes, CNRS, INSERM, l'Institut du Thorax, 44007 Nantes, France
| | - Wallid Deb
- Service de Génétique Médicale, CHU Nantes, 44093 Nantes, France; Université de Nantes, CHU Nantes, CNRS, INSERM, l'Institut du Thorax, 44007 Nantes, France
| | - Andrew A Schmanski
- Department of Genetic Medicine, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA
| | - Omar Abdul-Rahman
- Department of Genetic Medicine, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA
| | - Christophe Philippe
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, Dijon, France; Inserm, UMR1231, Equipe GAD, Bâtiment B3, Université de Bourgogne Franche Comté, Dijon Cedex, France
| | - Ange-Line Bruel
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, Dijon, France; Inserm, UMR1231, Equipe GAD, Bâtiment B3, Université de Bourgogne Franche Comté, Dijon Cedex, France
| | - Laurence Faivre
- Inserm, UMR1231, Equipe GAD, Bâtiment B3, Université de Bourgogne Franche Comté, Dijon Cedex, France; Centre de Référence Maladies Rares "Anomalies du développement et syndromes malformatifs", Centre de Génétique, FHU-TRANSLAD et Institut GIMI, CHU Dijon Bourgogne, Dijon, France
| | - Antonio Vitobello
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, Dijon, France; Inserm, UMR1231, Equipe GAD, Bâtiment B3, Université de Bourgogne Franche Comté, Dijon Cedex, France
| | - Christel Thauvin
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, Dijon, France; Inserm, UMR1231, Equipe GAD, Bâtiment B3, Université de Bourgogne Franche Comté, Dijon Cedex, France; Centre de Référence Déficiences Intellectuelles de Causes Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Jeroen J Smits
- Radboudumc, Department of Human Genetics, Nijmegen, the Netherlands
| | - Livia Garavelli
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Stefano G Caraffi
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Francesca Peluso
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Laura Davis-Keppen
- University of South Dakota Sanford School of Medicine and Sanford Children's Hospital, Sioux Falls, SD, USA
| | - Dylan Platt
- University of South Dakota Sanford School of Medicine and Sanford Children's Hospital, Sioux Falls, SD, USA
| | - Erin Royer
- University of South Dakota Sanford School of Medicine and Sanford Children's Hospital, Sioux Falls, SD, USA
| | - Lisette Leeuwen
- University Medical Center Groningen, Department of Genetics, Groningen, the Netherlands
| | - Margje Sinnema
- Maastricht University Medical Center, Department of Clinical Genetics, Maastricht, the Netherlands
| | - Alexander P A Stegmann
- Maastricht University Medical Center, Department of Clinical Genetics, Maastricht, the Netherlands
| | - Constance T R M Stumpel
- Maastricht University Medical Center, Department of Clinical Genetics, Maastricht, the Netherlands; Department of Clinical Genetics and GROW-School for Oncology and Reproduction, Maastricht, the Netherlands
| | - George E Tiller
- Kaiser Permanente, Department of Genetics, Los Angeles, CA, USA
| | | | | | - Shelagh Joss
- West of Scotland Regional Genetics Service, Laboratory Medicine Building, Queen Elizabeth University Hospital, Glasgow, UK
| | - Miranda Splitt
- Northern Genetics Service, Institute of Genetic Medicine, International Centre for Life, Newcastle Upon Tyne NE1 3BZ, UK
| | - Simon Holden
- Department of Clinical Genetics, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Matina Prapa
- Department of Clinical Genetics, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Nicola Foulds
- Wessex Clinical Genetics Services, University Hospital Southampton NHS Foundation Trust, Southampton SO16 5YA, UK
| | - Sofia Douzgou
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Kaija Puura
- Department of Child Psychiatry, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Regina Waltes
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Goethe-Universität, Frankfurt am Main, Germany
| | - Andreas G Chiocchetti
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Goethe-Universität, Frankfurt am Main, Germany
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Goethe-Universität, Frankfurt am Main, Germany
| | - F Kyle Satterstrom
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Silvia De Rubeis
- Mindich Child Health and Development Institute and Departments of Pediatrics and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph Buxbaum
- Mindich Child Health and Development Institute and Departments of Pediatrics and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bruce D Gelb
- Mindich Child Health and Development Institute and Departments of Pediatrics and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aleksic Branko
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Jennifer Howe
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Stephen W Scherer
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Alessia Arado
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Chiara Baldo
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Olivier Patat
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Demeer Bénédicte
- Service de Génétique Clinique, Centre de référence maladies rares, CHU d'Amiens-site Sud, Amiens, France
| | - Diego Lopergolo
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; UOC Neurologia e Malattie Neurometaboliche, Azienda Ospedaliero Universitaria Senese, Policlinico Le Scotte, Viale Bracci, 2, 53100 Siena, Italy; IRCCS Stella Maris Foundation, Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, Pisa, Italy
| | - Filippo M Santorelli
- IRCCS Stella Maris Foundation, Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, Pisa, Italy
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Andreas Dufke
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Miriam Bertrand
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Ruth J Falb
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Angelika Rieß
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Peter Krieg
- Department of Pediatrics, Städtisches Klinikum Karlsruhe, Karlsruhe, Germany
| | | | | | - Maria Iascone
- Laboratory of Medical Genetics, Ospedale Papa Giovanni XXIII, Bergamo, Italy
| | - Sarah Josephi-Taylor
- Department of Clinical Genetics, The Children's Hospital at Westmead, Sydney, NSW, Australia; Discipline of Genomic Medicine, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Tony Roscioli
- Neuroscience Research Australia, University of New South Wales, Sydney, NSW, Australia; New South Wales Health Pathology Randwick Genomics Laboratory, Sydney, NSW, Australia; Centre for Clinical Genetics, Sydney Children's Hospital, Sydney, NSW 2031, Australia; Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2031, Australia
| | - Michael F Buckley
- New South Wales Health Pathology Randwick Genomics Laboratory, Sydney, NSW, Australia
| | - Jan Liebelt
- South Australian Clinical Genetics Service, Women's and Children's Hospital, Adelaide, SA, Australia
| | - Aditi I Dagli
- Orlando Health Arnold Palmer Hospital for Children, Division of Genetics, Orlando, FL, USA
| | - Emmelien Aten
- Department of Clinical Genetics, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Anna C E Hurst
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alesha Hicks
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mohnish Suri
- Nottingham Clinical Genetics Service, City Hospital Campus, Nottingham, UK
| | - Ermal Aliu
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Sunil Naik
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Richard Sidlow
- Valley Children's Hospital, Valley Children's Place, Madera, CA 93636, USA
| | - Juliette Coursimault
- University Rouen Normandie, Inserm U1245 and CHU Rouen, Department of Genetics and Reference Center for Developmental Disorders, 76000 Rouen, France
| | - Gaël Nicolas
- University Rouen Normandie, Inserm U1245 and CHU Rouen, Department of Genetics and Reference Center for Developmental Disorders, 76000 Rouen, France
| | - Hanna Küpper
- Neuropediatric Department, University Hospital Tübingen, Tübingen, Germany
| | - Florence Petit
- Centre Hospitalier Universitaire de Lille, Clinique de Génétique Guy Fontaine, Lille, France
| | - Veyan Ibrahim
- Dalhousie University, Department of Biochemistry and Molecular Biology, Faculty of Medicine, Halifax, NS, Canada; Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Deniz Top
- Dalhousie University, Department of Biochemistry and Molecular Biology, Faculty of Medicine, Halifax, NS, Canada; Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Francesca Di Cara
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | | | | | - Han G Brunner
- Radboudumc, Department of Human Genetics, Nijmegen, the Netherlands; Maastricht University Medical Center, Department of Clinical Genetics, Maastricht, the Netherlands
| | | | - Jamie M Kramer
- Dalhousie University, Department of Biochemistry and Molecular Biology, Faculty of Medicine, Halifax, NS, Canada.
| | - Tjitske Kleefstra
- Radboudumc, Department of Human Genetics, Nijmegen, the Netherlands; Center for Neuropsychiatry, Vincent van Gogh, Venray, the Netherlands; Department of Clinical Genetics, ErasmusMC, Rotterdam, the Netherlands.
| |
Collapse
|
7
|
Zhang F, Zhao X, Jiang R, Wang Y, Wang X, Gu Y, Xu L, Ye J, Chen CD, Guo S, Zhang D, Zhao D. Identification of Jmjd3 as an Essential Epigenetic Regulator of Hox Gene Temporal Collinear Activation for Body Axial Patterning in Mice. Front Cell Dev Biol 2021; 9:642931. [PMID: 34368113 PMCID: PMC8333871 DOI: 10.3389/fcell.2021.642931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/23/2021] [Indexed: 11/13/2022] Open
Abstract
Body axial patterning develops via a rostral-to-caudal sequence and relies on the temporal colinear activation of Hox genes. However, the underlying mechanism of Hox gene temporal colinear activation remains largely elusive. Here, with small-molecule inhibitors and conditional gene knockout mice, we identified Jmjd3, a subunit of TrxG, as an essential regulator of temporal colinear activation of Hox genes with its H3K27me3 demethylase activity. We demonstrated that Jmjd3 not only initiates but also maintains the temporal collinear expression of Hox genes. However, we detected no antagonistic roles between Jmjd3 and Ezh2, a core subunit of PcG repressive complex 2, during the processes of axial skeletal patterning. Our findings provide new insights into the regulation of Hox gene temporal collinear activation for body axial patterning in mice.
Collapse
Affiliation(s)
- Feng Zhang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Pathology, Air Force Medical Center (Air Force General Hospital), Chinese People's Liberation Army, Beijing, China
| | - Xiong Zhao
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Runmin Jiang
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yuying Wang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xinli Wang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yu Gu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Longyong Xu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jing Ye
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Charlie Degui Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shuangping Guo
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Dawei Zhang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Daqing Zhao
- Department of Otolaryngology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
8
|
Guo Z, Zhang L, Li Y, Wu S, Wang S, Zhang L, Bao Z. Expression profiling of the Kdm genes in scallop Patinopecten yessoensis suggests involvement of histone demethylation in regulation of early development and gametogenesis. Comp Biochem Physiol B Biochem Mol Biol 2020; 243-244:110434. [PMID: 32201355 DOI: 10.1016/j.cbpb.2020.110434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/05/2020] [Accepted: 03/16/2020] [Indexed: 12/14/2022]
Abstract
Histone demethylation modification is an important means of gene expression regulation and is widely involved in biological processes such as animal reproduction and development. Histone lysine demethylases (Kdm) plays an important role in the demethylation of histones. To understand the role of histone demethylation in scallops, we identified the Kdm gene family of the Yesso scallop Patinopecten yessoensis, and analyzed its expression during the gonad and early development. The results showed that the P. yessoensis has a complete Kdm family including seventeen members that belong to sixteen subfamilies (Hif1an, Hspbap1, Jarid2, Jmjd4, Jmjd6, Jmjd7, Jmjd8, Kdm1, Kdm2, Kdm3, Kdm4, Kdm5, Kdm6, Kdm7, Kdm8 and Kdm9). The Kdm genes showed five different expression patterns in the early development of scallop, with some of them (e.g. Jmjd7, Jmjd8 and Kdm8) being highly expressed in only one or two stage and the others (e.g. Kdm1A, Kdm9, Jmjd4 and Jmjd6) in several consecutive stages. During gonadal development, the Kdm genes also display various expression patterns. Some genes (e.g. Kdm2, Kdm4 and Jmjd7) display preferential expression in the testis, and the others have no obvious sex bias but show stage preference (resting, proliferative, growing or maturation stage). These results suggest that various histone demethylation modifications (e.g. H3K4, H3K9 and H3K27) may participate in the regulation of gametogenesis and early development of Yesso scallop. It will facilitate a better understanding of the epigenetic contributions to mollusk development.
Collapse
Affiliation(s)
- Zhenyi Guo
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Lijing Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Yajuan Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Shaoxuan Wu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lingling Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
9
|
Bonnet J, Lindeboom RGH, Pokrovsky D, Stricker G, Çelik MH, Rupp RAW, Gagneur J, Vermeulen M, Imhof A, Müller J. Quantification of Proteins and Histone Marks in Drosophila Embryos Reveals Stoichiometric Relationships Impacting Chromatin Regulation. Dev Cell 2019; 51:632-644.e6. [PMID: 31630981 DOI: 10.1016/j.devcel.2019.09.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/09/2019] [Accepted: 09/16/2019] [Indexed: 10/25/2022]
Abstract
Gene transcription in eukaryotes is regulated through dynamic interactions of a variety of different proteins with DNA in the context of chromatin. Here, we used mass spectrometry for absolute quantification of the nuclear proteome and methyl marks on selected lysine residues in histone H3 during two stages of Drosophila embryogenesis. These analyses provide comprehensive information about the absolute copy number of several thousand proteins and reveal unexpected relationships between the abundance of histone-modifying and -binding proteins and the chromatin landscape that they generate and interact with. For some histone modifications, the levels in Drosophila embryos are substantially different from those previously reported in tissue culture cells. Genome-wide profiling of H3K27 methylation during developmental progression and in animals with reduced PRC2 levels illustrates how mass spectrometry can be used for quantitatively describing and comparing chromatin states. Together, these data provide a foundation toward a quantitative understanding of gene regulation in Drosophila.
Collapse
Affiliation(s)
- Jacques Bonnet
- Max-Planck Institute of Biochemistry, Laboratory of Chromatin Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Rik G H Lindeboom
- Radboud Institute for Molecular Life Sciences, Oncode Institute, Department of Molecular Biology, Radboud University, Geert Grooteplein 28, 6525 GA Nijmegen, the Netherlands
| | - Daniil Pokrovsky
- Institute for Molecular Biology, BioMedical Center, Faculty of Medicine, Ludwig-Maximilians-University Munich, Großhadernerstr. 9, 82152 Martinsried, Germany; Protein Analysis Unit, BioMedical Center, Faculty of Medicine, Ludwig-Maximilians-University Munich, Großhadernerstr. 9, 82152 Martinsried, Germany
| | - Georg Stricker
- Department of Informatics, Technical University of Munich, Boltzmannstr. 3, 85748 Garching, Germany
| | - Muhammed Hasan Çelik
- Department of Informatics, Technical University of Munich, Boltzmannstr. 3, 85748 Garching, Germany
| | - Ralph A W Rupp
- Institute for Molecular Biology, BioMedical Center, Faculty of Medicine, Ludwig-Maximilians-University Munich, Großhadernerstr. 9, 82152 Martinsried, Germany
| | - Julien Gagneur
- Department of Informatics, Technical University of Munich, Boltzmannstr. 3, 85748 Garching, Germany
| | - Michiel Vermeulen
- Radboud Institute for Molecular Life Sciences, Oncode Institute, Department of Molecular Biology, Radboud University, Geert Grooteplein 28, 6525 GA Nijmegen, the Netherlands.
| | - Axel Imhof
- Protein Analysis Unit, BioMedical Center, Faculty of Medicine, Ludwig-Maximilians-University Munich, Großhadernerstr. 9, 82152 Martinsried, Germany.
| | - Jürg Müller
- Max-Planck Institute of Biochemistry, Laboratory of Chromatin Biology, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
10
|
Lo CA, Chen BE. Parental allele-specific protein expression in single cells In vivo. Dev Biol 2019; 454:66-73. [PMID: 31194972 DOI: 10.1016/j.ydbio.2019.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/03/2019] [Accepted: 06/09/2019] [Indexed: 11/26/2022]
Abstract
Allelic expression from each parent-of-origin is important as a backup and to ensure that enough protein products of a gene are produced. Thus far, it is not known how each cell throughout a tissue differs in parental allele expression at the level of protein synthesis. Here, we measure the expression of the Ribosomal protein L13a (Rpl13a) from both parental alleles simultaneously in single cells in the living animal. We use genome-edited Drosophila that have a quantitative reporter of protein synthesis inserted into the endogenous Rpl13a locus. We find that individual cells can have large (>10-fold) differences in protein expression between the two parental alleles. Cells can produce protein from only one allele oftentimes, and time-lapse imaging of protein production from each parental allele in each cell showed that the imbalance in expression from one parental allele over the other can invert over time. We also identify the histone methyltransferase EHMT to be involved in the protein synthesis dynamics within cells.
Collapse
Affiliation(s)
- Chiu-An Lo
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Brian E Chen
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada; Departments of Medicine and Neurology & Neurosurgery, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
11
|
Suzuki R, Yaguchi H, Maekawa K. Histone modifying genes are involved in the molting period during soldier differentiation in Zootermopsis nevadensis. JOURNAL OF INSECT PHYSIOLOGY 2019; 117:103892. [PMID: 31170409 DOI: 10.1016/j.jinsphys.2019.103892] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/05/2019] [Accepted: 06/01/2019] [Indexed: 06/09/2023]
Abstract
Caste differentiation in eusocial insects is an outstanding example of phenotypic plasticity. Recent studies indicate that epigenetic regulation, including DNA methylation and histone modification, play a role in the morphological and behavioral polyphenism observed in the caste differentiation of hymenopteran insects. The role of epigenetic regulation in termite caste differentiation, however, is still obscure. In this study, we performed a functional analysis of epigenetic-related genes during soldier differentiation in Zootermopsis nevadensis, for which the entire genome sequence is available. In an incipient colony of this species, the oldest 3rd instar larva (No. 1 larva) always differentiates into a presoldier (intermediate stage of soldier), and the next-oldest 3rd instar larva (No. 2 larva) molts into a 4th instar (which functions as a worker). First, we detected seven epigenetic-related genes with significantly increased expression levels in the soldier-destined No. 1 larvae using RNA-seq data. Second, RNA interference (RNAi) of these seven genes was performed in the No. 1 larvae. RNAi of three histone modifying genes extended the presoldier molting period. Furthermore, these RNAi treatments reduced the expression levels of genes involved in juvenile hormone (JH) synthesis, binding and signaling. These results indicate that epigenetic-related genes do not directly affect termite soldier differentiation; nonetheless, some histone modifying genes have an effect on molting periods, possibly due to the regulation of JH action during soldier differentiation.
Collapse
Affiliation(s)
- Ryutaro Suzuki
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Hajime Yaguchi
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan; Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Japan
| | - Kiyoto Maekawa
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan.
| |
Collapse
|
12
|
Rosales-Vega M, Hernández-Becerril A, Murillo-Maldonado JM, Zurita M, Vázquez M. The role of the trithorax group TnaA isoforms in Hox gene expression, and in Drosophila late development. PLoS One 2018; 13:e0206587. [PMID: 30372466 PMCID: PMC6205608 DOI: 10.1371/journal.pone.0206587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/16/2018] [Indexed: 11/18/2022] Open
Abstract
Regulation of developmental gene expression in eukaryotes involves several levels. One of them is the maintenance of gene expression along the life of the animal once it is started by different triggers early in development. One of the questions in the field is when in developmental time, the animal start to use the different maintenance mechanisms. The trithorax group (TrxG) of genes was first characterized as essential for maintaining homeotic gene expression. The TrxG gene tonalli interacts genetically and physically with genes and subunits of the BRAHMA BAP chromatin remodeling complex and encodes TnaA proteins with putative E3 SUMO-ligase activity. In contrast to the phenocritic lethal phase of animals with mutations in other TrxG genes, tna mutant individuals die late in development. In this study we determined the requirements of TnaA for survival at pupal and adult stages, in different tna mutant genotypes where we corroborate the lack of TnaA proteins, and the presence of adult homeotic loss-of-function phenotypes. We also investigated whether the absence of TnaA in haltere and leg larval imaginal discs affects the presence of the homeotic proteins Ultrabithorax and Sex combs reduced respectively by using some of the characterized genotypes and more finely by generating TnaA defective clones induced at different stages of development. We found that, tna is not required for growth or survival of imaginal disc cells and that it is a fine modulator of homeotic gene expression.
Collapse
Affiliation(s)
- Marco Rosales-Vega
- Departamento de Fisiología Molecular y Genética del Desarrollo, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Adriana Hernández-Becerril
- Departamento de Fisiología Molecular y Genética del Desarrollo, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Juan Manuel Murillo-Maldonado
- Departamento de Fisiología Molecular y Genética del Desarrollo, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Querétaro, México
| | - Mario Zurita
- Departamento de Fisiología Molecular y Genética del Desarrollo, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Martha Vázquez
- Departamento de Fisiología Molecular y Genética del Desarrollo, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
13
|
Schmähling S, Meiler A, Lee Y, Mohammed A, Finkl K, Tauscher K, Israel L, Wirth M, Philippou-Massier J, Blum H, Habermann B, Imhof A, Song JJ, Müller J. Regulation and function of H3K36 di-methylation by the trithorax-group protein complex AMC. Development 2018. [PMID: 29540501 PMCID: PMC5963871 DOI: 10.1242/dev.163808] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Drosophila Ash1 protein is a trithorax-group (trxG) regulator that antagonizes Polycomb repression at HOX genes. Ash1 di-methylates lysine 36 in histone H3 (H3K36me2) but how this activity is controlled and at which genes it functions is not well understood. We show that Ash1 protein purified from Drosophila exists in a complex with MRG15 and Caf1 that we named AMC. In Drosophila and human AMC, MRG15 binds a conserved FxLP motif near the Ash1 SET domain and stimulates H3K36 di-methylation on nucleosomes. Drosophila MRG15-null and ash1 catalytic mutants show remarkably specific trxG phenotypes: stochastic loss of HOX gene expression and homeotic transformations in adults. In mutants lacking AMC, H3K36me2 bulk levels appear undiminished but H3K36me2 is reduced in the chromatin of HOX and other AMC-regulated genes. AMC therefore appears to act on top of the H3K36me2/me3 landscape generated by the major H3K36 methyltransferases NSD and Set2. Our analyses suggest that H3K36 di-methylation at HOX genes is the crucial physiological function of AMC and the mechanism by which the complex antagonizes Polycomb repression at these genes. Highlighted Article: The trithorax group protein Ash1 and its regulator MRG15 form a multiprotein complex that maintains expression of HOX and other target genes by methylating histone H3 in their chromatin.
Collapse
Affiliation(s)
- Sigrun Schmähling
- Max-Planck Institute of Biochemistry, Laboratory of Chromatin Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Arno Meiler
- Max-Planck Institute of Biochemistry, Computational Biology, Am Klopferspitz 18 82152 Martinsried, Germany
| | - Yoonjung Lee
- Korea Advanced Institute of Science and Technology (KAIST), Department of Biological Sciences, Daejeon 34141, Korea
| | - Arif Mohammed
- Max-Planck Institute of Biochemistry, Laboratory of Chromatin Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Katja Finkl
- Max-Planck Institute of Biochemistry, Laboratory of Chromatin Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Katharina Tauscher
- Max-Planck Institute of Biochemistry, Laboratory of Chromatin Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Lars Israel
- Zentrallabor für Proteinanalytik, BioMedical Center, Ludwig-Maximilians-University Munich, Großhadernerstr. 9, 82152 Martinsried, Germany
| | - Marc Wirth
- Zentrallabor für Proteinanalytik, BioMedical Center, Ludwig-Maximilians-University Munich, Großhadernerstr. 9, 82152 Martinsried, Germany
| | - Julia Philippou-Massier
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - Bianca Habermann
- Max-Planck Institute of Biochemistry, Computational Biology, Am Klopferspitz 18 82152 Martinsried, Germany
| | - Axel Imhof
- Zentrallabor für Proteinanalytik, BioMedical Center, Ludwig-Maximilians-University Munich, Großhadernerstr. 9, 82152 Martinsried, Germany
| | - Ji-Joon Song
- Korea Advanced Institute of Science and Technology (KAIST), Department of Biological Sciences, Daejeon 34141, Korea
| | - Jürg Müller
- Max-Planck Institute of Biochemistry, Laboratory of Chromatin Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| |
Collapse
|
14
|
Histone Demethylase Activity of Utx Is Essential for Viability and Regulation of HOX Gene Expression in Drosophila. Genetics 2017; 208:633-637. [PMID: 29247011 PMCID: PMC5788527 DOI: 10.1534/genetics.117.300421] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/12/2017] [Indexed: 12/12/2022] Open
Abstract
The trimethylation of histone H3 at lysine 27 (H3K27me3) by Polycomb Repressive Complex 2 (PRC2) is essential for the repression of Polycomb target genes. However, the role of enzymatic demethylation of H3K27me3 by the KDM6-family demethylases Utx, Uty, and JmjD3 is less clear. Studies in both mice and worms led to the proposal that KDM6 proteins, but not their H3K27me3 demethylase activity, is critical for normal development. Here, we investigated the requirement of the demethylase activity of the single KDM6 family member Utx in Drosophila. We generated Drosophila expressing a full-length but catalytically inactive Utx protein and found that these mutants show the same phenotypes as animals lacking the Utx protein. Specifically, animals lacking maternally deposited active Utx demethylase in the early embryo show stochastic loss of HOX gene expression that appears to be propagated in a clonal fashion. This suggests that Utx demethylase activity is critical for the removal of ectopic H3K27 trimethylation from active HOX genes during the onset of zygotic gene transcription, and thereby prevents the inappropriate installment of long-term repression by Polycomb. Conversely, maternally deposited catalytically active Utx protein suffices to permit animals that lack zygotic expression of enzymatically active Utx to develop into morphologically normal adults, which eclose from the pupal case but die shortly thereafter. Utx demethylase activity is therefore also essential to sustain viability in adult flies. Together, these analyses identify the earliest embryonic stages and the adult stage as two phases during the Drosophila life cycle that critically require H3K27me3 demethylase activity.
Collapse
|
15
|
Sen A, Gurdziel K, Liu J, Qu W, Nuga OO, Burl RB, Hüttemann M, Pique-Regi R, Ruden DM. Smooth, an hnRNP-L Homolog, Might Decrease Mitochondrial Metabolism by Post-Transcriptional Regulation of Isocitrate Dehydrogenase (Idh) and Other Metabolic Genes in the Sub-Acute Phase of Traumatic Brain Injury. Front Genet 2017; 8:175. [PMID: 29187863 PMCID: PMC5694756 DOI: 10.3389/fgene.2017.00175] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/24/2017] [Indexed: 12/28/2022] Open
Abstract
Traumatic brain injury (TBI) can cause persistent pathological alteration of neurons. This may lead to cognitive dysfunction, depression and increased susceptibility to life threatening diseases, such as epilepsy and Alzheimer's disease. To investigate the underlying genetic and molecular basis of TBI, we subjected w1118Drosophila melanogaster to mild closed head trauma and found that mitochondrial activity is reduced in the brains of these flies 24 h after inflicting trauma. To determine the transcriptomic changes after mild TBI, we collected fly heads 24 h after inflicting trauma, and performed RNA-seq analyses. Classification of alternative splicing changes showed selective retention (RI) of long introns (>81 bps), with a mean size of ~3,000 nucleotides. Some of the genes containing RI showed a significant reduction in transcript abundance and are involved in mitochondrial metabolism such as Isocitrate dehydrogenase (Idh), which makes α-KG, a co-factor needed for both DNA and histone demethylase enzymes. The long introns are enriched in CA-rich motifs known to bind to Smooth (Sm), a heterogeneous nuclear ribonucleoprotein L (hnRNP-L) class of splicing factor, which has been shown to interact with the H3K36 histone methyltransferase, SET2, and to be involved in intron retention in human cells. H3K36me3 is a histone mark that demarcates exons in genes by interacting with the mRNA splicing machinery. Mutating sm (sm4/Df) resulted in loss of both basal and induced levels of RI in many of the same long-intron containing genes. Reducing the levels of Kdm4A, the H3K36me3 histone demethylase, also resulted in loss of basal levels of RI in many of the same long-intron containing genes. Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) for H3K36me3 revealed increased levels of this histone modification in retained introns post-trauma at CA-rich motifs. Based on these results, we propose a model in which TBI temporarily decreases mitochondrial activity in the brain 24 h after inflicting trauma, which decreases α-KG levels, and increases H3K36me3 levels and intron retention of long introns by decreasing Kdm4A activity. The consequent reduction in mature mRNA levels in metabolism genes, such as Idh, further reduces α-KG levels in a negative feedback loop. We further propose that decreasing metabolism after TBI in such a manner is a protective mechanism that gives the brain time to repair cellular damage induced by TBI.
Collapse
Affiliation(s)
- Arko Sen
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States.,Department of Pharmacology, Wayne State University, Detroit, MI, United States
| | - Katherine Gurdziel
- C. S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
| | - Jenney Liu
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - Wen Qu
- Department of Pharmacology, Wayne State University, Detroit, MI, United States
| | - Oluwademi O Nuga
- Department of Pharmacology, Wayne State University, Detroit, MI, United States
| | - Rayanne B Burl
- C. S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - Roger Pique-Regi
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States.,Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
| | - Douglas M Ruden
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States.,C. S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States.,Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
| |
Collapse
|
16
|
Yi X, Jiang X, Li X, Jiang DS. Histone lysine methylation and congenital heart disease: From bench to bedside (Review). Int J Mol Med 2017; 40:953-964. [PMID: 28902362 DOI: 10.3892/ijmm.2017.3115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 08/21/2017] [Indexed: 11/05/2022] Open
Abstract
Histone post-translational modifications (PTM) as one of the key epigenetic regulatory mechanisms that plays critical role in various biological processes, including regulating chromatin structure dynamics and gene expression. Histone lysine methyltransferase contributes to the establishment and maintenance of differential histone methylation status, which can recognize histone methylated sites and build an association between these modifications and their downstream processes. Recently, it was found that abnormalities in the histone lysine methylation level or pattern may lead to the occurrence of many types of cardiovascular diseases, such as congenital heart disease (CHD). In order to provide new theoretical basis and targets for the treatment of CHD from the view of developmental biology and genetics, this review discusses and elaborates on the association between histone lysine methylation modifications and CHD.
Collapse
Affiliation(s)
- Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xuejun Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiaoyan Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ding-Sheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
17
|
Zenk F, Loeser E, Schiavo R, Kilpert F, Bogdanović O, Iovino N. Germ line–inherited H3K27me3 restricts enhancer function during maternal-to-zygotic transition. Science 2017; 357:212-216. [DOI: 10.1126/science.aam5339] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 06/16/2017] [Indexed: 12/30/2022]
|
18
|
Shalaby NA, Sayed R, Zhang Q, Scoggin S, Eliazer S, Rothenfluh A, Buszczak M. Systematic discovery of genetic modulation by Jumonji histone demethylases in Drosophila. Sci Rep 2017; 7:5240. [PMID: 28701701 PMCID: PMC5507883 DOI: 10.1038/s41598-017-05004-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/23/2017] [Indexed: 12/11/2022] Open
Abstract
Jumonji (JmjC) domain proteins influence gene expression and chromatin organization by way of histone demethylation, which provides a means to regulate the activity of genes across the genome. JmjC proteins have been associated with many human diseases including various cancers, developmental and neurological disorders, however, the shared biology and possible common contribution to organismal development and tissue homeostasis of all JmjC proteins remains unclear. Here, we systematically tested the function of all 13 Drosophila JmjC genes. Generation of molecularly defined null mutants revealed that loss of 8 out of 13 JmjC genes modify position effect variegation (PEV) phenotypes, consistent with their ascribed role in regulating chromatin organization. However, most JmjC genes do not critically regulate development, as 10 members are viable and fertile with no obvious developmental defects. Rather, we find that different JmjC mutants specifically alter the phenotypic outcomes in various sensitized genetic backgrounds. Our data demonstrate that, rather than controlling essential gene expression programs, Drosophila JmjC proteins generally act to “fine-tune” different biological processes.
Collapse
Affiliation(s)
- Nevine A Shalaby
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.,Institute for Biology, Freie Universität Berlin, 14195, Berlin, Germany
| | - Raheel Sayed
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Qiao Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Shane Scoggin
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Susan Eliazer
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Adrian Rothenfluh
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA. .,Neuroscience Program, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA. .,Department of Psychiatry, Molecular Medicine Program, University of Utah, Salt Lake City, Utah, 84112, USA.
| | - Michael Buszczak
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
19
|
Coleman RT, Struhl G. Causal role for inheritance of H3K27me3 in maintaining the OFF state of a Drosophila HOX gene. Science 2017; 356:eaai8236. [PMID: 28302795 PMCID: PMC5595140 DOI: 10.1126/science.aai8236] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 02/03/2017] [Indexed: 12/20/2022]
Abstract
Many eukaryotic cells can respond to transient environmental or developmental stimuli with heritable changes in gene expression that are associated with nucleosome modifications. However, it remains uncertain whether modified nucleosomes play a causal role in transmitting such epigenetic memories, as opposed to controlling or merely reflecting transcriptional states inherited by other means. Here, we provide in vivo evidence that H3K27 trimethylated nucleosomes, once established at a repressed Drosophila HOX gene, remain heritably associated with that gene and can carry the memory of the silenced state through multiple rounds of replication, even when the capacity to copy the H3K27me3 mark to newly incorporated nucleosomes is diminished or abolished. Hence, in this context, the inheritance of H3K27 trimethylation conveys epigenetic memory.
Collapse
Affiliation(s)
- Rory T Coleman
- Department of Genetics and Development, Columbia University College of Physicians and Surgeons, 701 West 168th Street, New York, NY 10032, USA
| | - Gary Struhl
- Department of Genetics and Development, Columbia University College of Physicians and Surgeons, 701 West 168th Street, New York, NY 10032, USA.
| |
Collapse
|
20
|
Laprell F, Finkl K, Müller J. Propagation of Polycomb-repressed chromatin requires sequence-specific recruitment to DNA. Science 2017; 356:85-88. [DOI: 10.1126/science.aai8266] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 01/24/2017] [Indexed: 12/20/2022]
|
21
|
Chetverina DA, Elizar’ev PV, Lomaev DV, Georgiev PG, Erokhin MM. Control of the gene activity by polycomb and trithorax group proteins in Drosophila. RUSS J GENET+ 2017. [DOI: 10.1134/s1022795417020028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Arcipowski KM, Martinez CA, Ntziachristos P. Histone demethylases in physiology and cancer: a tale of two enzymes, JMJD3 and UTX. Curr Opin Genet Dev 2016; 36:59-67. [PMID: 27151432 DOI: 10.1016/j.gde.2016.03.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/24/2016] [Indexed: 01/17/2023]
Abstract
Gene regulation is fine-tuned by a dynamic balance between transcriptionally activating and repressive modifications of histone tails. It has been well-established that lysine and arginine methylation can be reversed by two groups of evolutionarily conserved enzymes known as histone demethylases, which have been shown to play critical roles in development, differentiation and diseases like cancer. Recent work has demonstrated demethylase-independent functions of these proteins, highlighting the complex mechanisms by which these proteins exert their effects on gene expression. Here, we discuss the roles of lysine 27 demethylases, JMJD3 and UTX, in cancer and potential therapeutic avenues targeting these enzymes. Despite a high degree of sequence similarity in the catalytic domain between JMJD3 and UTX, numerous studies revealed surprisingly contrasting roles in cellular reprogramming and cancer, particularly leukemia. Understanding the demethylase-dependent and demethylase-independent functions of the enzymes affecting histone methylation, their post-translational modifications and participation in different complexes, as well as in vivo modeling of the mutations affecting those enzymes in cancer, can shed light on their unique physiological roles. This information cumulated in the future will aid in the development of improved inhibitors to treat cancers affected by demethylase mutations and aberrant gene activation.
Collapse
Affiliation(s)
- Kelly Marie Arcipowski
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 320 E. Superior Street, Chicago, IL 60611, USA
| | - Carlos Alberto Martinez
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 320 E. Superior Street, Chicago, IL 60611, USA
| | - Panagiotis Ntziachristos
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 320 E. Superior Street, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 320 E. Superior Street, Chicago, IL 60611, USA.
| |
Collapse
|
23
|
Kushwaha R, Jagadish N, Kustagi M, Mendiratta G, Seandel M, Soni R, Korkola JE, Thodima V, Califano A, Bosl GJ, Chaganti RSK. Mechanism and Role of SOX2 Repression in Seminoma: Relevance to Human Germline Specification. Stem Cell Reports 2016; 6:772-783. [PMID: 27132888 PMCID: PMC4939754 DOI: 10.1016/j.stemcr.2016.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 01/22/2023] Open
Abstract
Human male germ cell tumors (GCTs) are derived from primordial germ cells (PGCs). The master pluripotency regulator and neuroectodermal lineage effector transcription factor SOX2 is repressed in PGCs and the seminoma (SEM) subset of GCTs. The mechanism of SOX2 repression and its significance to GC and GCT development currently are not understood. Here, we show that SOX2 repression in SEM-derived TCam-2 cells is mediated by the Polycomb repressive complex (PcG) and the repressive H3K27me3 chromatin mark that are enriched at its promoter. Furthermore, SOX2 repression in TCam-2 cells can be abrogated by recruitment of the constitutively expressed H3K27 demethylase UTX to the SOX2 promoter through retinoid signaling, leading to expression of neuronal and other lineage genes. SOX17 has been shown to initiate human PGC specification, with its target PRDM1 suppressing mesendodermal genes. Our results are consistent with a role for SOX2 repression in normal germline development by suppressing neuroectodermal genes. SOX2 is repressed in hPGC, germ cell neoplasia in situ, and seminoma SOX2 repression is mediated by PcG and H3K27me3 enrichment at its promoter Retinoid signaling recruits UTX to SOX2 promoter leading to reactivation of SOX2 These studies shed light on the role of SOX2 in germline development
Collapse
Affiliation(s)
- Ritu Kushwaha
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Nirmala Jagadish
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Manjunath Kustagi
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Geetu Mendiratta
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Marco Seandel
- Department of Surgery, Weill Cornell Medical Center, New York, NY 10065, USA
| | - Rekha Soni
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - James E Korkola
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | - Andrea Califano
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - George J Bosl
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - R S K Chaganti
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
24
|
Min H, Kong KA, Lee JY, Hong CP, Seo SH, Roh TY, Bae SS, Kim MH. CTCF-mediated Chromatin Loop for the Posterior Hoxc Gene Expression in MEF Cells. IUBMB Life 2016; 68:436-44. [PMID: 27080371 DOI: 10.1002/iub.1504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/15/2016] [Accepted: 03/25/2016] [Indexed: 01/06/2023]
Abstract
Modulation of chromatin structure has been proposed as a molecular mechanism underlying the spatiotemporal collinear expression of Hox genes during development. CCCTC-binding factor (CTCF)-mediated chromatin organization is now recognized as a crucial epigenetic mechanism for transcriptional regulation. Thus, we examined whether CTCF-mediated chromosomal conformation is involved in Hoxc gene expression by comparing wild-type mouse embryonic fibroblast (MEF) cells expressing anterior Hoxc genes with Akt1 null MEFs expressing anterior as well as posterior Hoxc genes. We found that CTCF binding between Hoxc11 and -c12 is important for CTCF-mediated chromosomal loop formation and concomitant posterior Hoxc gene expression. Hypomethylation at this site increased CTCF binding and recapitulated the chromosomal conformation and posterior Hoxc gene expression patterns observed in Akt1 null MEFs. From this work we found that CTCF at the C12|11 does not function as a barrier/boundary, instead let the posterior Hoxc genes switch their interaction from inactive centromeric to active telomeric genomic niche, and concomitant posterior Hoxc gene expression. Although it is not clear whether CTCF affects Hoxc gene expression solely through its looping activity, CTCF-mediated chromatin structural modulation could be an another tier of Hox gene regulation during development. © 2016 IUBMB Life, 68(6):436-444, 2016.
Collapse
Affiliation(s)
- Hyehyun Min
- Department of Anatomy, Embryology Laboratory, Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyoung-Ah Kong
- Department of Anatomy, Embryology Laboratory, Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji-Yeon Lee
- Department of Anatomy, Embryology Laboratory, Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chang-Pyo Hong
- Department of Life Sciences and Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Seong-Hye Seo
- Department of Life Sciences and Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Tae-Young Roh
- Department of Life Sciences and Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Sun Sik Bae
- Department of Pharmacology, MRC For Ischemic Tissue Regeneration, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Myoung Hee Kim
- Department of Anatomy, Embryology Laboratory, Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
25
|
Faralli H, Wang C, Nakka K, Benyoucef A, Sebastian S, Zhuang L, Chu A, Palii CG, Liu C, Camellato B, Brand M, Ge K, Dilworth FJ. UTX demethylase activity is required for satellite cell-mediated muscle regeneration. J Clin Invest 2016; 126:1555-65. [PMID: 26999603 DOI: 10.1172/jci83239] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 01/07/2016] [Indexed: 12/31/2022] Open
Abstract
The X chromosome-encoded histone demethylase UTX (also known as KDM6A) mediates removal of repressive trimethylation of histone H3 lysine 27 (H3K27me3) to establish transcriptionally permissive chromatin. Loss of UTX in female mice is embryonic lethal. Unexpectedly, male UTX-null mice escape embryonic lethality due to expression of UTY, a paralog that lacks H3K27 demethylase activity, suggesting an enzyme-independent role for UTX in development and thereby challenging the need for active H3K27 demethylation in vivo. However, the requirement for active H3K27 demethylation in stem cell-mediated tissue regeneration remains untested. Here, we employed an inducible mouse KO that specifically ablates Utx in satellite cells (SCs) and demonstrated that active H3K27 demethylation is necessary for muscle regeneration. Loss of UTX in SCs blocked myofiber regeneration in both male and female mice. Furthermore, we demonstrated that UTX mediates muscle regeneration through its H3K27 demethylase activity, as loss of demethylase activity either by chemical inhibition or knock-in of demethylase-dead UTX resulted in defective muscle repair. Mechanistically, dissection of the muscle regenerative process revealed that the demethylase activity of UTX is required for expression of the transcription factor myogenin, which in turn drives differentiation of muscle progenitors. Thus, we have identified a critical role for the enzymatic activity of UTX in activating muscle-specific gene expression during myofiber regeneration and have revealed a physiological role for active H3K27 demethylation in vivo.
Collapse
|
26
|
Khan AA, Lee AJ, Roh TY. Polycomb group protein-mediated histone modifications during cell differentiation. Epigenomics 2015; 7:75-84. [PMID: 25687468 DOI: 10.2217/epi.14.61] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Polycomb group (PcG) proteins play an important role in the regulation of gene expression, especially genes encoding lineage-specific factors. Perturbations in PcG protein expression may trigger an unexpected developmental pathway, resulting in birth defects and developmental disabilities. Two Polycomb repressive complexes, PRC1 and PRC2, have been identified and are related with diverse cellular processes through histone modifications. Many developmental genes are trimethylated at histone H3 lysine 27 (H3K27me3) mediated by PRC2, which provides a binding site for PRC1. These processes contribute to chromatin compaction and transcriptional repression. In this review, we discuss about the complex formation of PcG proteins, the mechanism through which they are recruited to target sites and their functional roles in cell differentiation.
Collapse
Affiliation(s)
- Abdul Aziz Khan
- Division of Integrative Biosciences & Biotechnology, Pohang University of Science & Technology (POSTECH), Pohang, Gyeongbuk 790-784, Republic of Korea
| | | | | |
Collapse
|
27
|
Yung P, Stuetzer A, Fischle W, Martinez AM, Cavalli G. Histone H3 Serine 28 Is Essential for Efficient Polycomb-Mediated Gene Repression in Drosophila. Cell Rep 2015; 11:1437-45. [DOI: 10.1016/j.celrep.2015.04.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 03/31/2015] [Accepted: 04/25/2015] [Indexed: 10/23/2022] Open
|
28
|
Aine M, Sjödahl G, Eriksson P, Veerla S, Lindgren D, Ringnér M, Höglund M. Integrative epigenomic analysis of differential DNA methylation in urothelial carcinoma. Genome Med 2015; 7:23. [PMID: 25810763 PMCID: PMC4373102 DOI: 10.1186/s13073-015-0144-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/17/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Urothelial carcinoma of the bladder (UC) is a common malignancy. Although extensive transcriptome analysis has provided insights into the gene expression patterns of this tumor type, the mechanistic underpinnings of differential methylation remain poorly understood. Multi-level genomic data may be used to profile the regulatory potential and landscape of differential methylation in cancer and gain understanding of the processes underlying epigenetic and phenotypic characteristics of tumors. METHODS We perform genome-wide DNA methylation profiling of 98 gene-expression subtyped tumors to identify between-tumor differentially methylated regions (DMRs). We integrate multi-level publically available genomic data generated by the ENCODE consortium to characterize the regulatory potential of UC DMRs. RESULTS We identify 5,453 between-tumor DMRs and derive four DNA methylation subgroups of UC with distinct associations to clinicopathological features and gene expression subtypes. We characterize three distinct patterns of differential methylation and use ENCODE data to show that tumor subgroup-defining DMRs display differential chromatin state, and regulatory factor binding preferences. Finally, we characterize an epigenetic switch involving the HOXA-genes with associations to tumor differentiation states and patient prognosis. CONCLUSIONS Genome-wide DMR methylation patterns are reflected in the gene expression subtypes of UC. UC DMRs display three distinct methylation patterns, each associated with intrinsic features of the genome and differential regulatory factor binding preferences. Epigenetic inactivation of HOX-genes correlates with tumor differentiation states and may present an actionable epigenetic alteration in UC.
Collapse
Affiliation(s)
- Mattias Aine
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Gottfrid Sjödahl
- Division of Urologic Research, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Pontus Eriksson
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Srinivas Veerla
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - David Lindgren
- Division of Translational Cancer Research, Department of Laboratory Medicine Lund, Lund University, Lund, Sweden
| | - Markus Ringnér
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Mattias Höglund
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
29
|
Temperature influences histone methylation and mRNA expression of the Jmj-C histone-demethylase orthologues during the early development of the oyster Crassostrea gigas. Mar Genomics 2015; 19:23-30. [DOI: 10.1016/j.margen.2014.09.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 01/08/2023]
|
30
|
The cancer COMPASS: navigating the functions of MLL complexes in cancer. Cancer Genet 2015; 208:178-91. [PMID: 25794446 DOI: 10.1016/j.cancergen.2015.01.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 12/13/2022]
Abstract
The mixed-lineage leukemia family of histone methyltransferases (MLL1-4, or KMT2A-D) were previously linked to cancer through the founding member, MLL1/KMT2A, which is often involved in translocation-associated gene fusion events in childhood leukemias. However, in recent years, a multitude of tumor exome sequencing studies have revealed that orthologues MLL3/KMT2C and MLL2/KMT2D are mutated in a significant percentage of a large variety of malignancies, particularly solid tumors. These unexpected findings necessitate a deeper inspection into the activities and functional differences between the MLL/KMT2 family members. This review provides an overview of this protein family and its relation to cancers, focusing on the recent links between MLL3/KMT2C and MLL2/4/KMT2D and their potential roles as tumor suppressors in an assortment of cell types.
Collapse
|
31
|
Abstract
DNA methylation and histone modification are epigenetic mechanisms that result in altered gene expression and cellular phenotype. The exact role of methylation in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) remains unclear. However, aberrations (e.g. loss-/gain-of-function or up-/down-regulation) in components of epigenetic transcriptional regulation in general, and of the methylation machinery in particular, have been implicated in the pathogenesis of these diseases. In addition, many of these components have been identified as therapeutic targets for patients with MDS/AML, and are also being assessed as potential biomarkers of response or resistance to hypomethylating agents (HMAs). The HMAs 5-azacitidine (AZA) and 2'-deoxy-5-azacitidine (decitabine, DAC) inhibit DNA methylation and have shown significant clinical benefits in patients with myeloid malignancies. Despite being viewed as mechanistically similar drugs, AZA and DAC have differing mechanisms of action. DAC is incorporated 100% into DNA, whereas AZA is incorporated into RNA (80-90%) as well as DNA (10-20%). As such, both drugs inhibit DNA methyltransferases (DNMTs; dependently or independently of DNA replication) resulting in the re-expression of tumor-suppressor genes; however, AZA also has an impact on mRNA and protein metabolism via its inhibition of ribonucleotide reductase, resulting in apoptosis. Herein, we first give an overview of transcriptional regulation, including DNA methylation, post-translational histone-tail modifications, the role of micro-RNA and long-range epigenetic gene silencing. We place special emphasis on epigenetic transcriptional regulation and discuss the implication of various components in the pathogenesis of MDS/AML, their potential as therapeutic targets, and their therapeutic modulation by HMAs and other substances (if known). The main focus of this review is laid on dissecting the rapidly evolving knowledge of AZA and DAC with a special focus on their differing mechanisms of action, and the effect of HMAs on transcriptional regulation.
Collapse
Affiliation(s)
- Lisa Pleyer
- 3rd Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Laboratory for Immunological and Molecular Cancer Research, Oncologic Center, Paracelsus Medical University Hospital Salzburg, Center for Clinical Cancer and Immunology Trials at Salzburg Cancer Research Institute , Salzburg , Austria
| | | |
Collapse
|
32
|
Shmakova A, Batie M, Druker J, Rocha S. Chromatin and oxygen sensing in the context of JmjC histone demethylases. Biochem J 2014; 462:385-95. [PMID: 25145438 PMCID: PMC4147966 DOI: 10.1042/bj20140754] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/07/2014] [Accepted: 07/09/2014] [Indexed: 01/22/2023]
Abstract
Responding appropriately to changes in oxygen availability is essential for multicellular organism survival. Molecularly, cells have evolved intricate gene expression programmes to handle this stressful condition. Although it is appreciated that gene expression is co-ordinated by changes in transcription and translation in hypoxia, much less is known about how chromatin changes allow for transcription to take place. The missing link between co-ordinating chromatin structure and the hypoxia-induced transcriptional programme could be in the form of a class of dioxygenases called JmjC (Jumonji C) enzymes, the majority of which are histone demethylases. In the present review, we will focus on the function of JmjC histone demethylases, and how these could act as oxygen sensors for chromatin in hypoxia. The current knowledge concerning the role of JmjC histone demethylases in the process of organism development and human disease will also be reviewed.
Collapse
Key Words
- chromatin
- chromatin remodeller
- histone methylation
- hypoxia
- hypoxia-inducible factor (hif)
- jumonji c (jmjc)
- transcription
- cd, chromodomain
- chd, chromodomain helicase dna binding
- crc, chromatin-remodelling complex
- fih, factor inhibiting hif
- hif, hypoxia-inducible factor
- iswi, imitation-swi protein
- jmjc, jumonji c
- kdm, lysine-specific demethylase
- lsd, lysine-specific demethylase
- nurd, nucleosome-remodelling deacetylase
- phd, plant homeodomain
- phf, phd finger protein
- rest, repressor element 1-silencing transcription factor
- vhl, von hippel–lindau protein
Collapse
Affiliation(s)
- Alena Shmakova
- *Centre for Gene Regulation and Expression, MSI/WTB/JBC Complex, Dow Street, University of Dundee, Dundee DD1 5EH, Scotland, U.K
| | - Michael Batie
- *Centre for Gene Regulation and Expression, MSI/WTB/JBC Complex, Dow Street, University of Dundee, Dundee DD1 5EH, Scotland, U.K
| | - Jimena Druker
- *Centre for Gene Regulation and Expression, MSI/WTB/JBC Complex, Dow Street, University of Dundee, Dundee DD1 5EH, Scotland, U.K
| | - Sonia Rocha
- *Centre for Gene Regulation and Expression, MSI/WTB/JBC Complex, Dow Street, University of Dundee, Dundee DD1 5EH, Scotland, U.K
| |
Collapse
|
33
|
Shpargel KB, Starmer J, Yee D, Pohlers M, Magnuson T. KDM6 demethylase independent loss of histone H3 lysine 27 trimethylation during early embryonic development. PLoS Genet 2014; 10:e1004507. [PMID: 25101834 PMCID: PMC4125042 DOI: 10.1371/journal.pgen.1004507] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 05/29/2014] [Indexed: 02/06/2023] Open
Abstract
The early mammalian embryo utilizes histone H3 lysine 27 trimethylation (H3K27me3) to maintain essential developmental genes in a repressive chromatin state. As differentiation progresses, H3K27me3 is removed in a distinct fashion to activate lineage specific patterns of developmental gene expression. These rapid changes in early embryonic chromatin environment are thought to be dependent on H3K27 demethylases. We have taken a mouse genetics approach to remove activity of both H3K27 demethylases of the Kdm6 gene family, Utx (Kdm6a, X-linked gene) and Jmjd3 (Kdm6b, autosomal gene). Male embryos null for active H3K27 demethylation by the Kdm6 gene family survive to term. At mid-gestation, embryos demonstrate proper patterning and activation of Hox genes. These male embryos retain the Y-chromosome UTX homolog, UTY, which cannot demethylate H3K27me3 due to mutations in catalytic site of the Jumonji-C domain. Embryonic stem (ES) cells lacking all enzymatic KDM6 demethylation exhibit a typical decrease in global H3K27me3 levels with differentiation. Retinoic acid differentiations of these ES cells demonstrate loss of H3K27me3 and gain of H3K4me3 to Hox promoters and other transcription factors, and induce expression similar to control cells. A small subset of genes exhibit decreased expression associated with reduction of promoter H3K4me3 and some low-level accumulation of H3K27me3. Finally, Utx and Jmjd3 mutant mouse embryonic fibroblasts (MEFs) demonstrate dramatic loss of H3K27me3 from promoters of several Hox genes and transcription factors. Our results indicate that early embryonic H3K27me3 repression can be alleviated in the absence of active demethylation by the Kdm6 gene family.
Collapse
Affiliation(s)
- Karl B. Shpargel
- Department of Genetics, Carolina Center for Genome Sciences, and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Joshua Starmer
- Department of Genetics, Carolina Center for Genome Sciences, and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Della Yee
- Department of Genetics, Carolina Center for Genome Sciences, and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Michael Pohlers
- Department of Genetics, Carolina Center for Genome Sciences, and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Terry Magnuson
- Department of Genetics, Carolina Center for Genome Sciences, and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
34
|
Kong KA, Lee JY, Oh JH, Lee Y, Kim MH. Akt1 mediates the posterior Hoxc gene expression through epigenetic modifications in mouse embryonic fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:793-9. [PMID: 24955524 DOI: 10.1016/j.bbagrm.2014.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 05/09/2014] [Accepted: 06/11/2014] [Indexed: 12/20/2022]
Abstract
The evolutionarily conserved Hox genes are organized in clusters and expressed colinearly to specify body patterning during embryonic development. Previously, Akt1 has been identified as a putative Hox gene regulator through in silico analysis. Substantial upregulation of consecutive 5' Hoxc genes has been observed when Akt1 is absent in mouse embryonic fibroblast (MEF) cells. In this study, we provide evidence that Akt1 regulates the 5' Hoxc gene expression by epigenetic modifications. Enrichment of histone H3K9 acetylation and a low level of the H3K27me3 mark were detected at the posterior 5' Hoxc loci when Akt1 is absent. A histone deacetylase (HDAC) inhibitor de-repressed 5' Hoxc gene expression when Akt1 is present, and a DNA demethylating reagent synergistically upregulated HDAC-induced 5' Hoxc gene expression. A knockdown study revealed that Hdac6 is mediated in the Hoxc12 repression through direct binding to the transcription start site (TSS) in the presence of Akt1. Co-immunoprecipitation analysis revealed that endogenous Akt1 directly interacted with Hdac6. Furthermore, exogenous Akt1 was enriched at the promoter region of the posterior Hoxc genes such as Hoxc11 and Hoxc12, not the Akt1-independent Hoxc5 and Hoxd10 loci. The regulation of the H3K27me3 mark by Ezh2 and Kdm6b at the 5' Hoxc gene promoter turned out to be Akt1 dependent. Taken together, these results suggest that Akt1 mediates the posterior 5' Hoxc gene expression through epigenetic modification such as histone methylation and acetylation, and partly through a direct binding to the promoter region of the 5' Hoxc genes and/or Hdac6 in mouse embryonic fibroblast cells.
Collapse
Affiliation(s)
- Kyoung-Ah Kong
- Department of Anatomy, Embryology Lab., Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji-Yeon Lee
- Department of Anatomy, Embryology Lab., Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji Hoon Oh
- Department of Anatomy, Embryology Lab., Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Youra Lee
- Department of Anatomy, Embryology Lab., Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Myoung Hee Kim
- Department of Anatomy, Embryology Lab., Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
35
|
Molecular basis for substrate recognition by lysine methyltransferases and demethylases. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1404-15. [PMID: 24946978 DOI: 10.1016/j.bbagrm.2014.06.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 05/16/2014] [Accepted: 06/09/2014] [Indexed: 11/24/2022]
Abstract
Lysine methylation has emerged as a prominent covalent modification in histones and non-histone proteins. This modification has been implicated in numerous genomic processes, including heterochromatinization, cell cycle progression, DNA damage response, DNA replication, genome stability, and epigenetic gene regulation that underpins developmental programs defining cell identity and fate. The site and degree of lysine methylation is dynamically modulated through the enzymatic activities of protein lysine methyltransferases (KMTs) and protein lysine demethylases (KDMs). These enzymes display distinct substrate specificities that in part define their biological functions. This review explores recent progress in elucidating the molecular basis of these specificities, highlighting structural and functional studies of the methyltransferases SUV4-20H1 (KMT5B), SUV4-20H2 (KMT5C), and ATXR5, and the demethylases UTX (KDM6A), JMJD3 (KDM6B), and JMJD2D (KDM4D). We conclude by examining these findings in the context of related KMTs and KDMs and by exploring unresolved questions regarding the specificities and functions of these enzymes.
Collapse
|
36
|
Van der Meulen J, Speleman F, Van Vlierberghe P. The H3K27me3 demethylase UTX in normal development and disease. Epigenetics 2014; 9:658-68. [PMID: 24561908 PMCID: PMC4063824 DOI: 10.4161/epi.28298] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In 2007, the Ubiquitously Transcribed Tetratricopeptide Repeat on chromosome X (UTX) was identified as a histone demethylase that specifically targets di- and tri-methyl groups on lysine 27 of histone H3 (H3K27me2/3). Since then, UTX has been proven essential during normal development, as it is critically required for correct reprogramming, embryonic development and tissue-specific differentiation. UTX is a member of the MLL2 H3K4 methyltransferase complex and its catalytic activity has been linked to regulation of HOX and RB transcriptional networks. In addition, an H3K27me2/3 demethylase independent function for UTX was uncovered in promoting general chromatin remodeling in concert with the BRG1-containing SWI/SNF remodeling complex. Constitutional inactivation of UTX causes a specific hereditary disorder called the Kabuki syndrome, whereas somatic loss of UTX has been reported in a variety of human cancers. Here, we compile the breakthrough discoveries made from the first disclosure of UTX as a histone demethylase till the identification of disease-related UTX mutations and specific UTX inhibitors.
Collapse
Affiliation(s)
| | - Frank Speleman
- Center for Medical Genetics; Ghent University; Ghent, Belgium
| | | |
Collapse
|
37
|
Zhang C, Hong Z, Ma W, Ma D, Qian Y, Xie W, Tie F, Fang M. Drosophila UTX coordinates with p53 to regulate ku80 expression in response to DNA damage. PLoS One 2013; 8:e78652. [PMID: 24265704 PMCID: PMC3827076 DOI: 10.1371/journal.pone.0078652] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 09/13/2013] [Indexed: 01/08/2023] Open
Abstract
UTX is known as a general factor that activates gene transcription during development. Here, we demonstrate an additional essential role of UTX in the DNA damage response, in which it upregulates the expression of ku80 in Drosophila, both in cultured cells and in third instar larvae. We further showed that UTX mediates the expression of ku80 by the demethylation of H3K27me3 at the ku80 promoter upon exposure to ionizing radiation (IR) in a p53-dependent manner. UTX interacts physically with p53, and both UTX and p53 are recruited to the ku80 promoter following IR exposure in an interdependent manner. In contrast, the loss of utx has little impact on the expression of ku70, mre11, hid and reaper, suggesting the specific regulation of ku80 expression by UTX. Thus, our findings further elucidate the molecular function of UTX.
Collapse
Affiliation(s)
- Chengwan Zhang
- Institute of Life Sciences, Southeast University, State Ministry of Education Key Laboratory of Developmental Genes and Human Diseases, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|