1
|
Crellin HA, Buckley CE. Using Optogenetics to Investigate the Shared Mechanisms of Apical-Basal Polarity and Mitosis. Cells Tissues Organs 2023; 213:161-180. [PMID: 36599311 DOI: 10.1159/000528796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/18/2022] [Indexed: 01/05/2023] Open
Abstract
The initiation of apical-basal (AB) polarity and the process of mitotic cell division are both characterised by the generation of specialised plasma membrane and cortical domains. These are generated using shared mechanisms, such as asymmetric protein accumulation, Rho GTPase signalling, cytoskeletal reorganisation, vesicle trafficking, and asymmetric phosphoinositide distribution. In epithelial tissue, the coordination of AB polarity and mitosis in space and time is important both during initial epithelial development and to maintain tissue integrity and ensure appropriate cell differentiation at later stages. Whilst significant progress has been made in understanding the mechanisms underlying cell division and AB polarity, it has so far been challenging to fully unpick the complex interrelationship between polarity, signalling, morphogenesis, and cell division. However, the recent emergence of optogenetic protein localisation techniques is now allowing researchers to reversibly control protein activation, localisation, and signalling with high spatiotemporal resolution. This has the potential to revolutionise our understanding of how subcellular processes such as AB polarity are integrated with cell behaviours such as mitosis and how these processes impact whole tissue morphogenesis. So far, these techniques have been used to investigate processes such as cleavage furrow ingression, mitotic spindle positioning, and in vivo epithelial morphogenesis. This review describes some of the key shared mechanisms of cell division and AB polarity establishment, how they are coordinated during development and how the advance of optogenetic techniques is furthering this research field.
Collapse
Affiliation(s)
- Helena A Crellin
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Clare E Buckley
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
2
|
Apical-basal polarity and the control of epithelial form and function. Nat Rev Mol Cell Biol 2022; 23:559-577. [PMID: 35440694 DOI: 10.1038/s41580-022-00465-y] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2022] [Indexed: 02/02/2023]
Abstract
Epithelial cells are the most common cell type in all animals, forming the sheets and tubes that compose most organs and tissues. Apical-basal polarity is essential for epithelial cell form and function, as it determines the localization of the adhesion molecules that hold the cells together laterally and the occluding junctions that act as barriers to paracellular diffusion. Polarity must also target the secretion of specific cargoes to the apical, lateral or basal membranes and organize the cytoskeleton and internal architecture of the cell. Apical-basal polarity in many cells is established by conserved polarity factors that define the apical (Crumbs, Stardust/PALS1, aPKC, PAR-6 and CDC42), junctional (PAR-3) and lateral (Scribble, DLG, LGL, Yurt and RhoGAP19D) domains, although recent evidence indicates that not all epithelia polarize by the same mechanism. Research has begun to reveal the dynamic interactions between polarity factors and how they contribute to polarity establishment and maintenance. Elucidating these mechanisms is essential to better understand the roles of apical-basal polarity in morphogenesis and how defects in polarity contribute to diseases such as cancer.
Collapse
|
3
|
Verification and rectification of cell type-specific splicing of a Seckel syndrome-associated ATR mutation using iPS cell model. J Hum Genet 2019; 64:445-458. [PMID: 30846821 PMCID: PMC8075875 DOI: 10.1038/s10038-019-0574-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/25/2018] [Accepted: 01/18/2019] [Indexed: 11/08/2022]
Abstract
Seckel syndrome (SS) is a rare spectrum of congenital severe microcephaly and dwarfism. One SS-causative gene is Ataxia Telangiectasia and Rad3-Related Protein (ATR), and ATR (c.2101 A>G) mutation causes skipping of exon 9, resulting in a hypomorphic ATR defect. This mutation is considered the cause of an impaired response to DNA replication stress, the main function of ATR, contributing to the pathogenesis of microcephaly. However, the precise behavior and impact of this splicing defect in human neural progenitor cells (NPCs) is unclear. To address this, we established induced pluripotent stem cells (iPSCs) from fibroblasts carrying the ATR mutation and an isogenic ATR-corrected counterpart iPSC clone. SS-patient-derived iPSCs (SS-iPSCs) exhibited cell type-specific splicing; exon 9 was dominantly skipped in fibroblasts and iPSC-derived NPCs, but it was included in undifferentiated iPSCs and definitive endodermal cells. SS-iPSC-derived NPCs (SS-NPCs) showed distinct expression profiles from ATR non-mutated NPCs with negative enrichment of neuronal genesis-related gene sets. In SS-NPCs, abnormal mitotic spindles occurred more frequently than in gene-corrected counterparts, and the alignment of NPCs in the surface of the neurospheres was perturbed. Finally, we tested several splicing-modifying compounds and found that TG003, a CLK1 inhibitor, could pharmacologically rescue the exon 9 skipping in SS-NPCs. Treatment with TG003 restored the ATR kinase activity in SS-NPCs and decreased the frequency of abnormal mitotic events. In conclusion, our iPSC model revealed a novel effect of the ATR mutation in mitotic processes of NPCs and NPC-specific missplicing, accompanied by the recovery of neuronal defects using a splicing rectifier.
Collapse
|
4
|
Li J, Zhao Y, He L, Huang Y, Yang X, Yu L, Zhao Q, Dong X. Znfl1s are essential for patterning the anterior-posterior axis of zebrafish posterior hindbrain by acting as direct target genes of retinoic acid. Mech Dev 2018; 155:27-33. [PMID: 30472261 DOI: 10.1016/j.mod.2018.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/29/2018] [Accepted: 11/22/2018] [Indexed: 10/27/2022]
Abstract
RA (retinoic acid) signaling is essential for the patterning the hindbrain of vertebrates. Although hundreds of potential RA targets genes are identified, the ones other than hox genes playing roles in patterning anterior-posterior axis of hindbrain by mediating RA signaling remains largely unknown. Previously, we reported that znfl1s play essential roles in the formation of posterior neuroectoderm in zebrafish embryos. Here, we revealed that znfl1s play a critical role in patterning the posterior axis of hindbrain by maintaining the homeostasis of RA signaling in zebrafish embryos. Knocking down znfl1s shortened the length of the posterior hindbrain in a similar way of reducing RA signaling in zebrafish embryos and the defective posterior hindbrain was effectively rescued by elevating RA signaling. By performing mutagenesis assays and chromatin immunoprecipitation assays on the promoter of znfl1s, we demonstrated that znfl1s are direct target genes of RA to mediate RA signaling through a functional DR1 RA response element. Taken together, our results showed that Znfl1s are essential for patterning the anterior-posterior axis development of posterior hindbrain by acting as direct target genes of RA signaling.
Collapse
Affiliation(s)
- Jingyun Li
- Maternal and Child Health Medical Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Yingmin Zhao
- Department of Pediatric, Jingjiang People's Hospital Affiliated to Yangzhou University, Jingjiang 214500, China
| | - Luqingqing He
- Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Yun Huang
- Department of Pediatric, Jingjiang People's Hospital Affiliated to Yangzhou University, Jingjiang 214500, China
| | - Xiaojing Yang
- Department of Pediatric, Jingjiang People's Hospital Affiliated to Yangzhou University, Jingjiang 214500, China
| | - Lingling Yu
- Department of Pediatric, Jingjiang People's Hospital Affiliated to Yangzhou University, Jingjiang 214500, China
| | - Qingshun Zhao
- Model Animal Research Center, Nanjing University, Nanjing 210061, China.
| | - Xiaohua Dong
- Department of Pediatric, Jingjiang People's Hospital Affiliated to Yangzhou University, Jingjiang 214500, China.
| |
Collapse
|
5
|
Ghosh P, Maurer JM, Sagerström CG. Analysis of novel caudal hindbrain genes reveals different regulatory logic for gene expression in rhombomere 4 versus 5/6 in embryonic zebrafish. Neural Dev 2018; 13:13. [PMID: 29945667 PMCID: PMC6020313 DOI: 10.1186/s13064-018-0112-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/19/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Previous work aimed at understanding the gene regulatory networks (GRNs) governing caudal hindbrain formation identified morphogens such as Retinoic Acid (RA) and Fibroblast growth factors (FGFs), as well as transcription factors like hoxb1b, hoxb1a, hnf1ba, and valentino as being required for rhombomere (r) r4-r6 formation in zebrafish. Considering that the caudal hindbrain is relatively complex - for instance, unique sets of neurons are formed in each rhombomere segment - it is likely that additional essential genes remain to be identified and integrated into the caudal hindbrain GRN. METHODS By taking advantage of gene expression data available in the Zebrafish Information Network (ZFIN), we identified 84 uncharacterized genes that are expressed in r4-r6. We selected a representative set of 22 genes and assayed their expression patterns in hoxb1b, hoxb1a, hnf1b, and valentino mutants with the goal of positioning them in the caudal hindbrain GRN. We also investigated the effects of RA and FGF on the expression of this gene set. To examine whether these genes are necessary for r4-r6 development, we analyzed germline mutants for six of the genes (gas6, gbx1, sall4, eglf6, celf2, and greb1l) for defects in hindbrain development. RESULTS Our results reveal that r4 gene expression is unaffected by the individual loss of hoxb1b, hoxb1a or RA, but is under the combinatorial regulation of RA together with hoxb1b. In contrast, r5/r6 gene expression is dependent on RA, FGF, hnf1ba and valentino - as individual loss of these factors abolishes r5/r6 gene expression. Our analysis of six mutant lines did not reveal rhombomere or neuronal defects, but transcriptome analysis of one line (gas6 mutant) identified expression changes for genes involved in several developmental processes - suggesting that these genes may have subtle roles in hindbrain development. CONCLUSION We conclude that r4-r6 formation is relatively robust, such that very few genes are absolutely required for this process. However, there are mechanistic differences in r4 versus r5/r6, such that no single factor is required for r4 development while several genes are individually required for r5/r6 formation.
Collapse
Affiliation(s)
- Priyanjali Ghosh
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St/LRB815, Worcester, MA, USA
| | - Jennifer M Maurer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St/LRB815, Worcester, MA, USA
| | - Charles G Sagerström
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St/LRB815, Worcester, MA, USA.
| |
Collapse
|
6
|
Addison M, Xu Q, Cayuso J, Wilkinson DG. Cell Identity Switching Regulated by Retinoic Acid Signaling Maintains Homogeneous Segments in the Hindbrain. Dev Cell 2018; 45:606-620.e3. [PMID: 29731343 PMCID: PMC5988564 DOI: 10.1016/j.devcel.2018.04.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/16/2018] [Accepted: 04/04/2018] [Indexed: 10/25/2022]
Abstract
The patterning of tissues to form subdivisions with distinct and homogeneous regional identity is potentially disrupted by cell intermingling. Transplantation studies suggest that homogeneous segmental identity in the hindbrain is maintained by identity switching of cells that intermingle into another segment. We show that switching occurs during normal development and is mediated by feedback between segment identity and the retinoic acid degrading enzymes, cyp26b1 and cyp26c1. egr2, which specifies the segmental identity of rhombomeres r3 and r5, underlies the lower expression level of cyp26b1 and cyp26c1 in r3 and r5 compared with r2, r4, and r6. Consequently, r3 or r5 cells that intermingle into adjacent segments encounter cells with higher cyp26b1/c1 expression, which we find is required for downregulation of egr2b expression. Furthermore, egr2b expression is regulated in r2, r4, and r6 by non-autonomous mechanisms that depend upon the number of neighbors that express egr2b. These findings reveal that a community regulation of retinoid signaling maintains homogeneous segmental identity.
Collapse
Affiliation(s)
- Megan Addison
- Neural Development Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Qiling Xu
- Neural Development Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Jordi Cayuso
- Neural Development Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - David G Wilkinson
- Neural Development Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
7
|
Li H, Zhang J, Chen S, Wang F, Zhang T, Niswander L. Genetic contribution of retinoid-related genes to neural tube defects. Hum Mutat 2018; 39:550-562. [PMID: 29297599 PMCID: PMC5839987 DOI: 10.1002/humu.23397] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/27/2017] [Accepted: 12/28/2017] [Indexed: 12/21/2022]
Abstract
Rare variants are considered underlying causes of complex diseases. The complex and severe group of disorders called neural tube defects (NTDs) results from failure of the neural tube to close during early embryogenesis. Neural tube closure requires the coordination of numerous signaling pathways, including the precise regulation of retinoic acid (RA) concentration, which is controlled by enzymes involved in RA synthesis and degradation. Here, we used a case-control mutation screen study to reveal rare variants in retinoid-related genes in a Han Chinese NTD population by sequencing six genes in 355 NTD cases and 225 controls. More specific rare variants were found in exonic and upstream regions in NTD cases. The RA-responsive genes CYP26A1, CRABP1, and ALDH1A2 harbored NTD-specific rare variants in their upstream regions. Unexpectedly, the majority of missense variants in NTD cases were found in CYP26B1, which encodes a RA degradation enzyme, whereas no missense variants in this gene were found in controls. Functional analysis indicated that the CYP26B1 NTD variants were inefficient in the degradation of RA using assays of RA-induced transcription and RA-initiated neuronal differentiation. Our study supports the contribution of rare variants in RA-related genes to the etiology of human NTDs.
Collapse
Affiliation(s)
- Huili Li
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children’s Hospital Colorado, Aurora, Colorado 80045
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Jing Zhang
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children’s Hospital Colorado, Aurora, Colorado 80045
| | - Shuyuan Chen
- Department of Pediatrics, XiangYa Hospital of Central South University, Changsha 410008, China
| | - Fang Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Lee Niswander
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children’s Hospital Colorado, Aurora, Colorado 80045
| |
Collapse
|
8
|
Selland LG, Koch S, Laraque M, Waskiewicz AJ. Coordinate regulation of retinoic acid synthesis by pbx genes and fibroblast growth factor signaling by hoxb1b is required for hindbrain patterning and development. Mech Dev 2018; 150:28-41. [PMID: 29496480 DOI: 10.1016/j.mod.2018.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 10/17/2022]
Abstract
The vertebrate hindbrain is composed of a series of lineage-restricted segments termed rhombomeres. Segment-specific gene expression drives unique programs of neuronal differentiation. Two critical embryonic signaling pathways, Fibroblast Growth Factor (FGF) and Retinoic Acid (RA), regulate early embryonic rhombomere patterning. The earliest expressed hox genes, hoxb1b and hoxb1a in zebrafish, are logical candidates for establishing signaling networks that specify segmental identity. We sought to determine the mechanism by which hox genes regulate hindbrain patterning in zebrafish. We demonstrate that hoxb1a regulates r4-specific patterning, while hoxb1b regulates rhombomere segmentation and size. Hoxb1a and hoxb1b redundantly regulate vhnf1 expression. Loss of hoxb1b together with pbx4 reverts the hindbrain to a groundstate identity, demonstrating the importance of hox genes in patterning nearly the entire hindbrain, and a key requirement for Pbx in this process. Additionally, we provide evidence that while pbx genes regulate RA signaling, hoxb1b regulates hindbrain identity through complex regulation of FGF signaling.
Collapse
Affiliation(s)
- Lyndsay G Selland
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Sophie Koch
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Malcolm Laraque
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Andrew J Waskiewicz
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
9
|
Liu J, Sun L, Zhang H, Shi M, Dahlgren RA, Wang X, Wang H. Response mechanisms to joint exposure of triclosan and its chlorinated derivatives on zebrafish (Danio rerio) behavior. CHEMOSPHERE 2018; 193:820-832. [PMID: 29874755 DOI: 10.1016/j.chemosphere.2017.11.106] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/15/2017] [Accepted: 11/20/2017] [Indexed: 05/03/2023]
Abstract
Triclosan (TCS), 2,4,6-trichlorophenol (2,4,6-TCP) and 2,4-dichlorophenol (2,4-DCP) frequently co-exist in real-world aquatic environments; the latter two contaminants contributing to TCS photolytic products or chlorinated derivatives. There is a paucity of information regarding their joint toxicity to aquatic organisms leading us to study their effects on the swimming behavior of zebrafish (Danio rerio). Herein, we reported that 0.28 mg/L TDT exposure (mixtures of TCS, 2,4,6-TCP and 2,4-DCP) enhanced 24-hpf embryonic spontaneous movement frequency, 96-hpf larval activity; however, the 0.56 and 1.12 mg/L TDT treatments decreased all of these behavioral endpoints. All adult behavioral tests demonstrated that chronic TDT exposure (0.14 mg/L) led to hyperactivity and restlessness in adult zebrafish. A 0.14 mg/L TD DATE /@ "M/d/yyyy" 11/21/2017T treatment led to anxiety-like behavior in a bottom dwelling test and excessive panic and low hedging capacity in a conditioned place preference test. Social interaction test demonstrated that zebrafish preferred quiet and isolated space in response to TDT stress. Zebrafish memory was significantly decreased in a T-maze experiment. Whole mount in situ hybridization of pax2a and bcl2l11 genes revealed that their differential expression in the brain and skeleton were related to the corresponding phenotypic behavioral abnormality. A series of biomarker and estrogen receptor assays demonstrated that TDT acute exposure caused abnormal energy metabolism and neurological diseases. AO staining revealed that TDT exposure produced vascular ablation in the head, as well as the occurrence of massive apoptosis in the brain. TEM observation showed pyknosis of nucleus following TDT exposure. These results allow assessment of mechanisms for zebrafish abnormal behavior in response to TDT exposure, and are useful for early intervention and gene therapy of contaminant-induced diseases.
Collapse
Affiliation(s)
- Jinfeng Liu
- School of Life Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Limei Sun
- School of Life Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Hongqin Zhang
- School of Life Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Mengru Shi
- School of Life Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Randy A Dahlgren
- Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA
| | - Xuedong Wang
- School of Life Sciences, Wenzhou Medical University, Wenzhou 325035, PR China.
| | - Huili Wang
- School of Life Sciences, Wenzhou Medical University, Wenzhou 325035, PR China.
| |
Collapse
|
10
|
Dong X, Li J, He L, Gu C, Jia W, Yue Y, Li J, Zhang Q, Chu L, Zhao Q. Zebrafish Znfl1 proteins control the expression of hoxb1b gene in the posterior neuroectoderm by acting upstream of pou5f3 and sall4 genes. J Biol Chem 2017. [PMID: 28623229 DOI: 10.1074/jbc.m117.777094] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Transcription factors play crucial roles in patterning posterior neuroectoderm. Previously, zinc finger transcription factor znfl1 was reported to be expressed in the posterior neuroectoderm of zebrafish embryos. However, its roles remain unknown. Here, we report that there are 13 copies of znfl1 in the zebrafish genome, and all the paralogues share highly identical protein sequences and cDNA sequences. When znfl1s are knocked down using a morpholino to inhibit their translation or dCas9-Eve to inhibit their transcription, the zebrafish gastrula displays reduced expression of hoxb1b, the marker gene for the posterior neuroectoderm. Further analyses reveal that diminishing znfl1s produces the decreased expressions of pou5f3, whereas overexpression of pou5f3 effectively rescues the reduced expression of hoxb1b in the posterior neuroectoderm. Additionally, knocking down znfl1s causes the reduced expression of sall4, a direct regulator of pou5f3, in the posterior neuroectoderm, and overexpression of sall4 rescues the expression of pou5f3 in the knockdown embryos. In contrast, knocking down either pou5f3 or sall4 does not affect the expressions of znfl1s Taken together, our results demonstrate that zebrafish znfl1s control the expression of hoxb1b in the posterior neuroectoderm by acting upstream of pou5f3 and sall4.
Collapse
Affiliation(s)
- Xiaohua Dong
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China; Institute of Genome Editing, Nanjing YSY Biotech Company, Limited, Nanjing 211812, China
| | - Jingyun Li
- Maternal and Child Health Medical Institute, Department of Plastic and Cosmetic Surgery, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing 210004, China
| | - Luqingqing He
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Chun Gu
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Wenshuang Jia
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Yunyun Yue
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Jun Li
- Maternal and Child Health Medical Institute, Department of Plastic and Cosmetic Surgery, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing 210004, China
| | - Qinxin Zhang
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Lele Chu
- Institute of Genome Editing, Nanjing YSY Biotech Company, Limited, Nanjing 211812, China
| | - Qingshun Zhao
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China.
| |
Collapse
|
11
|
Moffat JJ, Ka M, Jung EM, Smith AL, Kim WY. The role of MACF1 in nervous system development and maintenance. Semin Cell Dev Biol 2017; 69:9-17. [PMID: 28579452 DOI: 10.1016/j.semcdb.2017.05.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/12/2017] [Accepted: 05/29/2017] [Indexed: 12/14/2022]
Abstract
Microtubule-actin crosslinking factor 1 (MACF1), also known as actin crosslinking factor 7 (ACF7), is essential for proper modulation of actin and microtubule cytoskeletal networks. Most MACF1 isoforms are expressed broadly in the body, but some are exclusively found in the nervous system. Consequentially, MACF1 is integrally involved in multiple neural processes during development and in adulthood, including neurite outgrowth and neuronal migration. Furthermore, MACF1 participates in several signaling pathways, including the Wnt/β-catenin and GSK-3 signaling pathways, which regulate key cellular processes, such as proliferation and cell migration. Genetic mutation or dysregulation of the MACF1 gene has been associated with neurodevelopmental and neurodegenerative diseases, specifically schizophrenia and Parkinson's disease. MACF1 may also play a part in neuromuscular disorders and have a neuroprotective role in the optic nerve. In this review, the authors seek to synthesize recent findings relating to the roles of MACF1 within the nervous system and explore potential novel functions of MACF1 not yet examined.
Collapse
Affiliation(s)
- Jeffrey J Moffat
- Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Minhan Ka
- Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Eui-Man Jung
- Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Amanda L Smith
- Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Woo-Yang Kim
- Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
12
|
Rezsohazy R, Saurin AJ, Maurel-Zaffran C, Graba Y. Cellular and molecular insights into Hox protein action. Development 2016; 142:1212-27. [PMID: 25804734 DOI: 10.1242/dev.109785] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hox genes encode homeodomain transcription factors that control morphogenesis and have established functions in development and evolution. Hox proteins have remained enigmatic with regard to the molecular mechanisms that endow them with specific and diverse functions, and to the cellular functions that they control. Here, we review recent examples of Hox-controlled cellular functions that highlight their versatile and highly context-dependent activity. This provides the setting to discuss how Hox proteins control morphogenesis and organogenesis. We then summarise the molecular modalities underlying Hox protein function, in particular in light of current models of transcription factor function. Finally, we discuss how functional divergence between Hox proteins might be achieved to give rise to the many facets of their action.
Collapse
Affiliation(s)
- René Rezsohazy
- Institut des Sciences de la Vie, Université Catholique de Louvain, Louvain-la-Neuve B-1348, Belgium
| | - Andrew J Saurin
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille 13288, Cedex 09, France
| | | | - Yacine Graba
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille 13288, Cedex 09, France
| |
Collapse
|
13
|
Dynamics of the Transcriptome during Human Spermatogenesis: Predicting the Potential Key Genes Regulating Male Gametes Generation. Sci Rep 2016; 6:19069. [PMID: 26753906 PMCID: PMC4750114 DOI: 10.1038/srep19069] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/27/2015] [Indexed: 12/26/2022] Open
Abstract
Many infertile men are the victims of spermatogenesis disorder. However, conventional clinical test could not provide efficient information on the causes of spermatogenesis disorder and guide the doctor how to treat it. More effective diagnosis and treating methods could be developed if the key genes that regulate spermatogenesis were determined. Many works have been done on animal models, while there are few works on human beings due to the limited sample resources. In current work, testis tissues were obtained from 27 patients with obstructive azoospermia via surgery. The combination of Fluorescence Activated Cell Sorting and Magnetic Activated Cell Sorting was chosen as the efficient method to sort typical germ cells during spermatogenesis. RNA Sequencing was carried out to screen the change of transcriptomic profile of the germ cells during spermatogenesis. Differential expressed genes were clustered according to their expression patterns. Gene Ontology annotation, pathway analysis, and Gene Set Enrichment Analysis were carried out on genes with specific expression patterns and the potential key genes such as HOXs, JUN, SP1, and TCF3 which were involved in the regulation of spermatogenesis, with the potential value serve as molecular tools for clinical purpose, were predicted.
Collapse
|
14
|
miR-430 regulates oriented cell division during neural tube development in zebrafish. Dev Biol 2015; 409:442-50. [PMID: 26658217 DOI: 10.1016/j.ydbio.2015.11.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/19/2015] [Accepted: 11/19/2015] [Indexed: 11/23/2022]
Abstract
MicroRNAs have emerged as critical regulators of gene expression. Originally shown to regulate developmental timing, microRNAs have since been implicated in a wide range of cellular functions including cell identity, migration and signaling. miRNA-430, the earliest expressed microRNA during zebrafish embryogenesis, is required to undergo morphogenesis and has previously been shown to regulate maternal mRNA clearance, Nodal signaling, and germ cell migration. The functions of miR-430 in brain morphogenesis, however, remain unclear. Herein we find that miR-430 instructs oriented cell divisions in the neural rod required for neural midline formation. Loss of miR-430 function results in mitotic spindle misorientation in the neural rod, failed neuroepithelial integration after cell division, and ectopic cell accumulation in the dorsal neural tube. We propose that miR-430, independently of canonical apicobasal and planar cell polarity (PCP) pathways, coordinates the stereotypical cell divisions that instruct neural tube morphogenesis.
Collapse
|
15
|
Han L, Liu D, Li Z, Tian N, Han Z, Wang G, Fu Y, Guo Z, Zhu Z, Du C, Tian Y. HOXB1 Is a Tumor Suppressor Gene Regulated by miR-3175 in Glioma. PLoS One 2015; 10:e0142387. [PMID: 26565624 PMCID: PMC4643923 DOI: 10.1371/journal.pone.0142387] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/21/2015] [Indexed: 12/19/2022] Open
Abstract
The HOXB1 gene plays a critical role as an oncogene in diverse tumors. However, the functional role of HOXB1 and the mechanism regulating HOXB1 expression in glioma are not fully understood. A preliminary bioinformatics analysis showed that HOXB1 is ectopically expressed in glioma, and that HOXB1 is a possible target of miR-3175. In this study, we investigated the function of HOXB1 and the relationship between HOXB1 and miR-3175 in glioma. We show that HOXB1 expression is significantly downregulated in glioma tissues and cell lines, and that its expression may be closely associated with the degree of malignancy. Reduced HOXB1 expression promoted the proliferation and invasion of glioma cells, and inhibited their apoptosis in vitro, and the downregulation of HOXB1 was also associated with worse survival in glioma patients. More importantly, HOXB1 was shown experimentally to be a direct target of miR-3175 in this study. The downregulated expression of miR-3175 inhibited cell proliferation and invasion, and promoted apoptosis in glioma. The oncogenicity induced by low HOXB1 expression was prevented by an miR-3175 inhibitor in glioma cells. Our results suggest that HOXB1 functions as a tumor suppressor, regulated by miR-3175 in glioma. These results clarify the pathogenesis of glioma and offer a potential target for its treatment.
Collapse
Affiliation(s)
- Liang Han
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Dehua Liu
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Zhaohui Li
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Nan Tian
- Department of Cell Biology, College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ziwu Han
- Department of Cell Biology, College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Guang Wang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yao Fu
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Zhigang Guo
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Zifeng Zhu
- Department of Interventional Therapy, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Chao Du
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- * E-mail: (CD); (YT)
| | - Yu Tian
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- * E-mail: (CD); (YT)
| |
Collapse
|
16
|
Jungke P, Hammer J, Hans S, Brand M. Isolation of Novel CreERT2-Driver Lines in Zebrafish Using an Unbiased Gene Trap Approach. PLoS One 2015; 10:e0129072. [PMID: 26083735 PMCID: PMC4471347 DOI: 10.1371/journal.pone.0129072] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 05/04/2015] [Indexed: 01/01/2023] Open
Abstract
Gene manipulation using the Cre/loxP-recombinase system has been successfully employed in zebrafish to study gene functions and lineage relationships. Recently, gene trapping approaches have been applied to produce large collections of transgenic fish expressing conditional alleles in various tissues. However, the limited number of available cell- and tissue-specific Cre/CreERT2-driver lines still constrains widespread application in this model organism. To enlarge the pool of existing CreERT2-driver lines, we performed a genome-wide gene trap screen using a Tol2-based mCherry-T2a-CreERT2 (mCT2aC) gene trap vector. This cassette consists of a splice acceptor and a mCherry-tagged variant of CreERT2 which enables simultaneous labeling of the trapping event, as well as CreERT2 expression from the endogenous promoter. Using this strategy, we generated 27 novel functional CreERT2-driver lines expressing in a cell- and tissue-specific manner during development and adulthood. This study summarizes the analysis of the generated CreERT2-driver lines with respect to functionality, expression, integration, as well as associated phenotypes. Our results significantly enlarge the existing pool of CreERT2-driver lines in zebrafish and combined with Cre-dependent effector lines, the new CreERT2-driver lines will be important tools to manipulate the zebrafish genome.
Collapse
Affiliation(s)
- Peggy Jungke
- Biotechnology Center and Center for Regenerative Therapies Dresden, Dresden University of Technology, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Juliane Hammer
- Biotechnology Center and Center for Regenerative Therapies Dresden, Dresden University of Technology, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Stefan Hans
- Biotechnology Center and Center for Regenerative Therapies Dresden, Dresden University of Technology, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Michael Brand
- Biotechnology Center and Center for Regenerative Therapies Dresden, Dresden University of Technology, Fetscherstrasse 105, 01307 Dresden, Germany
| |
Collapse
|
17
|
Whitfield TT. Development of the inner ear. Curr Opin Genet Dev 2015; 32:112-8. [DOI: 10.1016/j.gde.2015.02.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/11/2015] [Accepted: 02/13/2015] [Indexed: 02/04/2023]
|
18
|
Weicksel SE, Gupta A, Zannino DA, Wolfe SA, Sagerström CG. Targeted germ line disruptions reveal general and species-specific roles for paralog group 1 hox genes in zebrafish. BMC DEVELOPMENTAL BIOLOGY 2014; 14:25. [PMID: 24902847 PMCID: PMC4061917 DOI: 10.1186/1471-213x-14-25] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/27/2014] [Indexed: 01/04/2023]
Abstract
Background The developing vertebrate hindbrain is transiently segmented into rhombomeres by a process requiring Hox activity. Hox genes control specification of rhombomere fates, as well as the stereotypic differentiation of rhombomere-specific neuronal populations. Accordingly, germ line disruption of the paralog group 1 (PG1) Hox genes Hoxa1 and Hoxb1 causes defects in hindbrain segmentation and neuron formation in mice. However, antisense-mediated interference with zebrafish hoxb1a and hoxb1b (analogous to murine Hoxb1 and Hoxa1, respectively) produces phenotypes that are qualitatively and quantitatively distinct from those observed in the mouse. This suggests that PG1 Hox genes may have species-specific functions, or that anti-sense mediated interference may not completely inactivate Hox function in zebrafish. Results Using zinc finger and TALEN technologies, we disrupted hoxb1a and hoxb1b in the zebrafish germ line to establish mutant lines for each gene. We find that zebrafish hoxb1a germ line mutants have a more severe phenotype than reported for Hoxb1a antisense treatment. This phenotype is similar to that observed in Hoxb1 knock out mice, suggesting that Hoxb1/hoxb1a have the same function in both species. Zebrafish hoxb1b germ line mutants also have a more severe phenotype than reported for hoxb1b antisense treatment (e.g. in the effect on Mauthner neuron differentiation), but this phenotype differs from that observed in Hoxa1 knock out mice (e.g. in the specification of rhombomere 5 (r5) and r6), suggesting that Hoxa1/hoxb1b have species-specific activities. We also demonstrate that Hoxb1b regulates nucleosome organization at the hoxb1a promoter and that retinoic acid acts independently of hoxb1b to activate hoxb1a expression. Conclusions We generated several novel germ line mutants for zebrafish hoxb1a and hoxb1b. Our analyses indicate that Hoxb1 and hoxb1a have comparable functions in zebrafish and mouse, suggesting a conserved function for these genes. In contrast, while Hoxa1 and hoxb1b share functions in the formation of r3 and r4, they differ with regards to r5 and r6, where Hoxa1 appears to control formation of r5, but not r6, in the mouse, whereas hoxb1b regulates formation of r6, but not r5, in zebrafish. Lastly, our data reveal independent regulation of hoxb1a expression by retinoic acid and Hoxb1b in zebrafish.
Collapse
Affiliation(s)
| | | | | | | | - Charles G Sagerström
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St,/LRB815, Worcester, MA 01605-2324, USA.
| |
Collapse
|
19
|
Establishing the plane of symmetry for lumen formation and bilateral brain formation in the zebrafish neural rod. Semin Cell Dev Biol 2014; 31:100-5. [PMID: 24721474 DOI: 10.1016/j.semcdb.2014.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 04/01/2014] [Indexed: 11/21/2022]
Abstract
The lumen of the zebrafish neural tube develops precisely at the midline of the solid neural rod primordium. This process depends on cell polarisation and cell rearrangements, both of which are manifest at the midline of the neural rod. The result of this cell polarisation and cell rearrangement is an epithelial tube that has overt mirror-symmetry, such that cell morphology and apicobasal polarisation are mirrored across the midline of the neural tube. This article discusses how this mirror-symmetry is established and proposes the hypothesis that positioning the cells' centrosomes to the midline of the neural rod is a key event in organising this process.
Collapse
|