1
|
Komori H, Rastogi G, Bugay JP, Luo H, Lin S, Angers S, Smibert CA, Lipshitz HD, Lee CY. mRNA decay pre-complex assembly drives timely cell-state transitions during differentiation. Cell Rep 2025; 44:115138. [PMID: 39739530 PMCID: PMC11911916 DOI: 10.1016/j.celrep.2024.115138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/27/2024] [Accepted: 12/11/2024] [Indexed: 01/02/2025] Open
Abstract
Complexes that control mRNA stability and translation promote timely cell-state transitions during differentiation by ensuring appropriate expression patterns of key developmental regulators. The Drosophila RNA-binding protein brain tumor (Brat) promotes the degradation of target transcripts during the maternal-to-zygotic transition in syncytial embryos and uncommitted intermediate neural progenitors (immature INPs). We identify ubiquitin-specific protease 5 (Usp5) as a candidate Brat interactor essential for the degradation of Brat target mRNAs. Usp5 promotes the formation of the Brat-deadenylase pre-complex in mitotic neural stem cells (neuroblasts) by facilitating Brat interactions with the scaffolding components of deadenylase complexes. The adaptor protein Miranda binds the RNA-binding domain of Brat, limiting its ability to bind target mRNAs in mitotic neuroblasts. Cortical displacement of Miranda activates Brat-deadenylase complex activity in immature INPs. We propose that the assembly of an enzymatically inactive and RNA-binding-deficient pre-complex poises mRNA degradation machineries for rapid activation, driving timely developmental transitions.
Collapse
Affiliation(s)
- Hideyuki Komori
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Geeta Rastogi
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - John Paul Bugay
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Hua Luo
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Sichun Lin
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Stephane Angers
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Craig A Smibert
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Howard D Lipshitz
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Cheng-Yu Lee
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Division of Genetic Medicine, Department of Internal Medicine and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
2
|
Connacher R, Roden R, Huang KL, Korte A, Yeruva S, Dittbenner N, DesMarais A, Weidmann C, Randall T, Williams J, Hall TMT, Wagner E, Goldstrohm A. The TRIM-NHL RNA-binding protein Brain Tumor coordinately regulates expression of the glycolytic pathway and vacuolar ATPase complex. Nucleic Acids Res 2024; 52:12669-12688. [PMID: 39351871 PMCID: PMC11551770 DOI: 10.1093/nar/gkae810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/29/2024] [Accepted: 09/08/2024] [Indexed: 10/03/2024] Open
Abstract
The essential Drosophila RNA-binding protein Brain Tumor (Brat) represses specific genes to control embryogenesis and differentiation of stem cells. In the brain, Brat functions as a tumor suppressor that diminishes neural stem cell proliferation while promoting differentiation. Though important Brat-regulated target mRNAs have been identified in these contexts, the full impact of Brat on gene expression remains to be discovered. Here, we identify the network of Brat-regulated mRNAs by performing RNA sequencing (RNA-seq) following depletion of Brat from cultured cells. We identify 158 mRNAs, with high confidence, that are repressed by Brat. De novo motif analysis identified a functionally enriched RNA motif in the 3' untranslated regions (UTRs) of Brat-repressed mRNAs that matches the biochemically defined Brat binding site. Integrative data analysis revealed a high-confidence list of Brat-repressed and Brat-bound mRNAs containing 3'UTR Brat binding motifs. Our RNA-seq and reporter assays show that multiple 3'UTR motifs promote the strength of Brat repression, whereas motifs in the 5'UTR are not functional. Strikingly, we find that Brat regulates expression of glycolytic enzymes and the vacuolar ATPase complex, providing new insight into its role as a tumor suppressor and the coordination of metabolism and intracellular pH.
Collapse
Affiliation(s)
- Robert P Connacher
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 1214A 6-155 Jackson Hall, 321 Church Street S.E., Minneapolis, MN 55455, USA
| | - Richard T Roden
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 1214A 6-155 Jackson Hall, 321 Church Street S.E., Minneapolis, MN 55455, USA
| | - Kai-Lieh Huang
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, 575 Elmwood Avenue, Rochester, NY 14642, USA
| | - Amanda J Korte
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 1214A 6-155 Jackson Hall, 321 Church Street S.E., Minneapolis, MN 55455, USA
| | - Saathvika Yeruva
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 1214A 6-155 Jackson Hall, 321 Church Street S.E., Minneapolis, MN 55455, USA
| | - Noel Dittbenner
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 1214A 6-155 Jackson Hall, 321 Church Street S.E., Minneapolis, MN 55455, USA
| | - Anna J DesMarais
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 1214A 6-155 Jackson Hall, 321 Church Street S.E., Minneapolis, MN 55455, USA
| | - Chase A Weidmann
- Department of Biological Chemistry, Center for RNA Biomedicine, University of Michigan Medical School, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Thomas A Randall
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences (NIEHS), 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Jason Williams
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Traci M Tanaka Hall
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Eric J Wagner
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, 575 Elmwood Avenue, Rochester, NY 14642, USA
| | - Aaron C Goldstrohm
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 1214A 6-155 Jackson Hall, 321 Church Street S.E., Minneapolis, MN 55455, USA
| |
Collapse
|
3
|
Komori H, Rastogi G, Bugay JP, Luo H, Lin S, Angers S, Smibert CA, Lipshitz HD, Lee CY. Post-transcriptional regulatory pre-complex assembly drives timely cell-state transitions during differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591706. [PMID: 38746105 PMCID: PMC11092521 DOI: 10.1101/2024.04.29.591706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Complexes that control mRNA stability and translation promote timely cell-state transitions during differentiation by ensuring appropriate expression patterns of key developmental regulators. The Drosophila RNA-binding protein Brain tumor (Brat) promotes degradation of target transcripts during the maternal-to-zygotic transition in syncytial embryos and in uncommitted intermediate neural progenitors (immature INPs). We identified Ubiquitin-specific protease 5 (Usp5) as a Brat interactor essential for the degradation of Brat target mRNAs in both cell types. Usp5 promotes Brat-dedadenylase pre-complex assembly in mitotic neural stem cells (neuroblasts) by bridging Brat and the scaffolding components of deadenylase complexes lacking their catalytic subunits. The adaptor protein Miranda binds the RNA-binding domain of Brat, limiting its ability to bind target mRNAs in mitotic neuroblasts. Cortical displacement of Miranda activates Brat-mediated mRNA decay in immature INPs. We propose that the assembly of an enzymatically inactive and RNA-binding-deficient pre-complex poises mRNA degradation machineries for rapid activation driving timely developmental transitions.
Collapse
|
4
|
Diaz LR, Gil-Ranedo J, Jaworek KJ, Nsek N, Marques JP, Costa E, Hilton DA, Bieluczyk H, Warrington O, Hanemann CO, Futschik ME, Bossing T, Barros CS. Ribogenesis boosts controlled by HEATR1-MYC interplay promote transition into brain tumour growth. EMBO Rep 2024; 25:168-197. [PMID: 38225354 PMCID: PMC10897169 DOI: 10.1038/s44319-023-00017-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 01/17/2024] Open
Abstract
Cell commitment to tumourigenesis and the onset of uncontrolled growth are critical determinants in cancer development but the early events directing tumour initiating cell (TIC) fate remain unclear. We reveal a single-cell transcriptome profile of brain TICs transitioning into tumour growth using the brain tumour (brat) neural stem cell-based Drosophila model. Prominent changes in metabolic and proteostasis-associated processes including ribogenesis are identified. Increased ribogenesis is a known cell adaptation in established tumours. Here we propose that brain TICs boost ribogenesis prior to tumour growth. In brat-deficient TICs, we show that this dramatic change is mediated by upregulated HEAT-Repeat Containing 1 (HEATR1) to promote ribosomal RNA generation, TIC enlargement and onset of overgrowth. High HEATR1 expression correlates with poor glioma patient survival and patient-derived glioblastoma stem cells rely on HEATR1 for enhanced ribogenesis and tumourigenic potential. Finally, we show that HEATR1 binds the master growth regulator MYC, promotes its nucleolar localisation and appears required for MYC-driven ribogenesis, suggesting a mechanism co-opted in ribogenesis reprogramming during early brain TIC development.
Collapse
Affiliation(s)
- Laura R Diaz
- Peninsula Medical School, Faculty of Health, John Bull Building, University of Plymouth, PL6 8BU, Plymouth, UK
| | - Jon Gil-Ranedo
- Peninsula Medical School, Faculty of Health, John Bull Building, University of Plymouth, PL6 8BU, Plymouth, UK
| | - Karolina J Jaworek
- Peninsula Medical School, Faculty of Health, John Bull Building, University of Plymouth, PL6 8BU, Plymouth, UK
- School of Biological Sciences, Bangor University, LL57 2UW, Bangor, UK
| | - Nsikan Nsek
- Peninsula Medical School, Faculty of Health, John Bull Building, University of Plymouth, PL6 8BU, Plymouth, UK
| | - Joao Pinheiro Marques
- Peninsula Medical School, Faculty of Health, John Bull Building, University of Plymouth, PL6 8BU, Plymouth, UK
| | - Eleni Costa
- Peninsula Medical School, Faculty of Health, John Bull Building, University of Plymouth, PL6 8BU, Plymouth, UK
| | - David A Hilton
- Department of Cellular and Anatomical Pathology, University Hospitals Plymouth, PL6 8DH, Plymouth, UK
| | - Hubert Bieluczyk
- Peninsula Medical School, Faculty of Health, John Bull Building, University of Plymouth, PL6 8BU, Plymouth, UK
| | - Oliver Warrington
- Peninsula Medical School, Faculty of Health, John Bull Building, University of Plymouth, PL6 8BU, Plymouth, UK
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, WC1N 3AR, London, UK
| | - C Oliver Hanemann
- Peninsula Medical School, Faculty of Health, John Bull Building, University of Plymouth, PL6 8BU, Plymouth, UK
| | - Matthias E Futschik
- School of Biomedical Sciences, Faculty of Health, Derriford Research Facility, University of Plymouth, PL6 8BU, Plymouth, UK
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504, Coimbra, Portugal
| | - Torsten Bossing
- Peninsula Medical School, Faculty of Health, John Bull Building, University of Plymouth, PL6 8BU, Plymouth, UK
| | - Claudia S Barros
- Peninsula Medical School, Faculty of Health, John Bull Building, University of Plymouth, PL6 8BU, Plymouth, UK.
| |
Collapse
|
5
|
Wang J, Yin L. CNN-based glioma detection in MRI: A deep learning approach. Technol Health Care 2024; 32:4965-4982. [PMID: 39031408 PMCID: PMC11612952 DOI: 10.3233/thc-240158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/13/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND More than a million people are affected by brain tumors each year; high-grade gliomas (HGGs) and low-grade gliomas (LGGs) present serious diagnostic and treatment hurdles, resulting in shortened life expectancies. Glioma segmentation is still a significant difficulty in clinical settings, despite improvements in Magnetic Resonance Imaging (MRI) and diagnostic tools. Convolutional neural networks (CNNs) have seen recent advancements that offer promise for increasing segmentation accuracy, addressing the pressing need for improved diagnostic and therapeutic approaches. OBJECTIVE The study intended to develop an automated glioma segmentation algorithm using CNN to accurately identify tumor components in MRI images. The goal was to match the accuracy of experienced radiologists with commercial instruments, hence improving diagnostic precision and quantification. METHODS 285 MRI scans of high-grade gliomas (HGGs) and low-grade gliomas (LGGs) were analyzed in the study. T1-weighted sequences were utilised for segmentation both pre-and post-contrast agent administration, along with T2-weighted sequences (with and without Fluid Attenuation by Inversion Recovery [FAIRE]). The segmentation performance was assessed with a U-Net network, renowned for its efficacy in medical image segmentation. DICE coefficients were computed for the tumour core with contrast enhancement, the entire tumour, and the tumour nucleus without contrast enhancement. RESULTS The U-Net network produced DICE values of 0.7331 for the tumour core with contrast enhancement, 0.8624 for the total tumour, and 0.7267 for the tumour nucleus without contrast enhancement. The results align with previous studies, demonstrating segmentation accuracy on par with professional radiologists and commercially accessible segmentation tools. CONCLUSION The study developed a CNN-based automated segmentation system for gliomas, achieving high accuracy in recognising glioma components in MRI images. The results confirm the ability of CNNs to enhance the accuracy of brain tumour diagnoses, suggesting a promising avenue for future research in medical imaging and diagnostics. This advancement is expected to improve diagnostic processes for clinicians and patients by providing more precise and quantitative results.
Collapse
Affiliation(s)
- Jing Wang
- Medical Imaging Center, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong, China
| | - Liang Yin
- Medical Imaging Center, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|
6
|
Abidi SNF, Hsu FTY, Smith-Bolton RK. Regenerative growth is constrained by brain tumor to ensure proper patterning in Drosophila. PLoS Genet 2023; 19:e1011103. [PMID: 38127821 PMCID: PMC10769103 DOI: 10.1371/journal.pgen.1011103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 01/05/2024] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Some animals respond to injury by inducing new growth to regenerate the lost structures. This regenerative growth must be carefully controlled and constrained to prevent aberrant growth and to allow correct organization of the regenerating tissue. However, the factors that restrict regenerative growth have not been identified. Using a genetic ablation system in the Drosophila wing imaginal disc, we have identified one mechanism that constrains regenerative growth, impairment of which also leads to erroneous patterning of the final appendage. Regenerating discs with reduced levels of the RNA-regulator Brain tumor (Brat) exhibit enhanced regeneration, but produce adult wings with disrupted margins that are missing extensive tracts of sensory bristles. In these mutants, aberrantly high expression of the pro-growth factor Myc and its downstream targets likely contributes to this loss of cell-fate specification. Thus, Brat constrains the expression of pro-regeneration genes and ensures that the regenerating tissue forms the proper final structure.
Collapse
Affiliation(s)
- Syeda Nayab Fatima Abidi
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Felicity Ting-Yu Hsu
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Rachel K. Smith-Bolton
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Carle R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
7
|
Rajan A, Anhezini L, Rives-Quinto N, Chhabra JY, Neville MC, Larson ED, Goodwin SF, Harrison MM, Lee CY. Low-level repressive histone marks fine-tune gene transcription in neural stem cells. eLife 2023; 12:e86127. [PMID: 37314324 PMCID: PMC10344426 DOI: 10.7554/elife.86127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/11/2023] [Indexed: 06/15/2023] Open
Abstract
Coordinated regulation of gene activity by transcriptional and translational mechanisms poise stem cells for a timely cell-state transition during differentiation. Although important for all stemness-to-differentiation transitions, mechanistic understanding of the fine-tuning of gene transcription is lacking due to the compensatory effect of translational control. We used intermediate neural progenitor (INP) identity commitment to define the mechanisms that fine-tune stemness gene transcription in fly neural stem cells (neuroblasts). We demonstrate that the transcription factor FruitlessC (FruC) binds cis-regulatory elements of most genes uniquely transcribed in neuroblasts. Loss of fruC function alone has no effect on INP commitment but drives INP dedifferentiation when translational control is reduced. FruC negatively regulates gene expression by promoting low-level enrichment of the repressive histone mark H3K27me3 in gene cis-regulatory regions. Identical to fruC loss-of-function, reducing Polycomb Repressive Complex 2 activity increases stemness gene activity. We propose low-level H3K27me3 enrichment fine-tunes gene transcription in stem cells, a mechanism likely conserved from flies to humans.
Collapse
Affiliation(s)
- Arjun Rajan
- Life Sciences Institute, University of Michigan-Ann ArborAnn ArborUnited States
| | - Lucas Anhezini
- Life Sciences Institute, University of Michigan-Ann ArborAnn ArborUnited States
| | - Noemi Rives-Quinto
- Life Sciences Institute, University of Michigan-Ann ArborAnn ArborUnited States
| | - Jay Y Chhabra
- Life Sciences Institute, University of Michigan-Ann ArborAnn ArborUnited States
| | - Megan C Neville
- Centre for Neural Circuits and Behaviour, University of OxfordOxfordUnited Kingdom
| | - Elizabeth D Larson
- Department of Biomolecular Chemistry, University of Wisconsin-MadisonMadisonUnited States
| | - Stephen F Goodwin
- Centre for Neural Circuits and Behaviour, University of OxfordOxfordUnited Kingdom
| | - Melissa M Harrison
- Department of Biomolecular Chemistry, University of Wisconsin-MadisonMadisonUnited States
| | - Cheng-Yu Lee
- Life Sciences Institute, University of Michigan-Ann ArborAnn ArborUnited States
- Department of Cell and Developmental Biology, University of Michigan Medical SchoolAnn ArborUnited States
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan Medical SchoolAnn ArborUnited States
- Rogel Cancer Center, University of Michigan Medical SchoolAnn ArborUnited States
| |
Collapse
|
8
|
Larson ED, Komori H, Fitzpatrick ZA, Krabbenhoft SD, Lee CY, Harrison M. Premature translation of the Drosophila zygotic genome activator Zelda is not sufficient to precociously activate gene expression. G3 (BETHESDA, MD.) 2022; 12:6649735. [PMID: 35876878 PMCID: PMC9434156 DOI: 10.1093/g3journal/jkac159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/15/2022] [Indexed: 05/22/2023]
Abstract
Following fertilization, the unified germ cells rapidly transition to a totipotent embryo. Maternally deposited mRNAs encode the proteins necessary for this reprogramming as the zygotic genome remains transcriptionally quiescent during the initial stages of development. The transcription factors required to activate the zygotic genome are among these maternally deposited mRNAs and are robustly translated following fertilization. In Drosophila, the mRNA encoding Zelda, the major activator of the zygotic genome, is not translated until 1 h after fertilization. Here we demonstrate that zelda translation is repressed in the early embryo by the TRIM-NHL protein Brain tumor (BRAT). BRAT also regulates Zelda levels in the larval neuroblast lineage. In the embryo, BRAT-mediated translational repression is regulated by the Pan Gu kinase, which is triggered by egg activation. The Pan Gu kinase phosphorylates translational regulators, suggesting that Pan Gu kinase activity alleviates translational repression of zelda by BRAT and coupling translation of zelda with that of other regulators of early embryonic development. Using the premature translation of zelda in embryos lacking BRAT activity, we showed that early translation of a zygotic genome activator is not sufficient to drive precocious gene expression. Instead, Zelda-target genes showed increased expression at the time they are normally activated. We propose that transition through early development requires the integration of multiple processes, including the slowing of the nuclear division cycle and activation of the zygotic genome. These processes are coordinately controlled by Pan Gu kinase-mediated regulation of translation.
Collapse
Affiliation(s)
- Elizabeth D Larson
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Hideyuki Komori
- Department of Cell and Developmental Biology and Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zoe A Fitzpatrick
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Samuel D Krabbenhoft
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Cheng-Yu Lee
- Department of Cell and Developmental Biology and Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Melissa Harrison
- Corresponding author: Department of Biomolecular Chemistry, University of Wisconsin-Madison, 440 Henry Mall, 6204B Biochemical Sciences Building, Madison, WI 53706, USA.
| |
Collapse
|
9
|
Chen R, Deng X, Zhu S. The Ets protein Pointed P1 represses Asense expression in type II neuroblasts by activating Tailless. PLoS Genet 2022; 18:e1009928. [PMID: 35100262 PMCID: PMC8830786 DOI: 10.1371/journal.pgen.1009928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/10/2022] [Accepted: 01/20/2022] [Indexed: 12/03/2022] Open
Abstract
Intermediate neural progenitors (INPs) boost the number and diversity of neurons generated from neural stem cells (NSCs) by undergoing transient proliferation. In the developing Drosophila brains, INPs are generated from type II neuroblasts (NBs). In order to maintain type II NB identity and their capability to produce INPs, the proneural protein Asense (Ase) needs to be silenced by the Ets transcription factor pointed P1 (PntP1), a master regulator of type II NB development. However, the molecular mechanisms underlying the PntP1-mediated suppression of Ase is still unclear. In this study, we utilized genetic and molecular approaches to determine the transcriptional property of PntP1 and identify the direct downstream effector of PntP1 and the cis-DNA elements that mediate the suppression of ase. Our results demonstrate that PntP1 directly activates the expression of the transcriptional repressor, Tailless (Tll), by binding to seven Ets-binding sites, and Tll in turn suppresses the expression of Ase in type II NBs by binding to two hexameric core half-site motifs. We further show that Tll provides positive feedback to maintain the expression of PntP1 and the identity of type II NBs. Thus, our study identifies a novel direct target of PntP1 and reveals mechanistic details of the specification and maintenance of the type II NB identity by PntP1. Type II neuroblasts (NBs) are the neural stem cells (NSCs) in Drosophila central brains that produce neurons by generating intermediate neural progenitors (INPs) to boost brain complexity, as mammalian NSCs do during the development of neocortex. The key to the generation of INPs from type II NBs is the suppression of proneural protein Asense (Ase) in type II NBs by the Ets family transcription factor Pointed P1 (PntP1), but how PntP1 suppresses Ase expression remains unclear. In this study, we provided evidence to demonstrate that PntP1 directly activates the orphan nuclear receptor Tailless (Tll), which in turn suppresses Ase expression to maintain the capability of type II NBs to produce INPs. Meanwhile, Tll provides positive feedback to maintain the expression of PntP1 and type II NB identity. We further identified seven PntP1 binding sites in the tll enhancer regions and two Tll binding sites in the ase regulatory regions that mediate the activation of tll and the suppression of ase, respectively. Our work reveals detailed mechanisms of the specification and maintenance of the type II NB identity by PntP1.
Collapse
Affiliation(s)
- Rui Chen
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York, United States of America
| | - Xiaobing Deng
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York, United States of America
| | - Sijun Zhu
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York, United States of America
- * E-mail:
| |
Collapse
|
10
|
Rajan A, Ostgaard CM, Lee CY. Regulation of Neural Stem Cell Competency and Commitment during Indirect Neurogenesis. Int J Mol Sci 2021; 22:12871. [PMID: 34884676 PMCID: PMC8657492 DOI: 10.3390/ijms222312871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 11/29/2022] Open
Abstract
Indirect neurogenesis, during which neural stem cells generate neurons through intermediate progenitors, drives the evolution of lissencephalic brains to gyrencephalic brains. The mechanisms that specify intermediate progenitor identity and that regulate stem cell competency to generate intermediate progenitors remain poorly understood despite their roles in indirect neurogenesis. Well-characterized lineage hierarchy and available powerful genetic tools for manipulating gene functions make fruit fly neural stem cell (neuroblast) lineages an excellent in vivo paradigm for investigating the mechanisms that regulate neurogenesis. Type II neuroblasts in fly larval brains repeatedly undergo asymmetric divisions to generate intermediate neural progenitors (INPs) that undergo limited proliferation to increase the number of neurons generated per stem cell division. Here, we review key regulatory genes and the mechanisms by which they promote the specification and generation of INPs, safeguarding the indirect generation of neurons during fly larval brain neurogenesis. Homologs of these regulators of INPs have been shown to play important roles in regulating brain development in vertebrates. Insight into the precise regulation of intermediate progenitors will likely improve our understanding of the control of indirect neurogenesis during brain development and brain evolution.
Collapse
Affiliation(s)
- Arjun Rajan
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; (A.R.); (C.M.O.)
| | - Cyrina M. Ostgaard
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; (A.R.); (C.M.O.)
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Cheng-Yu Lee
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; (A.R.); (C.M.O.)
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Division of Genetic Medicine, Department of Internal Medicine and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
11
|
Abstract
AbstractIn the developing Drosophila CNS, two pools of neural stem cells, the symmetrically dividing progenitors in the neuroepithelium (NE) and the asymmetrically dividing neuroblasts (NBs) generate the majority of the neurons that make up the adult central nervous system (CNS). The generation of a correct sized brain depends on maintaining the fine balance between neural stem cell self-renewal and differentiation, which are regulated by cell-intrinsic and cell-extrinsic cues. In this review, we will discuss our current understanding of how self-renewal and differentiation are regulated in the two neural stem cell pools, and the consequences of the deregulation of these processes.
Collapse
Affiliation(s)
- Francesca Froldi
- Peter MacCallum Cancer Centre, East Melbourne, Victoria, 3002, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria, 3010, Australia
| | - Milán Szuperák
- Peter MacCallum Cancer Centre, East Melbourne, Victoria, 3002, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria, 3010, Australia
| | - Louise Y. Cheng
- Peter MacCallum Cancer Centre, East Melbourne, Victoria, 3002, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
12
|
Connacher RP, Goldstrohm AC. Molecular and biological functions of TRIM-NHL RNA-binding proteins. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 12:e1620. [PMID: 32738036 PMCID: PMC7855385 DOI: 10.1002/wrna.1620] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 01/02/2023]
Abstract
The TRIM-NHL family of proteins shares a conserved domain architecture and play crucial roles in stem cell biology, fertility, and development. This review synthesizes new insights that have revolutionized our understanding of the molecular and biological functions of TRIM-NHL proteins. Multiple TRIM-NHLs have been shown to bind specific RNA sequences and structures. X-ray crystal structures of TRIM-NHL proteins in complex with RNA ligands reveal versatile modes of RNA recognition by the NHL domain. Functional and genetic analyses show that TRIM-NHL RNA-binding proteins negatively regulate the protein expression from the target mRNAs that they bind. This repressive activity plays a crucial role in controlling stem cell fate in the developing brain and differentiating germline. To highlight these paradigms, we focus on several of the most-extensively studied TRIM-NHL proteins, specifically Drosophila and vertebrate TRIM71, among others. Brat is essential for development and regulates key target mRNAs to control differentiation of germline and neural stem cells. TRIM71 is also required for development and promotes stem cell proliferation while antagonizing differentiation. Moreover, TRIM71 can be utilized to help reprogram fibroblasts into induced pluripotent stem cells. Recently discovered mutations in TRIM71 cause the neurodevelopmental disease congenital hydrocephalus and emphasize the importance of its RNA-binding function in brain development. Further relevance of TRIM71 to disease pathogenesis comes from evidence linking it to several types of cancer, including liver and testicular cancer. Collectively, these advances demonstrate a primary role for TRIM-NHL proteins in the post-transcriptional regulation of gene expression in crucial biological processes. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Translation > Translation Regulation RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- Robert P. Connacher
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA 55455
| | - Aaron C. Goldstrohm
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA 55455
| |
Collapse
|
13
|
Rives-Quinto N, Komori H, Ostgaard CM, Janssens DH, Kondo S, Dai Q, Moore AW, Lee CY. Sequential activation of transcriptional repressors promotes progenitor commitment by silencing stem cell identity genes. eLife 2020; 9:e56187. [PMID: 33241994 PMCID: PMC7728440 DOI: 10.7554/elife.56187] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 11/25/2020] [Indexed: 12/21/2022] Open
Abstract
Stem cells that indirectly generate differentiated cells through intermediate progenitors drives vertebrate brain evolution. Due to a lack of lineage information, how stem cell functionality, including the competency to generate intermediate progenitors, becomes extinguished during progenitor commitment remains unclear. Type II neuroblasts in fly larval brains divide asymmetrically to generate a neuroblast and a progeny that commits to an intermediate progenitor (INP) identity. We identified Tailless (Tll) as a master regulator of type II neuroblast functional identity, including the competency to generate INPs. Successive expression of transcriptional repressors functions through Hdac3 to silence tll during INP commitment. Reducing repressor activity allows re-activation of Notch in INPs to ectopically induce tll expression driving supernumerary neuroblast formation. Knocking-down hdac3 function prevents downregulation of tll during INP commitment. We propose that continual inactivation of stem cell identity genes allows intermediate progenitors to stably commit to generating diverse differentiated cells during indirect neurogenesis.
Collapse
Affiliation(s)
| | - Hideyuki Komori
- Life Sciences Institute, University of MichiganAnn ArborUnited States
| | - Cyrina M Ostgaard
- Life Sciences Institute, University of MichiganAnn ArborUnited States
- Department of Cell and Developmental Biology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Derek H Janssens
- Life Sciences Institute, University of MichiganAnn ArborUnited States
| | - Shu Kondo
- Invertebrate Genetics Laboratory, National Institute of GeneticsMishimaJapan
| | - Qi Dai
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm UniversityStockholmSweden
| | | | - Cheng-Yu Lee
- Life Sciences Institute, University of MichiganAnn ArborUnited States
- Department of Cell and Developmental Biology, University of Michigan Medical SchoolAnn ArborUnited States
- Division of Genetic Medicine, Department of Internal Medicine and Comprehensive Cancer Center, University of Michigan Medical SchoolAnn ArborUnited States
| |
Collapse
|
14
|
Liu C, Shan Z, Diao J, Wen W, Wang W. Crystal structure of the coiled‐coil domain of
Drosophila
TRIM protein Brat. Proteins 2019; 87:706-710. [DOI: 10.1002/prot.25691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Chunhua Liu
- Department of ChemistryInstitutes of Biomedical Sciences and Multiscale Research Institute of Complex System, Fudan University Shanghai People's Republic of China
| | - Zelin Shan
- Department of NeurosurgeryHuashan Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology, Shanghai Medical College of Fudan University Shanghai People's Republic of China
- Department of Systems Biology for MedicineSchool of Basic Medical Sciences, Shanghai Medical College of Fudan University Shanghai People's Republic of China
| | - Jianqiao Diao
- Department of ChemistryInstitutes of Biomedical Sciences and Multiscale Research Institute of Complex System, Fudan University Shanghai People's Republic of China
| | - Wenyu Wen
- Department of NeurosurgeryHuashan Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology, Shanghai Medical College of Fudan University Shanghai People's Republic of China
- Department of Systems Biology for MedicineSchool of Basic Medical Sciences, Shanghai Medical College of Fudan University Shanghai People's Republic of China
| | - Wenning Wang
- Department of ChemistryInstitutes of Biomedical Sciences and Multiscale Research Institute of Complex System, Fudan University Shanghai People's Republic of China
| |
Collapse
|
15
|
Komori H, Golden KL, Kobayashi T, Kageyama R, Lee CY. Multilayered gene control drives timely exit from the stem cell state in uncommitted progenitors during Drosophila asymmetric neural stem cell division. Genes Dev 2018; 32:1550-1561. [PMID: 30463902 PMCID: PMC6295162 DOI: 10.1101/gad.320333.118] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/09/2018] [Indexed: 12/23/2022]
Abstract
Self-renewal genes maintain stem cells in an undifferentiated state by preventing the commitment to differentiate. Robust inactivation of self-renewal gene activity following asymmetric stem cell division allows uncommitted stem cell progeny to exit from an undifferentiated state and initiate the commitment to differentiate. Nonetheless, how self-renewal gene activity at mRNA and protein levels becomes synchronously terminated in uncommitted stem cell progeny is unclear. We demonstrate that a multilayered gene regulation system terminates self-renewal gene activity at all levels in uncommitted stem cell progeny in the fly neural stem cell lineage. We found that the RNA-binding protein Brain tumor (Brat) targets the transcripts of a self-renewal gene, deadpan (dpn), for decay by recruiting the deadenylation machinery to the 3' untranslated region (UTR). Furthermore, we identified a nuclear protein, Insensible, that complements Cullin-mediated proteolysis to robustly inactivate Dpn activity by limiting the level of active Dpn through protein sequestration. The synergy between post-transcriptional and transcriptional control of self-renewal genes drives timely exit from the stem cell state in uncommitted progenitors. Our proposed multilayered gene regulation system could be broadly applicable to the control of exit from stemness in all stem cell lineages.
Collapse
Affiliation(s)
- Hideyuki Komori
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Krista L Golden
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Taeko Kobayashi
- Institute for Frontier Life and Medical Sciences, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto 606-8507, Japan
| | - Ryoichiro Kageyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto 606-8507, Japan
| | - Cheng-Yu Lee
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA.,Division of Genetic Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
16
|
A Novel Mutation in Brain Tumor Causes Both Neural Over-Proliferation and Neurodegeneration in Adult Drosophila. G3-GENES GENOMES GENETICS 2018; 8:3331-3346. [PMID: 30126833 PMCID: PMC6169379 DOI: 10.1534/g3.118.200627] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A screen for neuroprotective genes in Drosophila melanogaster led to the identification of a mutation that causes extreme, progressive loss of adult brain neuropil in conjunction with massive brain overgrowth. We mapped the mutation to the brain tumor (brat) locus, which encodes a tripartite motif-NCL-1, HT2A, and LIN-41 (TRIM-NHL) RNA-binding protein with established roles limiting stem cell proliferation in developing brain and ovary. However, a neuroprotective role for brat in the adult Drosophila brain has not been described previously. The new allele, bratcheesehead (bratchs), carries a mutation in the coiled-coil domain of the TRIM motif, and is temperature-sensitive. We demonstrate that mRNA and protein levels of neural stem cell genes are increased in heads of adult bratchs mutants and that the over-proliferation phenotype initiates prior to adult eclosion. We also report that disruption of an uncharacterized gene coding for a presumptive prolyl-4-hydroxylase strongly enhances the over-proliferation and neurodegeneration phenotypes. Together, our results reveal an unexpected role for brat that could be relevant to human cancer and neurodegenerative diseases.
Collapse
|
17
|
Arbeille E, Bashaw GJ. Brain Tumor promotes axon growth across the midline through interactions with the microtubule stabilizing protein Apc2. PLoS Genet 2018; 14:e1007314. [PMID: 29617376 PMCID: PMC5902039 DOI: 10.1371/journal.pgen.1007314] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 04/16/2018] [Accepted: 03/19/2018] [Indexed: 11/20/2022] Open
Abstract
Commissural axons must cross the midline to establish reciprocal connections between the two sides of the body. This process is highly conserved between invertebrates and vertebrates and depends on guidance cues and their receptors to instruct axon trajectories. The DCC family receptor Frazzled (Fra) signals chemoattraction and promotes midline crossing in response to its ligand Netrin. However, in Netrin or fra mutants, the loss of crossing is incomplete, suggesting the existence of additional pathways. Here, we identify Brain Tumor (Brat), a tripartite motif protein, as a new regulator of midline crossing in the Drosophila CNS. Genetic analysis indicates that Brat acts independently of the Netrin/Fra pathway. In addition, we show that through its B-Box domains, Brat acts cell autonomously to regulate the expression and localization of Adenomatous polyposis coli-2 (Apc2), a key component of the Wnt canonical signaling pathway, to promote axon growth across the midline. Genetic evidence indicates that the role of Brat and Apc2 to promote axon growth across the midline is independent of Wnt and Beta-catenin-mediated transcriptional regulation. Instead, we propose that Brat promotes midline crossing through directing the localization or stability of Apc2 at the plus ends of microtubules in navigating commissural axons. These findings define a new mechanism in the coordination of axon growth and guidance at the midline. The establishment of neuronal connections that cross the midline of the animal is essential to generate neural circuits that coordinate the left and right sides of the body. Axons that cross the midline to form these connections are called commissural axons and the molecules and mechanisms that control midline axon crossing are remarkably conserved across animal evolution. In this study we have used a genetic screen in the fruit fly in an attempt to uncover additional players in this key developmental process, and have identified a novel role for the Brain Tumor (Brat) protein in promoting commissural axon growth across the midline. Unlike its previous described functions, in the context of midline axon guidance Brat cooperates with the microtubule stabilizing protein Apc2 to coordinate axon growth and guidance. Molecular and genetic analyses point to the conserved B box motifs of the Brat protein as key in promoting the association of Apc2 with the plus ends of microtubules. Brat is highly conserved and future studies will determine whether homologous genes play analogous roles in mammalian neural development.
Collapse
Affiliation(s)
- Elise Arbeille
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Greg J. Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
18
|
Carmena A. Compromising asymmetric stem cell division in Drosophila central brain: Revisiting the connections with tumorigenesis. Fly (Austin) 2018; 12:71-80. [PMID: 29239688 DOI: 10.1080/19336934.2017.1416277] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Asymmetric cell division (ACD) is an essential process during development for generating cell diversity. In addition, a more recent connection between ACD, cancer and stem cell biology has opened novel and highly intriguing venues in the field. This connection between compromised ACD and tumorigenesis was first demonstrated using Drosophila neural stem cells (neuroblasts, NBs) more than a decade ago and, over the past years, it has also been established in vertebrate stem cells. Here, focusing on Drosophila larval brain NBs, and in light of results recently obtained in our lab, we revisit this connection emphasizing two main aspects: 1) the differences in tumor suppressor activity of different ACD regulators and 2) the potential relevance of environment and temporal window frame for compromised ACD-dependent induction of tumor-like overgrowth.
Collapse
Affiliation(s)
- Ana Carmena
- a Departamento de Neurobiología del Desarrollo , Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas/Universidad Miguel Hernández, Sant Joan d'Alacant , Alicante , Spain
| |
Collapse
|
19
|
Paglia S, Sollazzo M, Di Giacomo S, de Biase D, Pession A, Grifoni D. Failure of the PTEN/aPKC/Lgl Axis Primes Formation of Adult Brain Tumours in Drosophila. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2690187. [PMID: 29445734 PMCID: PMC5763105 DOI: 10.1155/2017/2690187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/02/2017] [Accepted: 11/08/2017] [Indexed: 02/05/2023]
Abstract
Different regions in the mammalian adult brain contain immature precursors, reinforcing the concept that brain cancers, such as glioblastoma multiforme (GBM), may originate from cells endowed with stem-like properties. Alterations of the tumour suppressor gene PTEN are very common in primary GBMs. Very recently, PTEN loss was shown to undermine a specific molecular axis, whose failure is associated with the maintenance of the GBM stem cells in mammals. This axis is composed of PTEN, aPKC, and the polarity determinant Lethal giant larvae (Lgl): PTEN loss promotes aPKC activation through the PI3K pathway, which in turn leads to Lgl inhibition, ultimately preventing stem cell differentiation. To find the neural precursors responding to perturbations of this molecular axis, we targeted different neurogenic regions of the Drosophila brain. Here we show that PTEN mutation impacts aPKC and Lgl protein levels also in Drosophila. Moreover, we demonstrate that PI3K activation is not sufficient to trigger tumourigenesis, while aPKC promotes hyperplastic growth of the neuroepithelium and a noticeable expansion of the type II neuroblasts. Finally, we show that these neuroblasts form invasive tumours that persist and keep growing in the adult, leading the affected animals to untimely death, thus displaying frankly malignant behaviours.
Collapse
Affiliation(s)
- Simona Paglia
- Department of “Pharmacy and Biotechnology”, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Manuela Sollazzo
- Department of “Pharmacy and Biotechnology”, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Simone Di Giacomo
- Department of “Pharmacy and Biotechnology”, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Dario de Biase
- Department of “Pharmacy and Biotechnology”, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Annalisa Pession
- Department of “Pharmacy and Biotechnology”, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Daniela Grifoni
- Department of “Pharmacy and Biotechnology”, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| |
Collapse
|
20
|
Reichardt I, Bonnay F, Steinmann V, Loedige I, Burkard TR, Meister G, Knoblich JA. The tumor suppressor Brat controls neuronal stem cell lineages by inhibiting Deadpan and Zelda. EMBO Rep 2017; 19:102-117. [PMID: 29191977 DOI: 10.15252/embr.201744188] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 10/31/2017] [Accepted: 11/10/2017] [Indexed: 11/09/2022] Open
Abstract
The TRIM-NHL protein Brain tumor (Brat) acts as a tumor suppressor in the Drosophila brain, but how it suppresses tumor formation is not completely understood. Here, we combine temperature-controlled brat RNAi with transcriptome analysis to identify the immediate Brat targets in Drosophila neuroblasts. Besides the known target Deadpan (Dpn), our experiments identify the transcription factor Zelda (Zld) as a critical target of Brat. Our data show that Zld is expressed in neuroblasts and required to allow re-expression of Dpn in transit-amplifying intermediate neural progenitors. Upon neuroblast division, Brat is enriched in one daughter cell where its NHL domain directly binds to specific motifs in the 3'UTR of dpn and zld mRNA to mediate their degradation. In brat mutants, both Dpn and Zld continue to be expressed, but inhibition of either transcription factor prevents tumorigenesis. Our genetic and biochemical data indicate that Dpn inhibition requires higher Brat levels than Zld inhibition and suggest a model where stepwise post-transcriptional inhibition of distinct factors ensures sequential generation of fates in a stem cell lineage.
Collapse
Affiliation(s)
- Ilka Reichardt
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - François Bonnay
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - Victoria Steinmann
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - Inga Loedige
- Laboratory for RNA Biology, Biochemistry Center Regensburg (BZR), University of Regensburg, Regensburg, Germany
| | - Thomas R Burkard
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - Gunter Meister
- Laboratory for RNA Biology, Biochemistry Center Regensburg (BZR), University of Regensburg, Regensburg, Germany
| | - Juergen A Knoblich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| |
Collapse
|
21
|
Janssens DH, Hamm DC, Anhezini L, Xiao Q, Siller KH, Siegrist SE, Harrison MM, Lee CY. An Hdac1/Rpd3-Poised Circuit Balances Continual Self-Renewal and Rapid Restriction of Developmental Potential during Asymmetric Stem Cell Division. Dev Cell 2017; 40:367-380.e7. [PMID: 28245922 DOI: 10.1016/j.devcel.2017.01.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 12/16/2016] [Accepted: 01/27/2017] [Indexed: 10/20/2022]
Abstract
How the developmental potential of differentiating stem cell progeny becomes rapidly and stably restricted following asymmetric stem cell division is unclear. In the fly larval brain, earmuff (erm) uniquely functions to restrict the developmental potential of intermediate neural progenitors (INPs) generated by asymmetrically dividing neural stem cells (neuroblasts). Here we demonstrate that the histone deacetylase Hdac1/Rpd3 functions together with self-renewal transcriptional repressors to maintain the erm immature INP enhancer in an inactive but poised state in neuroblasts. Within 2 hr of immature INP birth, downregulation of repressor activities alleviates Rpd3-mediated repression on the erm enhancer, enabling acetylation of multiple histone proteins and activating Erm expression. Erm restricts the developmental potential in immature INPs by repressing genes encoding neuroblast transcriptional activators. We propose that poising the fast-activating enhancers of master regulators of differentiation through continual histone deacetylation in stem cells enables self-renewal and rapid restriction of developmental potential following asymmetric division.
Collapse
Affiliation(s)
- Derek H Janssens
- Cellular and Molecular Biology Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Danielle C Hamm
- Department of Biomolecular Chemistry, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Lucas Anhezini
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Qi Xiao
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Karsten H Siller
- Advanced Research Computing Services, University of Virginia, Charlottesville, VA 22904, USA
| | - Sarah E Siegrist
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Melissa M Harrison
- Department of Biomolecular Chemistry, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Cheng-Yu Lee
- Cellular and Molecular Biology Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
22
|
Mukherjee S, Brat DJ. Molecular Programs Underlying Asymmetric Stem Cell Division and Their Disruption in Malignancy. Results Probl Cell Differ 2017; 61:401-421. [PMID: 28409315 DOI: 10.1007/978-3-319-53150-2_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Asymmetric division of stem cells is a highly conserved and tightly regulated process by which a single stem cell produces two unequal daughter cells. One retains its stem cell identity while the other becomes specialized through a differentiation program and loses stem cell properties. Coordinating these events requires control over numerous intra- and extracellular biological processes and signaling networks. In the initial stages, critical events include the compartmentalization of fate determining proteins within the mother cell and their subsequent passage to the appropriate daughter cell in order to direct their destiny. Disturbance of these events results in an altered dynamic of self-renewing and differentiation within the cell population, which is highly relevant to the growth and progression of cancer. Other critical events include proper asymmetric spindle assembly, extrinsic regulation through micro-environmental cues, and non-canonical signaling networks that impact cell division and fate determination. In this review, we discuss mechanisms that maintain the delicate balance of asymmetric cell division in normal tissues and describe the current understanding how some of these mechanisms are deregulated in cancer.
Collapse
Affiliation(s)
- Subhas Mukherjee
- Departments of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Daniel J Brat
- Departments of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University, 1701 Uppergate Drive, Building C, Rm#C5038, Atlanta, GA, USA.
| |
Collapse
|
23
|
Li X, Xie Y, Zhu S. Notch maintains Drosophila type II neuroblasts by suppressing expression of the Fez transcription factor Earmuff. Development 2016; 143:2511-21. [PMID: 27151950 DOI: 10.1242/dev.136184] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/26/2016] [Indexed: 01/10/2023]
Abstract
Notch signaling is crucial for maintaining neural stem cell (NSC) self-renewal and heterogeneity; however, the underlying mechanism is not well understood. In Drosophila, loss of Notch prematurely terminates the self-renewal of larval type II neuroblasts (NBs, the Drosophila NSCs) and transforms type II NBs into type I NBs. Here, we demonstrate that Notch maintains type II NBs by suppressing the activation of earmuff (erm) by Pointed P1 (PntP1). We show that loss of Notch or components of its canonical pathway leads to PntP1-dependent ectopic Erm expression in type II NBs. Knockdown of Erm significantly rescues the loss-of-Notch phenotypes, and misexpression of Erm phenocopies the loss of Notch. Ectopically expressed Erm promotes the transformation of type II NBs into type I NBs by inhibiting PntP1 function and expression in type II NBs. Our work not only elucidates a key mechanism of Notch-mediated maintenance of type II NB self-renewal and identity, but also reveals a novel function of Erm.
Collapse
Affiliation(s)
- Xiaosu Li
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Yonggang Xie
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Sijun Zhu
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
24
|
Molecular Control of Atypical Protein Kinase C: Tipping the Balance between Self-Renewal and Differentiation. J Mol Biol 2016; 428:1455-64. [PMID: 26992354 DOI: 10.1016/j.jmb.2016.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/20/2016] [Accepted: 03/03/2016] [Indexed: 01/05/2023]
Abstract
Complex organisms are faced with the challenge of generating and maintaining diverse cell types, ranging from simple epithelia to neurons and motile immune cells [1-3]. To meet this challenge, a complex set of regulatory pathways controls nearly every aspect of cell growth and function, including genetic and epigenetic programming, cytoskeleton dynamics, and protein trafficking. The far reach of cell fate specification pathways makes it particularly catastrophic when they malfunction, both during development and for tissue homeostasis in adult organisms. Furthermore, the therapeutic promise of stem cells derives from their ability to deftly navigate the multitude of pathways that control cell fate [4]. How the molecular components making up these pathways function to specify cell fate is beginning to become clear. Work from diverse systems suggests that the atypical Protein Kinase C (aPKC) is a key regulator of cell fate decisions in metazoans [5-7]. Here, we examine some of the diverse physiological outcomes of aPKC's function in differentiation, along with the molecular pathways that control aPKC and those that are responsive to changes in its catalytic activity.
Collapse
|
25
|
Mukherjee S, Tucker-Burden C, Zhang C, Moberg K, Read R, Hadjipanayis C, Brat DJ. Drosophila Brat and Human Ortholog TRIM3 Maintain Stem Cell Equilibrium and Suppress Brain Tumorigenesis by Attenuating Notch Nuclear Transport. Cancer Res 2016; 76:2443-52. [PMID: 26893479 DOI: 10.1158/0008-5472.can-15-2299] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 02/01/2016] [Indexed: 11/16/2022]
Abstract
Cancer stem cells exert enormous influence on neoplastic behavior, in part by governing asymmetric cell division and the balance between self-renewal and multipotent differentiation. Growth is favored by deregulated stem cell division, which enhances the self-renewing population and diminishes the differentiation program. Mutation of a single gene in Drosophila, Brain Tumor (Brat), leads to disrupted asymmetric cell division resulting in dramatic neoplastic proliferation of neuroblasts and massive larval brain overgrowth. To uncover the mechanisms relevant to deregulated cell division in human glioma stem cells, we first developed a novel adult Drosophila brain tumor model using brat-RNAi driven by the neuroblast-specific promoter inscuteable Suppressing Brat in this population led to the accumulation of actively proliferating neuroblasts and a lethal brain tumor phenotype. brat-RNAi caused upregulation of Notch signaling, a node critical for self-renewal, by increasing protein expression and enhancing nuclear transport of Notch intracellular domain (NICD). In human glioblastoma, we demonstrated that the human ortholog of Drosophila Brat, tripartite motif-containing protein 3 (TRIM3), similarly suppressed NOTCH1 signaling and markedly attenuated the stem cell component. We also found that TRIM3 suppressed nuclear transport of active NOTCH1 (NICD) in glioblastoma and demonstrated that these effects are mediated by direct binding of TRIM3 to the Importin complex. Together, our results support a novel role for Brat/TRIM3 in maintaining stem cell equilibrium and suppressing tumor growth by regulating NICD nuclear transport. Cancer Res; 76(8); 2443-52. ©2016 AACR.
Collapse
Affiliation(s)
- Subhas Mukherjee
- Department of Pathology and Laboratory Medicine, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Carol Tucker-Burden
- Department of Pathology and Laboratory Medicine, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Changming Zhang
- Department of Pathology and Laboratory Medicine, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Kenneth Moberg
- Department of Cell Biology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Renee Read
- Department of Pharmacology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Costas Hadjipanayis
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Daniel J Brat
- Department of Pathology and Laboratory Medicine, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia.
| |
Collapse
|
26
|
Abstract
TRIM-NHL proteins are key regulators of developmental transitions, for example promoting differentiation, while inhibiting cell growth and proliferation, in stem and progenitor cells. Abnormalities in these proteins have been also associated with human diseases, particularly affecting muscular and neuronal functions, making them potential targets for therapeutic intervention. The purpose of this review is to provide a systematic and comprehensive summary on the most studied TRIM-NHL proteins, highlighting examples where connections were established between structural features, molecular functions and biological outcomes.
Collapse
Affiliation(s)
- Cristina Tocchini
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Rafal Ciosk
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland.
| |
Collapse
|
27
|
Mukherjee S, Kong J, Brat DJ. Cancer stem cell division: when the rules of asymmetry are broken. Stem Cells Dev 2014; 24:405-16. [PMID: 25382732 DOI: 10.1089/scd.2014.0442] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Asymmetric division of stem cells is a highly conserved and tightly regulated process by which a single stem cell produces two daughter cells and simultaneously directs the differential fate of both: one retains its stem cell identity while the other becomes specialized and loses stem cell properties. Coordinating these events requires control over numerous intra- and extracellular biological processes and signaling networks. In the initial stages, critical events include the compartmentalization of fate determining proteins within the mother cell and their subsequent passage to the appropriate daughter cell. Disturbance of these events results in an altered dynamic of self-renewing and differentiation within the cell population, which is highly relevant to the growth and progression of cancer. Other critical events include proper asymmetric spindle assembly, extrinsic regulation through micro-environmental cues, and noncanonical signaling networks that impact cell division and fate determination. In this review, we discuss mechanisms that maintain the delicate balance of asymmetric cell division in normal tissues and describe the current understanding how some of these mechanisms are deregulated in cancer. The universe is asymmetric and I am persuaded that life, as it is known to us, is a direct result of the asymmetry of the universe or of its indirect consequences. The universe is asymmetric. -Louis Pasteur.
Collapse
Affiliation(s)
- Subhas Mukherjee
- 1 Department of Pathology and Laboratory Medicine, Emory University , Atlanta, Georgia
| | | | | |
Collapse
|
28
|
Komori H, Xiao Q, Janssens DH, Dou Y, Lee CY. Trithorax maintains the functional heterogeneity of neural stem cells through the transcription factor buttonhead. eLife 2014; 3. [PMID: 25285447 PMCID: PMC4221733 DOI: 10.7554/elife.03502] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 10/03/2014] [Indexed: 01/24/2023] Open
Abstract
The mechanisms that maintain the functional heterogeneity of stem cells, which generates diverse differentiated cell types required for organogenesis, are not understood. In this study, we report that Trithorax (Trx) actively maintains the heterogeneity of neural stem cells (neuroblasts) in the developing Drosophila larval brain. trx mutant type II neuroblasts gradually adopt a type I neuroblast functional identity, losing the competence to generate intermediate neural progenitors (INPs) and directly generating differentiated cells. Trx regulates a type II neuroblast functional identity in part by maintaining chromatin in the buttonhead (btd) locus in an active state through the histone methyltransferase activity of the SET1/MLL complex. Consistently, btd is necessary and sufficient for eliciting a type II neuroblast functional identity. Furthermore, over-expression of btd restores the competence to generate INPs in trx mutant type II neuroblasts. Thus, Trx instructs a type II neuroblast functional identity by epigenetically promoting Btd expression, thereby maintaining neuroblast functional heterogeneity. DOI:http://dx.doi.org/10.7554/eLife.03502.001 Whereas the majority of cells in the brain are unable to divide to produce new cells, neural stem cells can divide numerous times and have the potential to become many different types of brain cells. However, between these two extremes there is another group of cells called neural progenitors. These cells can give rise to multiple types of neurons but, in contrast to stem cells, they can undergo only a limited number of divisions. Many of the molecular mechanisms by which stem cells give rise to progenitors are similar in mammals and in the fruit fly Drosophila. In the brains of fly larvae, a subset of neural stem cells called type II neuroblasts give rise to ‘intermediate neural progenitors’, each of which can divide between four and six times. Every division generates a replacement intermediate neural progenitor and a cell called a ganglion mother cell, which divides one last time to produce two brain cells. Thus, intermediate neural progenitors increase the overall output of cells derived from every division of a type II neuroblast. The ability of type II neuroblasts to generate intermediate neural progenitors is important for development. Loss of this ability will result in a shortage of cells, disrupting brain development, while the faulty generation of intermediate neural progenitors will result in the formation of tumors. Now, using Drosophila brain cells cultured in the laboratory, Komori et al. show that an evolutionarily conserved enzyme called Trithorax has an important role in maintaining this ability. Trithorax acts through a protein called Buttonhead. The role of Buttonhead in regulating intermediate neural progenitors has also been identified by Xie et al. Komori et al. show that type II neuroblasts that lack Trithorax activity lose their unique identity and behave as type I neuroblasts, which never generate intermediate neural progenitors. Trithorax maintains the cellular memory of a type II neuroblast by keeping regions of chromatin—a macromolecule made of DNA and proteins called histones—in an active state. These regions contain key genes, such as the gene for Buttonhead. Re-introducing Buttonhead in type II neuroblasts that lack Trithorax activity can reinstate their ability to produce intermediate neural progenitors. DOI:http://dx.doi.org/10.7554/eLife.03502.002
Collapse
Affiliation(s)
- Hideyuki Komori
- Center for Stem Cell Biology, Life Sciences Institute, University of Michigan Medical School, Ann Arbor, United States
| | - Qi Xiao
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
| | - Derek H Janssens
- Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, United States
| | - Yali Dou
- Department of Pathology, University of Michigan Medical School, Ann Arbor, United States
| | - Cheng-Yu Lee
- Center for Stem Cell Biology, Life Sciences Institute, University of Michigan Medical School, Ann Arbor, United States
| |
Collapse
|
29
|
Xie Y, Li X, Zhang X, Mei S, Li H, Urso A, Zhu S. The Drosophila Sp8 transcription factor Buttonhead prevents premature differentiation of intermediate neural progenitors. eLife 2014; 3. [PMID: 25285448 PMCID: PMC4221738 DOI: 10.7554/elife.03596] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 09/28/2014] [Indexed: 11/13/2022] Open
Abstract
Intermediate neural progenitor cells (INPs) need to avoid differentiation and cell cycle exit while maintaining restricted developmental potential, but mechanisms preventing differentiation and cell cycle exit of INPs are not well understood. In this study, we report that the Drosophila homolog of mammalian Sp8 transcription factor Buttonhead (Btd) prevents premature differentiation and cell cycle exit of INPs in Drosophila larval type II neuroblast (NB) lineages. We show that the loss of Btd leads to elimination of mature INPs due to premature differentiation of INPs into terminally dividing ganglion mother cells. We provide evidence to demonstrate that Btd prevents the premature differentiation by suppressing the expression of the homeodomain protein Prospero in immature INPs. We further show that Btd functions cooperatively with the Ets transcription factor Pointed P1 to promote the generation of INPs. Thus, our work reveals a critical mechanism that prevents premature differentiation and cell cycle exit of Drosophila INPs.
Collapse
Affiliation(s)
- Yonggang Xie
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, United States
| | - Xiaosu Li
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, United States
| | - Xian Zhang
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, United States
| | - Shaolin Mei
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, United States
| | - Hongyu Li
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, United States
| | | | - Sijun Zhu
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, United States
| |
Collapse
|
30
|
Kunttas-Tatli E, Roberts DM, McCartney BM. Self-association of the APC tumor suppressor is required for the assembly, stability, and activity of the Wnt signaling destruction complex. Mol Biol Cell 2014; 25:3424-36. [PMID: 25208568 PMCID: PMC4214788 DOI: 10.1091/mbc.e14-04-0885] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The tumor suppressor adenomatous polyposis coli (APC) is an essential negative regulator of Wnt signaling through its activity in the destruction complex with Axin, GSK3β, and CK1 that targets β-catenin/Armadillo (β-cat/Arm) for proteosomal degradation. The destruction complex forms macromolecular particles we termed the destructosome. Whereas APC functions in the complex through its ability to bind both β-cat and Axin, we hypothesize that APC proteins play an additional role in destructosome assembly through self-association. Here we show that a novel N-terminal coil, the APC self-association domain (ASAD), found in vertebrate and invertebrate APCs, directly mediates self-association of Drosophila APC2 and plays an essential role in the assembly and stability of the destructosome that regulates β-cat degradation in Drosophila and human cells. Consistent with this, removal of the ASAD from the Drosophila embryo results in β-cat/Arm accumulation and aberrant Wnt pathway activation. These results suggest that APC proteins are required not only for the activity of the destructosome, but also for the assembly and stability of this macromolecular machine.
Collapse
Affiliation(s)
- Ezgi Kunttas-Tatli
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| | - David M Roberts
- Department of Biology, Franklin and Marshall College, Lancaster, PA 17604
| | - Brooke M McCartney
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| |
Collapse
|
31
|
Control of neural stem cell self-renewal and differentiation in Drosophila. Cell Tissue Res 2014; 359:33-45. [DOI: 10.1007/s00441-014-1914-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/05/2014] [Indexed: 01/10/2023]
|
32
|
Jiang Y, Reichert H. DrosophilaNeural Stem Cells in Brain Development and Tumor Formation. J Neurogenet 2014; 28:181-9. [DOI: 10.3109/01677063.2014.898639] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
33
|
Janssens DH, Komori H, Grbac D, Chen K, Koe CT, Wang H, Lee CY. Earmuff restricts progenitor cell potential by attenuating the competence to respond to self-renewal factors. Development 2014; 141:1036-46. [PMID: 24550111 DOI: 10.1242/dev.106534] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Despite expressing stem cell self-renewal factors, intermediate progenitor cells possess restricted developmental potential, which allows them to give rise exclusively to differentiated progeny rather than stem cell progeny. Failure to restrict the developmental potential can allow intermediate progenitor cells to revert into aberrant stem cells that might contribute to tumorigenesis. Insight into stable restriction of the developmental potential in intermediate progenitor cells could improve our understanding of the development and growth of tumors, but the mechanisms involved remain largely unknown. Intermediate neural progenitors (INPs), generated by type II neural stem cells (neuroblasts) in fly larval brains, provide an in vivo model for investigating the mechanisms that stably restrict the developmental potential of intermediate progenitor cells. Here, we report that the transcriptional repressor protein Earmuff (Erm) functions temporally after Brain tumor (Brat) and Numb to restrict the developmental potential of uncommitted (immature) INPs. Consistently, endogenous Erm is detected in immature INPs but undetectable in INPs. Erm-dependent restriction of the developmental potential in immature INPs leads to attenuated competence to respond to all known neuroblast self-renewal factors in INPs. We also identified that the BAP chromatin-remodeling complex probably functions cooperatively with Erm to restrict the developmental potential of immature INPs. Together, these data led us to conclude that the Erm-BAP-dependent mechanism stably restricts the developmental potential of immature INPs by attenuating their genomic responses to stem cell self-renewal factors. We propose that restriction of developmental potential by the Erm-BAP-dependent mechanism functionally distinguishes intermediate progenitor cells from stem cells, ensuring the generation of differentiated cells and preventing the formation of progenitor cell-derived tumor-initiating stem cells.
Collapse
Affiliation(s)
- Derek H Janssens
- Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
It takes two to tango, a dance between the cells of origin and cancer stem cells in the Drosophila larval brain. Semin Cell Dev Biol 2014; 28:63-9. [PMID: 24631354 DOI: 10.1016/j.semcdb.2014.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/03/2014] [Indexed: 01/12/2023]
Abstract
During malignant transformation the cells of origin give rise to cancer stem cells which possess the capacity to undergo limitless rounds of self-renewing division, regenerating themselves while producing more tumor cells. Within normal tissues, a limitless self-renewal capacity is unique to the stem cells, which divide asymmetrically to produce more restricted progenitors. Accumulating evidence suggests that misregulation of the self-renewal machinery in stem cell progeny can lead to tumorigenesis, but how it influences the properties of the resulting tumors remains unclear. Studies of the type II neural stem cell (neuroblast) lineages in the Drosophila larval brain have identified a regulatory cascade that promotes commitment to a progenitor cell identity by restricting their response to the self-renewal machinery. Brain tumor (Brat) and Numb initiate this cascade by asymmetrically extinguishing the activity of the self-renewal factors. Subsequently, Earmuff (Erm) and the SWI/SNF complex stably restrict the competence of the progenitor cell to respond to reactivation of self-renewal mechanisms. Together, this cascade programs the progenitor cell to undergo limited rounds of division, generating exclusive differentiated progeny. Here we review how defects in this cascade lead to tumor initiation and how inhibiting the self-renewal mechanisms may be an effective strategy to block CSC expansion.
Collapse
|