1
|
Tabata K, Sudo T, Nagata Y, Ihara K, Asada K, Kinoshita A, Tanaka Y, Yamauchi Y, Sasaki T, Hachiya H, Imai Y, Fujita H, Sasano T, Furukawa T, Iwata T, Tanaka T. Rare genetic variants involved in increased risk of paroxysmal atrial fibrillation in a Japanese population. Sci Rep 2025; 15:13216. [PMID: 40240483 PMCID: PMC12003908 DOI: 10.1038/s41598-025-97794-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 04/07/2025] [Indexed: 04/18/2025] Open
Abstract
Atrial fibrillation (AF) is the most prevalent arrhythmia in the world and can cause serious complications such as stroke or heart failure. Paroxysmal atrial fibrillation (PAF), a subtype of AF, accounts for approximately 25% of AF cases and is estimated to affect approximately 30 million people worldwide. Despite extensive genetic research on AF, the genetic factors involved in PAF in East Asian (EAS) populations remain unidentified. The aim of our study was to identify genetic factors associated with PAF in the Japanese population, contributing to our understanding of the genetic architecture of AF in Japanese populations. We conducted whole-exome sequencing on a cohort of 1176 PAF individuals and 1172 non-PAF control subjects in a Japanese population. We processed the sequencing data in accordance with the best practices outlined in the Genome Analysis Toolkit (GATK) and conducted gene-based association tests under three variant grouping strategies (masks) using the burden test, SKAT, and SKAT-O. We then performed a meta-analysis of the resulting P-values, which revealed that four genes-ZNF785, SMPD3, GFRA4, and LGALS1-were significantly associated with PAF, representing novel findings. These findings provide new insights into PAF pathogenesis and suggest potential biomarkers for early detection.
Collapse
Affiliation(s)
- Kanji Tabata
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo (Science Tokyo), 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo (Science Tokyo), Tokyo, Japan
| | - Takeaki Sudo
- Department of Educational Media Development, Institute of Science Tokyo (Science Tokyo), Tokyo, Japan
| | - Yuki Nagata
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo (Science Tokyo), 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
- Bioresource Research Support Center, Institute of Science Tokyo (Science Tokyo), Tokyo, Japan
| | - Kensuke Ihara
- Department of Bio-Informational Pharmacology, Medicine Research Institute, Institute of Science Tokyo (Science Tokyo), Tokyo, Japan
- Department of Cardiovascular Medicine, Institute of Science Tokyo (Science Tokyo), Tokyo, Japan
| | - Ken Asada
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Atsuhiro Kinoshita
- Department of Educational Media Development, Institute of Science Tokyo (Science Tokyo), Tokyo, Japan
| | - Yasuaki Tanaka
- Department of Cardiology, Yokosuka Kyosai Hospital, Yokosuka, Japan
| | - Yasuteru Yamauchi
- Department of Cardiology, Yokohama City Minato Red Cross Hospital, Yokohama, Japan
| | - Takeshi Sasaki
- Department of Cardiology, Heart Rhythm Center, National Hospital Organization Disaster Medical Center, Tokyo, Japan
| | - Hitoshi Hachiya
- Cardiology Division, Cardiovascular Center, Tsuchiura Kyodo General Hospital, Ibaraki, Japan
| | - Yasushi Imai
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Tochigi, Japan
| | - Hideo Fujita
- Division of Cardiovascular Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Tetsuo Sasano
- Department of Cardiovascular Medicine, Institute of Science Tokyo (Science Tokyo), Tokyo, Japan
| | - Tetsushi Furukawa
- Department of Bio-Informational Pharmacology, Medicine Research Institute, Institute of Science Tokyo (Science Tokyo), Tokyo, Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo (Science Tokyo), Tokyo, Japan
| | - Toshihiro Tanaka
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo (Science Tokyo), 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.
- Bioresource Research Support Center, Institute of Science Tokyo (Science Tokyo), Tokyo, Japan.
| |
Collapse
|
2
|
Inoue H, Kanda T, Hayashi G, Munenaga R, Yoshida M, Hasegawa K, Miyagawa T, Kurumada Y, Hasegawa J, Wada T, Horiuchi M, Yoshimatsu Y, Itoh F, Maemoto Y, Arasaki K, Wakana Y, Watabe T, Matsushita H, Harada H, Tagaya M. A MAP1B-cortactin-Tks5 axis regulates TNBC invasion and tumorigenesis. J Cell Biol 2024; 223:e202303102. [PMID: 38353696 PMCID: PMC10866687 DOI: 10.1083/jcb.202303102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/31/2023] [Accepted: 12/22/2023] [Indexed: 02/16/2024] Open
Abstract
The microtubule-associated protein MAP1B has been implicated in axonal growth and brain development. We found that MAP1B is highly expressed in the most aggressive and deadliest breast cancer subtype, triple-negative breast cancer (TNBC), but not in other subtypes. Expression of MAP1B was found to be highly correlated with poor prognosis. Depletion of MAP1B in TNBC cells impairs cell migration and invasion concomitant with a defect in tumorigenesis. We found that MAP1B interacts with key components for invadopodia formation, cortactin, and Tks5, the latter of which is a PtdIns(3,4)P2-binding and scaffold protein that localizes to invadopodia. We also found that Tks5 associates with microtubules and supports the association between MAP1B and α-tubulin. In accordance with their interaction, depletion of MAP1B leads to Tks5 destabilization, leading to its degradation via the autophagic pathway. Collectively, these findings suggest that MAP1B is a convergence point of the cytoskeleton to promote malignancy in TNBC and thereby a potential diagnostic and therapeutic target for TNBC.
Collapse
Affiliation(s)
- Hiroki Inoue
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Taku Kanda
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Gakuto Hayashi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Ryota Munenaga
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Masayuki Yoshida
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Kana Hasegawa
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Takuya Miyagawa
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Yukiya Kurumada
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Jumpei Hasegawa
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Tomoyuki Wada
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Motoi Horiuchi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Yasuhiro Yoshimatsu
- Department of Cellular Physiological Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Division of Pharmacology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Fumiko Itoh
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Yuki Maemoto
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Kohei Arasaki
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Yuichi Wakana
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Tetsuro Watabe
- Department of Cellular Physiological Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiromichi Matsushita
- Department of Laboratory Medicine, National Cancer Center Hospital,Tokyo, Japan
- Department of Laboratory Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Hironori Harada
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Mitsuo Tagaya
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| |
Collapse
|
3
|
Patel KK, Venkatesan C, Abdelhalim H, Zeeshan S, Arima Y, Linna-Kuosmanen S, Ahmed Z. Genomic approaches to identify and investigate genes associated with atrial fibrillation and heart failure susceptibility. Hum Genomics 2023; 17:47. [PMID: 37270590 DOI: 10.1186/s40246-023-00498-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023] Open
Abstract
Atrial fibrillation (AF) and heart failure (HF) contribute to about 45% of all cardiovascular disease (CVD) deaths in the USA and around the globe. Due to the complex nature, progression, inherent genetic makeup, and heterogeneity of CVDs, personalized treatments are believed to be critical. To improve the deciphering of CVD mechanisms, we need to deeply investigate well-known and identify novel genes that are responsible for CVD development. With the advancements in sequencing technologies, genomic data have been generated at an unprecedented pace to foster translational research. Correct application of bioinformatics using genomic data holds the potential to reveal the genetic underpinnings of various health conditions. It can help in the identification of causal variants for AF, HF, and other CVDs by moving beyond the one-gene one-disease model through the integration of common and rare variant association, the expressed genome, and characterization of comorbidities and phenotypic traits derived from the clinical information. In this study, we examined and discussed variable genomic approaches investigating genes associated with AF, HF, and other CVDs. We collected, reviewed, and compared high-quality scientific literature published between 2009 and 2022 and accessible through PubMed/NCBI. While selecting relevant literature, we mainly focused on identifying genomic approaches involving the integration of genomic data; analysis of common and rare genetic variants; metadata and phenotypic details; and multi-ethnic studies including individuals from ethnic minorities, and European, Asian, and American ancestries. We found 190 genes associated with AF and 26 genes linked to HF. Seven genes had implications in both AF and HF, which are SYNPO2L, TTN, MTSS1, SCN5A, PITX2, KLHL3, and AGAP5. We listed our conclusion, which include detailed information about genes and SNPs associated with AF and HF.
Collapse
Affiliation(s)
- Kush Ketan Patel
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson St, New Brunswick, NJ, USA
| | - Cynthia Venkatesan
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson St, New Brunswick, NJ, USA
| | - Habiba Abdelhalim
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson St, New Brunswick, NJ, USA
| | - Saman Zeeshan
- Rutgers Cancer Institute of New Jersey, Rutgers University, 195 Little Albany St, New Brunswick, NJ, USA
| | - Yuichiro Arima
- Developmental Cardiology Laboratory, International Research Center for Medical Sciences, Kumamoto University, 2-2-1 Honjo, Kumamoto City, Kumamoto, Japan
| | - Suvi Linna-Kuosmanen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Zeeshan Ahmed
- Department of Genetics and Genome Sciences, UConn Health, 400 Farmington Ave, Farmington, CT, USA.
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences, 125 Paterson St, New Brunswick, NJ, USA.
| |
Collapse
|
4
|
Enteric Neural Network Assembly Was Promoted by Basic Fibroblast Growth Factor and Vitamin A but Inhibited by Epidermal Growth Factor. Cells 2022; 11:cells11182841. [PMID: 36139415 PMCID: PMC9496868 DOI: 10.3390/cells11182841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/01/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Extending well beyond the original use of propagating neural precursors from the central nervous system and dorsal root ganglia, neurosphere medium (NSM) and self-renewal medium (SRM) are two distinct formulas with widespread popularity in enteric neural stem cell (ENSC) applications. However, it remains unknown what growth factors or nutrients are crucial to ENSC development, let alone whether the discrepancy in their components may affect the outcomes of ENSC culture. Dispersed enterocytes from murine fetal gut were nurtured in NSM, SRM or their modifications by selective component elimination or addition to assess their effects on ENSC development. NSM generated neuriteless neurospheres, whereas SRM, even deprived of chicken embryo extract, might wire ganglia together to assemble neural networks. The distinct outcomes came from epidermal growth factor, which inhibited enteric neuronal wiring in NSM. In contrast, basic fibroblast growth factor promoted enteric neurogenesis, gangliogenesis, and neuronal wiring. Moreover, vitamin A derivatives might facilitate neuronal maturation evidenced by p75 downregulation during ENSC differentiation toward enteric neurons to promote gangliogenesis and network assembly. Our results might help to better manipulate ENSC propagation and differentiation in vitro, and open a new avenue for the study of enteric neuronal neuritogenesis and synaptogenesis.
Collapse
|
5
|
Manoharan A, Sambandam R, Ballambattu VB. Genetics of atrial fibrillation-an update of recent findings. Mol Biol Rep 2022; 49:8121-8129. [PMID: 35587846 DOI: 10.1007/s11033-022-07420-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
Abstract
Atrial fibrillation (AF) is a common cardiac arrhythmia and a major risk factor for stroke, heart failure, and premature death. AF has a strong genetic predisposition. This review highlights the recent findings on the genetics of AF from genome-wide association studies (GWAS) and high-throughput sequencing studies. The consensus from GWAS implies that AF is both polygenic and pleiotropic in nature. With the advent of whole-genome sequencing and whole-exome sequencing, rare variants associated with AF pathogenesis have been identified. The recent studies have contributed towards better understanding of AF pathogenesis.
Collapse
Affiliation(s)
- Aarthi Manoharan
- Multi-Disciplinary Center for Biomedical Research, Vinayaka Mission's Research Foundation, Aarupadai Veedu Medical College and Hospital, Puducherry, 607402, India
| | - Ravikumar Sambandam
- Multi-Disciplinary Center for Biomedical Research, Vinayaka Mission's Research Foundation, Aarupadai Veedu Medical College and Hospital, Puducherry, 607402, India.
| | - Vishnu Bhat Ballambattu
- Multi-Disciplinary Center for Biomedical Research, Vinayaka Mission's Research Foundation, Aarupadai Veedu Medical College and Hospital, Puducherry, 607402, India
| |
Collapse
|
6
|
Greaves D, Calle Y. Epithelial Mesenchymal Transition (EMT) and Associated Invasive Adhesions in Solid and Haematological Tumours. Cells 2022; 11:649. [PMID: 35203300 PMCID: PMC8869945 DOI: 10.3390/cells11040649] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/13/2022] Open
Abstract
In solid tumours, cancer cells that undergo epithelial mesenchymal transition (EMT) express characteristic gene expression signatures that promote invasive migration as well as the development of stemness, immunosuppression and drug/radiotherapy resistance, contributing to the formation of currently untreatable metastatic tumours. The cancer traits associated with EMT can be controlled by the signalling nodes at characteristic adhesion sites (focal contacts, invadopodia and microtentacles) where the regulation of cell migration, cell cycle progression and pro-survival signalling converge. In haematological tumours, ample evidence accumulated during the last decade indicates that the development of an EMT-like phenotype is indicative of poor disease prognosis. However, this EMT phenotype has not been directly linked to the assembly of specific forms of adhesions. In the current review we discuss the role of EMT in haematological malignancies and examine its possible link with the progression towards more invasive and aggressive forms of these tumours. We also review the known types of adhesions formed by haematological malignancies and speculate on their possible connection with the EMT phenotype. We postulate that understanding the architecture and regulation of EMT-related adhesions will lead to the discovery of new therapeutic interventions to overcome disease progression and resistance to therapies.
Collapse
Affiliation(s)
| | - Yolanda Calle
- School of Life Sciences and Health, University of Roehampton, London SW15 4JD, UK;
| |
Collapse
|
7
|
Bamburg JR, Minamide LS, Wiggan O, Tahtamouni LH, Kuhn TB. Cofilin and Actin Dynamics: Multiple Modes of Regulation and Their Impacts in Neuronal Development and Degeneration. Cells 2021; 10:cells10102726. [PMID: 34685706 PMCID: PMC8534876 DOI: 10.3390/cells10102726] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 02/06/2023] Open
Abstract
Proteins of the actin depolymerizing factor (ADF)/cofilin family are ubiquitous among eukaryotes and are essential regulators of actin dynamics and function. Mammalian neurons express cofilin-1 as the major isoform, but ADF and cofilin-2 are also expressed. All isoforms bind preferentially and cooperatively along ADP-subunits in F-actin, affecting the filament helical rotation, and when either alone or when enhanced by other proteins, promotes filament severing and subunit turnover. Although self-regulating cofilin-mediated actin dynamics can drive motility without post-translational regulation, cells utilize many mechanisms to locally control cofilin, including cooperation/competition with other proteins. Newly identified post-translational modifications function with or are independent from the well-established phosphorylation of serine 3 and provide unexplored avenues for isoform specific regulation. Cofilin modulates actin transport and function in the nucleus as well as actin organization associated with mitochondrial fission and mitophagy. Under neuronal stress conditions, cofilin-saturated F-actin fragments can undergo oxidative cross-linking and bundle together to form cofilin-actin rods. Rods form in abundance within neurons around brain ischemic lesions and can be rapidly induced in neurites of most hippocampal and cortical neurons through energy depletion or glutamate-induced excitotoxicity. In ~20% of rodent hippocampal neurons, rods form more slowly in a receptor-mediated process triggered by factors intimately connected to disease-related dementias, e.g., amyloid-β in Alzheimer’s disease. This rod-inducing pathway requires a cellular prion protein, NADPH oxidase, and G-protein coupled receptors, e.g., CXCR4 and CCR5. Here, we will review many aspects of cofilin regulation and its contribution to synaptic loss and pathology of neurodegenerative diseases.
Collapse
Affiliation(s)
- James R. Bamburg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (L.S.M.); (O.W.); (L.H.T.); (T.B.K.)
- Correspondence: ; Tel.: +1-970-988-9120; Fax: +1-970-491-0494
| | - Laurie S. Minamide
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (L.S.M.); (O.W.); (L.H.T.); (T.B.K.)
| | - O’Neil Wiggan
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (L.S.M.); (O.W.); (L.H.T.); (T.B.K.)
| | - Lubna H. Tahtamouni
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (L.S.M.); (O.W.); (L.H.T.); (T.B.K.)
- Department of Biology and Biotechnology, The Hashemite University, Zarqa 13115, Jordan
| | - Thomas B. Kuhn
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (L.S.M.); (O.W.); (L.H.T.); (T.B.K.)
- Department of Chemistry and Biochemistry, University of Alaska, Fairbanks, AK 99775, USA
| |
Collapse
|
8
|
Weaver CJ, Poulain FE. From whole organism to ultrastructure: progress in axonal imaging for decoding circuit development. Development 2021; 148:271122. [PMID: 34328171 DOI: 10.1242/dev.199717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Since the pioneering work of Ramón y Cajal, scientists have sought to unravel the complexities of axon development underlying neural circuit formation. Micrometer-scale axonal growth cones navigate to targets that are often centimeters away. To reach their targets, growth cones react to dynamic environmental cues that change in the order of seconds to days. Proper axon growth and guidance are essential to circuit formation, and progress in imaging has been integral to studying these processes. In particular, advances in high- and super-resolution microscopy provide the spatial and temporal resolution required for studying developing axons. In this Review, we describe how improved microscopy has revolutionized our understanding of axonal development. We discuss how novel technologies, specifically light-sheet and super-resolution microscopy, led to new discoveries at the cellular scale by imaging axon outgrowth and circuit wiring with extreme precision. We next examine how advanced microscopy broadened our understanding of the subcellular dynamics driving axon growth and guidance. We finally assess the current challenges that the field of axonal biology still faces for imaging axons, and examine how future technology could meet these needs.
Collapse
Affiliation(s)
- Cory J Weaver
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Fabienne E Poulain
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
9
|
Moracho N, Learte AIR, Muñoz-Sáez E, Marchena MA, Cid MA, Arroyo AG, Sánchez-Camacho C. Emerging roles of MT-MMPs in embryonic development. Dev Dyn 2021; 251:240-275. [PMID: 34241926 DOI: 10.1002/dvdy.398] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/17/2021] [Accepted: 06/30/2021] [Indexed: 12/19/2022] Open
Abstract
Membrane-type matrix metalloproteinases (MT-MMPs) are cell membrane-tethered proteinases that belong to the family of the MMPs. Apart from their roles in degradation of the extracellular milieu, MT-MMPs are able to activate through proteolytic processing at the cell surface distinct molecules such as receptors, growth factors, cytokines, adhesion molecules, and other pericellular proteins. Although most of the information regarding these enzymes comes from cancer studies, our current knowledge about their contribution in distinct developmental processes occurring in the embryo is limited. In this review, we want to summarize the involvement of MT-MMPs in distinct processes during embryonic morphogenesis, including cell migration and proliferation, epithelial-mesenchymal transition, cell polarity and branching, axon growth and navigation, synapse formation, and angiogenesis. We also considered information about MT-MMP functions from studies assessed in pathological conditions and compared these data with those relevant for embryonic development.
Collapse
Affiliation(s)
- Natalia Moracho
- Department of Medicine, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Ana I R Learte
- Department of Dentistry, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Emma Muñoz-Sáez
- Department of Health Science, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Miguel A Marchena
- Department of Medicine, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - María A Cid
- Department of Dentistry, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Alicia G Arroyo
- Vascular Pathophysiology Department, Centro Nacional de Investigaciones Cardiovasculares (CNIC-CSIC), Madrid, Spain.,Molecular Biomedicine Department, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Cristina Sánchez-Camacho
- Department of Medicine, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain.,Vascular Pathophysiology Department, Centro Nacional de Investigaciones Cardiovasculares (CNIC-CSIC), Madrid, Spain
| |
Collapse
|
10
|
Siriwardane ML, Derosa K, Collins G, Pfister BJ. Engineering Fiber-Based Nervous Tissue Constructs for Axon Regeneration. Cells Tissues Organs 2021; 210:105-117. [PMID: 34198287 DOI: 10.1159/000515549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 03/02/2021] [Indexed: 11/19/2022] Open
Abstract
Biomaterial-based scaffolds used in nerve conduits including channels for confining regenerating axons and 3-dimensional (3D) gels as substrates for growth have made improvements in models of nerve repair. Many biomaterial strategies, however, continue to fall short of autologous nerve grafts, which remain the current gold standard in repairing severe nerve lesions (<20 mm). Intraluminal nerve conduit fibers have also shown considerable promise in directing regenerating axons in vitro and in vivo and have gained increasing interest for nerve repair. It is unknown, however, how growing axons respond to a fiber when encountered in a 3D environment. In this study, we considered a construct consisting of a compliant collagen hydrogel matrix and a fiber component to assess contact-guided axon growth. We investigated preferential axon outgrowth on synthetic and natural polymer fibers by utilizing small-diameter microfibers of poly-L-lactic acid and type I collagen representing 2 different fiber stiffnesses. We found that axons growing freely in a 3D hydrogel culture preferentially attach, turn and follow fibers with outgrowth rates and distances that far exceed outgrowth in a hydrogel alone. Wet-spun type I collagen from rat tail tendon performed the best, associated with highly aligned and accelerated outgrowth. This study also evaluated the response of dorsal root ganglion neurons from adult rats to provide data more relevant to axon regenerative potential in nerve repair. We found that ECM treatments on fibers enhanced the regeneration of adult axons indicating that both the physical and biochemical presentation of the fibers are essential for enhancing axon guidance and growth.
Collapse
Affiliation(s)
- Mevan L Siriwardane
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Kathleen Derosa
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - George Collins
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Bryan J Pfister
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| |
Collapse
|
11
|
Pioneer Axons Utilize a Dcc Signaling-Mediated Invasion Brake to Precisely Complete Their Pathfinding Odyssey. J Neurosci 2021; 41:6617-6636. [PMID: 34131031 DOI: 10.1523/jneurosci.0212-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 11/21/2022] Open
Abstract
Axons navigate through the embryo to construct a functional nervous system. A missing part of the axon navigation puzzle is how a single axon traverses distinct anatomic choice points through its navigation. The dorsal root ganglia (DRG) neurons experience such choice points. First, they navigate to the dorsal root entry zone (DREZ), then halt navigation in the peripheral nervous system to invade the spinal cord, and then reinitiate navigation inside the CNS. Here, we used time-lapse super-resolution imaging in zebrafish DRG pioneer neurons to investigate how embryonic axons control their cytoskeleton to navigate to and invade at the correct anatomic position. We found that invadopodia components form in the growth cone even during filopodia-based navigation, but only stabilize when the axon is at the spinal cord entry location. Further, we show that intermediate levels of DCC and cAMP, as well as Rac1 activation, subsequently engage an axon invasion brake. Our results indicate that actin-based invadopodia components form in the growth cone and disruption of the invasion brake causes axon entry defects and results in failed behavioral responses, thereby demonstrating the importance of regulating distinct actin populations during navigational challenges.SIGNIFICANCE STATEMENT Correct spatiotemporal navigation of neuronal growth cones is dependent on extracellular navigational cues and growth cone dynamics. Here, we link dcc-mediated signaling to actin-based invadopodia and filopodia dynamics during pathfinding and entry into the spinal cord using an in vivo model of dorsal root ganglia (DRG) sensory axons. We reveal a molecularly-controlled brake on invadopodia stabilization until the sensory neuron growth cone is present at the dorsal root entry zone (DREZ), which is ultimately essential for growth cone entry into the spinal cord and behavioral response.
Collapse
|
12
|
Onesto MM, Short CA, Rempel SK, Catlett TS, Gomez TM. Growth Factors as Axon Guidance Molecules: Lessons From in vitro Studies. Front Neurosci 2021; 15:678454. [PMID: 34093120 PMCID: PMC8175860 DOI: 10.3389/fnins.2021.678454] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
Growth cones at the tips of extending axons navigate through developing organisms by probing extracellular cues, which guide them through intermediate steps and onto final synaptic target sites. Widespread focus on a few guidance cue families has historically overshadowed potentially crucial roles of less well-studied growth factors in axon guidance. In fact, recent evidence suggests that a variety of growth factors have the ability to guide axons, affecting the targeting and morphogenesis of growth cones in vitro. This review summarizes in vitro experiments identifying responses and signaling mechanisms underlying axon morphogenesis caused by underappreciated growth factors.
Collapse
Affiliation(s)
| | | | | | | | - Timothy M. Gomez
- Neuroscience Training Program and Cell and Molecular Biology Program, Department of Neuroscience, University of Wisconsin–Madison, Madison, WI, United States
| |
Collapse
|
13
|
Axon Growth of CNS Neurons in Three Dimensions Is Amoeboid and Independent of Adhesions. Cell Rep 2021; 32:107907. [PMID: 32698008 DOI: 10.1016/j.celrep.2020.107907] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/26/2020] [Accepted: 06/23/2020] [Indexed: 01/01/2023] Open
Abstract
During development of the central nervous system (CNS), neurons polarize and rapidly extend their axons to assemble neuronal circuits. The growth cone leads the axon to its target and drives axon growth. Here, we explored the mechanisms underlying axon growth in three dimensions. Live in situ imaging and super-resolution microscopy combined with pharmacological and molecular manipulations as well as biophysical force measurements revealed that growth cones extend CNS axons independent of pulling forces on their substrates and without the need for adhesions in three-dimensional (3D) environments. In 3D, microtubules grow unrestrained from the actomyosin cytoskeleton into the growth cone leading edge to enable rapid axon extension. Axons extend and polarize even in adhesion-inert matrices. Thus, CNS neurons use amoeboid mechanisms to drive axon growth. Together with our understanding that adult CNS axons regenerate by reactivating developmental processes, our findings illuminate how cytoskeletal manipulations enable axon regeneration in the adult CNS.
Collapse
|
14
|
Short CA, Onesto MM, Rempel SK, Catlett TS, Gomez TM. Familiar growth factors have diverse roles in neural network assembly. Curr Opin Neurobiol 2021; 66:233-239. [PMID: 33477094 PMCID: PMC8058242 DOI: 10.1016/j.conb.2020.12.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023]
Abstract
The assembly of neuronal circuits during development depends on guidance of axonal growth cones by molecular cues deposited in their environment. While a number of families of axon guidance molecules have been identified and reviewed, important and diverse activities of traditional growth factors are emerging. Besides clear and well recognized roles in the regulation of cell division, differentiation and survival, new research shows later phase roles for a number of growth factors in promoting neuronal migration, axon guidance and synapse formation throughout the nervous system.
Collapse
Affiliation(s)
- Caitlin A Short
- Department of Neuroscience and Neuroscience Training Program, University of Wisconsin, Madison, WI 53706, United States
| | - Massimo M Onesto
- Department of Neuroscience and Neuroscience Training Program, University of Wisconsin, Madison, WI 53706, United States; Stanford University School of Medicine, United States
| | - Sarah K Rempel
- Department of Neuroscience and Neuroscience Training Program, University of Wisconsin, Madison, WI 53706, United States
| | - Timothy S Catlett
- Department of Neuroscience and Neuroscience Training Program, University of Wisconsin, Madison, WI 53706, United States
| | - Timothy M Gomez
- Department of Neuroscience and Neuroscience Training Program, University of Wisconsin, Madison, WI 53706, United States.
| |
Collapse
|
15
|
Nichols EL, Smith CJ. Functional Regeneration of the Sensory Root via Axonal Invasion. Cell Rep 2021; 30:9-17.e3. [PMID: 31914401 PMCID: PMC6996490 DOI: 10.1016/j.celrep.2019.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/15/2019] [Accepted: 12/03/2019] [Indexed: 12/11/2022] Open
Abstract
Regeneration following spinal root avulsion is broadly unsuccessful
despite the regenerative capacity of other PNS-located nerves. By combining
focal laser lesioning to model root avulsion in zebrafish, time-lapse imaging,
and transgenesis, we identify that regenerating DRG neurons fail to recapitulate
developmental paradigms of actin-based invasion after injury. We demonstrate
that inducing actin reorganization into invasive components via pharmacological
and genetic approaches in the regenerating axon can rescue sensory axon spinal
cord entry. Cell-autonomous induction of invasion components using
constitutively active Src induces DRG axon regeneration, suggesting an intrinsic
mechanism can be activated to drive regeneration. Furthermore, analyses of
neuronal activity and animal behavior show restoration of sensory circuit
activity and behavior upon stimulating axons to re-enter the spinal cord via
invasion. Altogether, our data identify induction of invasive components as
sufficient for functional sensory root regeneration after injury. Dorsal root ganglion (DRG) sensory axons are unable to regenerate into
the spinal cord after injury. Nichols and Smith demonstrate in zebrafish that
injured DRG axons do not initiate actin-based invasion components during
re-entry into the spinal cord. Pharmacological and cell-autonomous genetic
manipulations that promote actin-mediated cell invasion to restore sensory
behavior.
Collapse
Affiliation(s)
- Evan L Nichols
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA; Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
| | - Cody J Smith
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA; Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
16
|
Oentaryo MJ, Tse ACK, Lee CW. Neuronal MT1-MMP mediates ECM clearance and Lrp4 cleavage for agrin deposition and signaling in presynaptic development. J Cell Sci 2020; 133:jcs246710. [PMID: 32591486 DOI: 10.1242/jcs.246710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/16/2020] [Indexed: 08/31/2023] Open
Abstract
Agrin is a crucial factor that induces postsynaptic differentiation at neuromuscular junctions (NMJs), but how secreted agrin is locally deposited in the context of extracellular matrix (ECM) environment and its function in presynaptic differentiation remain largely unclear. Here, we report that the proteolytic activity of neuronal membrane-type 1 matrix metalloproteinase (MT1-MMP; also known as MMP14) facilitates agrin deposition and signaling during presynaptic development at NMJs. Firstly, agrin deposition along axons exhibits a time-dependent increase in cultured neurons that requires MMP-mediated focal ECM degradation. Next, local agrin stimulation induces the clustering of mitochondria and synaptic vesicles, two well-known presynaptic markers, and regulates vesicular trafficking and surface insertion of MT1-MMP. MMP inhibitor or MT1-MMP knockdown suppresses agrin-induced presynaptic differentiation, which can be rescued by treatment with the ectodomain of low-density lipoprotein receptor-related protein 4 (Lrp4). Finally, neuronal MT1-MMP knockdown inhibits agrin deposition and nerve-induced acetylcholine receptor clustering in nerve-muscle co-cultures and affects synaptic structures at Xenopus NMJs in vivo Collectively, our results demonstrate a previously unappreciated role of agrin, as well as dual functions of neuronal MT1-MMP proteolytic activity in orchestrating agrin deposition and signaling, in presynaptic development.
Collapse
Affiliation(s)
- Marilyn Janice Oentaryo
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Anna Chung-Kwan Tse
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Chi Wai Lee
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
17
|
Abstract
The spinal cord receives, relays and processes sensory information from the periphery and integrates this information with descending inputs from supraspinal centres to elicit precise and appropriate behavioural responses and orchestrate body movements. Understanding how the spinal cord circuits that achieve this integration are wired during development is the focus of much research interest. Several families of proteins have well-established roles in guiding developing spinal cord axons, and recent findings have identified new axon guidance molecules. Nevertheless, an integrated view of spinal cord network development is lacking, and many current models have neglected the cellular and functional diversity of spinal cord circuits. Recent advances challenge the existing spinal cord axon guidance dogmas and have provided a more complex, but more faithful, picture of the ontogenesis of vertebrate spinal cord circuits.
Collapse
|
18
|
Suter TACS, Jaworski A. Cell migration and axon guidance at the border between central and peripheral nervous system. Science 2020; 365:365/6456/eaaw8231. [PMID: 31467195 DOI: 10.1126/science.aaw8231] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/22/2019] [Indexed: 12/13/2022]
Abstract
The central and peripheral nervous system (CNS and PNS, respectively) are composed of distinct neuronal and glial cell types with specialized functional properties. However, a small number of select cells traverse the CNS-PNS boundary and connect these two major subdivisions of the nervous system. This pattern of segregation and selective connectivity is established during embryonic development, when neurons and glia migrate to their destinations and axons project to their targets. Here, we provide an overview of the cellular and molecular mechanisms that control cell migration and axon guidance at the vertebrate CNS-PNS border. We highlight recent advances on how cell bodies and axons are instructed to either cross or respect this boundary, and present open questions concerning the development and plasticity of the CNS-PNS interface.
Collapse
Affiliation(s)
- Tracey A C S Suter
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA.,Robert J. and Nancy D. Carney Institute for Brain Science, Providence, RI 02912, USA
| | - Alexander Jaworski
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA. .,Robert J. and Nancy D. Carney Institute for Brain Science, Providence, RI 02912, USA
| |
Collapse
|
19
|
MMP-mediated modulation of ECM environment during axonal growth and NMJ development. Neurosci Lett 2020; 724:134822. [PMID: 32061716 DOI: 10.1016/j.neulet.2020.134822] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 12/19/2022]
Abstract
Motor neurons, skeletal muscles, and perisynaptic Schwann cells interact with extracellular matrix (ECM) to form the tetrapartite synapse in the peripheral nervous system. Dynamic remodeling of ECM composition is essential to diversify its functions for distinct cellular processes during neuromuscular junction (NMJ) development. In this review, we give an overview of the proteolytic regulation of ECM proteins, particularly by secreted and membrane-type matrix metalloproteinases (MMPs), in axonal growth and NMJ development. It is suggested that MMP-2, MMP-9, and membrane type 1-MMP (MT1-MMP) promote axonal outgrowth and regeneration upon injury by clearing the glial scars at the lesion site. In addition, these MMPs also play roles in neuromuscular synaptogenesis, ranging from spontaneous formation of synaptic specializations to activity-dependent synaptic elimination, via proteolytic cleavage or degradation of growth factors, neurotrophic factors, and ECM molecules. For instance, secreted MMP-3 has been known to cleave agrin, the main postsynaptic differentiation inducer, further highlighting the importance of MMPs in NMJ formation and maintenance. Furthermore, the increased level of several MMPs in myasthenia gravis (MG) patient suggest the pathophysiological mechanisms of MMP-mediated proteolytic degradation in MG pathogenesis. Finally, we speculate on potential major future directions for studying the regulatory functions of MMP-mediated ECM remodeling in axonal growth and NMJ development.
Collapse
|
20
|
van den Dries K, Linder S, Maridonneau-Parini I, Poincloux R. Probing the mechanical landscape – new insights into podosome architecture and mechanics. J Cell Sci 2019; 132:132/24/jcs236828. [DOI: 10.1242/jcs.236828] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
ABSTRACT
Podosomes are dynamic adhesion structures formed constitutively by macrophages, dendritic cells and osteoclasts and transiently in a wide variety of cells, such as endothelial cells and megakaryocytes. They mediate numerous functions, including cell–matrix adhesion, extracellular matrix degradation, mechanosensing and cell migration. Podosomes present as micron-sized F-actin cores surrounded by an adhesive ring of integrins and integrin–actin linkers, such as talin and vinculin. In this Review, we highlight recent research that has considerably advanced our understanding of the complex architecture–function relationship of podosomes by demonstrating that the podosome ring actually consists of discontinuous nano-clusters and that the actin network in between podosomes comprises two subsets of unbranched actin filaments, lateral and dorsal podosome-connecting filaments. These lateral and dorsal podosome-connecting filaments connect the core and ring of individual podosomes and adjacent podosomes, respectively. We also highlight recent insights into the podosome cap as a novel regulatory module of actomyosin-based contractility. We propose that these newly identified features are instrumental for the ability of podosomes to generate protrusion forces and to mechanically probe their environment. Furthermore, these new results point to an increasing complexity of podosome architecture and have led to our current view of podosomes as autonomous force generators that drive cell migration.
Collapse
Affiliation(s)
- Koen van den Dries
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26-28, 6525 GA, Nijmegen, The Netherlands
| | - Stefan Linder
- Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Isabelle Maridonneau-Parini
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UMR5089, 205 route de Narbonne, BP64182 31077 Toulouse, France
| | - Renaud Poincloux
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UMR5089, 205 route de Narbonne, BP64182 31077 Toulouse, France
| |
Collapse
|
21
|
Kim M, Lee CH, Barnum SJ, Watson RC, Li J, Mastick GS. Slit/Robo signals prevent spinal motor neuron emigration by organizing the spinal cord basement membrane. Dev Biol 2019; 455:449-457. [PMID: 31356769 PMCID: PMC6842423 DOI: 10.1016/j.ydbio.2019.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/24/2019] [Accepted: 07/24/2019] [Indexed: 01/30/2023]
Abstract
The developing spinal cord builds a boundary between the CNS and the periphery, in the form of a basement membrane. The spinal cord basement membrane is a barrier that retains CNS neuron cell bodies, while being selectively permeable to specific axon types. Spinal motor neuron cell bodies are located in the ventral neural tube next to the floor plate and project their axons out through the basement membrane to peripheral targets. However, little is known about how spinal motor neuron cell bodies are retained inside the ventral neural tube, while their axons can exit. In previous work, we found that disruption of Slit/Robo signals caused motor neuron emigration outside the spinal cord. In the current study, we investigate how Slit/Robo signals are necessary to keep spinal motor neurons within the neural tube. Our findings show that when Slit/Robo signals were removed from motor neurons, they migrated outside the spinal cord. Furthermore, this emigration was associated with abnormal basement membrane protein expression in the ventral spinal cord. Using Robo2 and Slit2 conditional mutants, we found that motor neuron-derived Slit/Robo signals were required to set up a normal basement membrane in the spinal cord. Together, our results suggest that motor neurons produce Slit signals that are required for the basement membrane assembly to retain motor neuron cell bodies within the spinal cord.
Collapse
Affiliation(s)
- Minkyung Kim
- Department of Biology, University of Nevada, Reno, NV, 89557, USA.
| | - Clare H Lee
- Department of Biology, University of Nevada, Reno, NV, 89557, USA
| | - Sarah J Barnum
- Department of Biology, University of Nevada, Reno, NV, 89557, USA
| | - Roland Cj Watson
- Department of Biology, University of Nevada, Reno, NV, 89557, USA
| | - Jennifer Li
- Department of Biology, University of Nevada, Reno, NV, 89557, USA
| | - Grant S Mastick
- Department of Biology, University of Nevada, Reno, NV, 89557, USA
| |
Collapse
|
22
|
Nichols EL, Smith CJ. Synaptic-like Vesicles Facilitate Pioneer Axon Invasion. Curr Biol 2019; 29:2652-2664.e4. [DOI: 10.1016/j.cub.2019.06.078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/24/2019] [Accepted: 06/26/2019] [Indexed: 12/19/2022]
|
23
|
Osswald M, Jung E, Wick W, Winkler F. Tunneling nanotube‐like structures in brain tumors. Cancer Rep (Hoboken) 2019. [DOI: 10.1002/cnr2.1181] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Matthias Osswald
- Neurology Clinic and National Center for Tumor DiseasesUniversity Hospital Heidelberg Heidelberg Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Heidelberg Germany
| | - Erik Jung
- Neurology Clinic and National Center for Tumor DiseasesUniversity Hospital Heidelberg Heidelberg Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Heidelberg Germany
| | - Wolfgang Wick
- Neurology Clinic and National Center for Tumor DiseasesUniversity Hospital Heidelberg Heidelberg Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Heidelberg Germany
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor DiseasesUniversity Hospital Heidelberg Heidelberg Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Heidelberg Germany
| |
Collapse
|
24
|
Guix FX, Sartório CL, Ill-Raga G. BACE1 Translation: At the Crossroads Between Alzheimer's Disease Neurodegeneration and Memory Consolidation. J Alzheimers Dis Rep 2019; 3:113-148. [PMID: 31259308 PMCID: PMC6597968 DOI: 10.3233/adr-180089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human life unfolds not only in time and space, but also in the recollection and interweaving of memories. Therefore, individual human identity depends fully on a proper access to the autobiographical memory. Such access is hindered under pathological conditions such as Alzheimer’s disease, which affects millions of people worldwide. Unfortunately, no effective cure exists to prevent this disorder, the impact of which will rise alarmingly within the next decades. While Alzheimer’s disease is largely considered to be the outcome of amyloid-β (Aβ) peptide accumulation in the brain, conceiving this complex disorder strictly as the result of Aβ-neurotoxicity is perhaps a too straight-line simplification. Instead, complementary to this view, the tableau of molecular disarrangements in the Alzheimer’s disease brain may be reflecting, at least in part, a loss of function phenotype in memory processing. Here we take BACE1 translation and degradation as a gateway to study molecular mechanisms putatively involved in the transition between memory and neurodegeneration. BACE1 participates in the excision of Aβ-peptide from its precursor holoprotein, but plays a role in synaptic plasticity too. Its translation is governed by eIF2α phosphorylation: a hub integrating cellular responses to stress, but also a critical switch in memory consolidation. Paralleling these dualities, the eIF2α-kinase HRI has been shown to be a nitric oxide-dependent physiological activator of hippocampal BACE1 translation. Finally, beholding BACE1 as a representative protease active in the CNS, we venture a new perspective on the cellular basis of memory, which may incorporate neurodegeneration in itself as a drift in memory consolidating systems.
Collapse
Affiliation(s)
- Francesc X Guix
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa-CSIC, Madrid, Spain
| | - Carmem L Sartório
- Division of Physiological Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Gerard Ill-Raga
- Division of Physiological Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| |
Collapse
|
25
|
Integrative analysis of transcriptome-wide association study data and mRNA expression profiles identified candidate genes and pathways associated with atrial fibrillation. Heart Vessels 2019; 34:1882-1888. [PMID: 31065785 DOI: 10.1007/s00380-019-01418-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/19/2019] [Indexed: 01/18/2023]
Abstract
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia characterized by extensive structural, contractile and electrophysiological remodeling. The genetic basis of AF remained elusive until now. Transcriptome-wide association study (TWAS) was conducted by FUSION tool using gene expression weights of 7 tissues combined with a large-scale genome-wide association study (GWAS) dataset of AF, totally involving 8180 AF cases and 28,612 controls. Significant genes identified by TWAS were then subjected to gene ontology (GO) and pathway enrichment analysis. The genome-wide mRNA gene expression profiling of AF was compared with the results of TWAS to detect common genes shared by TWAS and mRNA expression profiling of AF. TWAS detected a group of candidate genes with PTWAS values < 0.05 across the seven tissues for AF, such as CMAH (PTWAS = 3.15 × 10-25 for whole blood), INCENP (PTWAS = 1.77 × 10-22 for artery aorta), CMAHP (PTWAS = 4.57 × 10-20 for artery aorta). Pathway enrichment analysis identified multiple candidate pathways, such as protein K48-linked ubiquitination (P value = 0.0124), positive regulation of leukocyte chemotaxis (P value = 0.0046) and fatty acid degradation (P value = 0.0295). Further comparing the GO results of TWAS and mRNA expression profiling, 2 common GO terms were identified, including actin binding (PTWAS = 0.0446, PmRNA = 7.00 × 10-4) and extracellular matrix (PTWAS = 0.0037, PmRNA = 3.00 × 10-6). We detected multiple novel candidate genes, GO terms and pathways for AF, providing novel clues for understanding the genetic mechanism of AF.
Collapse
|
26
|
Gulvady AC, Forsythe IJ, Turner CE. Hic-5 regulates Src-induced invadopodia rosette formation and organization. Mol Biol Cell 2019; 30:1298-1313. [PMID: 30893012 PMCID: PMC6724605 DOI: 10.1091/mbc.e18-10-0629] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fibroblasts transformed by the proto-oncogene Src form individual invadopodia that can spontaneously self-organize into large matrix-degrading superstructures called rosettes. However, the mechanisms by which the invadopodia can spatiotemporally reorganize their architecture is not well understood. Here, we show that Hic-5, a close relative of the scaffold protein paxillin, is essential for the formation and organization of rosettes in active Src-transfected NIH3T3 fibroblasts and cancer-associated fibroblasts. Live cell imaging, combined with domain-mapping analysis of Hic-5, identified critical motifs as well as phosphorylation sites that are required for the formation and dynamics of rosettes. Using pharmacological inhibition and mutant expression, we show that FAK kinase activity, along with its proximity to and potential interaction with the LD2,3 motifs of Hic-5, is necessary for rosette formation. Invadopodia dynamics and their coalescence into rosettes were also dependent on Rac1, formin, and myosin II activity. Superresolution microscopy revealed the presence of formin FHOD1 and INF2-mediated unbranched radial F-actin fibers emanating from invadopodia and rosettes, which may facilitate rosette formation. Collectively, our data highlight a novel role for Hic-5 in orchestrating the organization of invadopodia into higher-order rosettes, which may promote the localized matrix degradation necessary for tumor cell invasion.
Collapse
Affiliation(s)
- Anushree C Gulvady
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Ian J Forsythe
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Christopher E Turner
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
27
|
Zhang Y, Nichols EL, Zellmer AM, Guldner IH, Kankel C, Zhang S, Howard SS, Smith CJ. Generating intravital super-resolution movies with conventional microscopy reveals actin dynamics that construct pioneer axons. Development 2019; 146:dev.171512. [PMID: 30760484 PMCID: PMC6432666 DOI: 10.1242/dev.171512] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/04/2019] [Indexed: 01/06/2023]
Abstract
Super-resolution microscopy is broadening our in-depth understanding of cellular structure. However, super-resolution approaches are limited, for numerous reasons, from utilization in longer-term intravital imaging. We devised a combinatorial imaging technique that combines deconvolution with stepwise optical saturation microscopy (DeSOS) to circumvent this issue and image cells in their native physiological environment. Other than a traditional confocal or two-photon microscope, this approach requires no additional hardware. Here, we provide an open-access application to obtain DeSOS images from conventional microscope images obtained at low excitation powers. We show that DeSOS can be used in time-lapse imaging to generate super-resolution movies in zebrafish. DeSOS was also validated in live mice. These movies uncover that actin structures dynamically remodel to produce a single pioneer axon in a ‘top-down’ scaffolding event. Further, we identify an F-actin population – stable base clusters – that orchestrate that scaffolding event. We then identify that activation of Rac1 in pioneer axons destabilizes stable base clusters and disrupts pioneer axon formation. The ease of acquisition and processing with this approach provides a universal technique for biologists to answer questions in living animals. Summary: Actin dynamics are examined in zebrafish axons using DeSOS, a new super-resolution technique combining deconvolution with stepwise optical saturation microscopy that allows detailed intravital imaging of cells in their native environments.
Collapse
Affiliation(s)
- Yide Zhang
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Evan L Nichols
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.,Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Abigail M Zellmer
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ian H Guldner
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.,Mike and Josie Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA.,Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA
| | - Cody Kankel
- Center for Research Computing. University of Notre Dame, Notre Dame, IN 46556, USA
| | - Siyuan Zhang
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.,Mike and Josie Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA.,Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA
| | - Scott S Howard
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA .,Mike and Josie Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Cody J Smith
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA .,Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
28
|
Pioneer axons employ Cajal's battering ram to enter the spinal cord. Nat Commun 2019; 10:562. [PMID: 30718484 PMCID: PMC6362287 DOI: 10.1038/s41467-019-08421-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 01/09/2019] [Indexed: 01/17/2023] Open
Abstract
Sensory axons must traverse a spinal cord glia limitans to connect the brain with the periphery. The fundamental mechanism of how these axons enter the spinal cord is still debatable; both Ramon y Cajal’s battering ram hypothesis and a boundary cap model have been proposed. To distinguish between these hypotheses, we visualized the entry of pioneer axons into the dorsal root entry zone (DREZ) with time-lapse imaging in zebrafish. Here, we identify that DRG pioneer axons enter the DREZ before the arrival of neural crest cells at the DREZ. Instead, actin-rich invadopodia in the pioneer axon are necessary and sufficient for DREZ entry. Using photoactivable Rac1, we demonstrate cell-autonomous functioning of invasive structures in pioneer axon spinal entry. Together these data support the model that actin-rich invasion structures dynamically drive pioneer axon entry into the spinal cord, indicating that distinct pioneer and secondary events occur at the DREZ. The fundamental mechanism of how sensory axons traverse a spinal cord glia limitans remains debatable, with some suggesting a role for boundary cap cells at the dorsal root entry zone (DREZ). Here, authors use time-lapse imaging of DRG axons at the DREZ to show that pioneer axons enter the DREZ before the presence of boundary cap cells, and that this entry is critically dependent on the development of actin-rich invasion structures reminiscent of invadopodia.
Collapse
|
29
|
Repulsive Environment Attenuation during Adult Mouse Optic Nerve Regeneration. Neural Plast 2018; 2018:5851914. [PMID: 30275822 PMCID: PMC6157103 DOI: 10.1155/2018/5851914] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/03/2018] [Accepted: 08/02/2018] [Indexed: 01/05/2023] Open
Abstract
The regenerative capacity of CNS tracts has ever been a great hurdle to regenerative medicine. Although recent studies have described strategies to stimulate retinal ganglion cells (RGCs) to regenerate axons through the optic nerve, it still remains to be elucidated how these therapies modulate the inhibitory environment of CNS. Thus, the present work investigated the environmental content of the repulsive axon guidance cues, such as Sema3D and its receptors, myelin debris, and astrogliosis, within the regenerating optic nerve of mice submitted to intraocular inflammation + cAMP combined to conditional deletion of PTEN in RGC after optic nerve crush. We show here that treatment was able to promote axonal regeneration through the optic nerve and reach visual targets at twelve weeks after injury. The Regenerating group presented reduced MBP levels, increased microglia/macrophage number, and reduced astrocyte reactivity and CSPG content following optic nerve injury. In addition, Sema3D content and its receptors are reduced in the Regenerating group. Together, our results provide, for the first time, evidence that several regenerative repulsive signals are reduced in regenerating optic nerve fibers following a combined therapy. Therefore, the treatment used made the CNS microenvironment more permissive to regeneration.
Collapse
|
30
|
Kazuno A, Maki D, Yamato I, Nakajima N, Seta H, Soeda S, Ozawa S, Uchiyama Y, Tamaki T. Regeneration of Transected Recurrent Laryngeal Nerve Using Hybrid-Transplantation of Skeletal Muscle-Derived Stem Cells and Bioabsorbable Scaffold. J Clin Med 2018; 7:jcm7090276. [PMID: 30213120 PMCID: PMC6162854 DOI: 10.3390/jcm7090276] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/05/2018] [Accepted: 09/09/2018] [Indexed: 12/31/2022] Open
Abstract
Hybrid transplantation of skeletal muscle-derived multipotent stem cells (Sk-MSCs) and bioabsorbable polyglyconate (PGA) felt was studied as a novel regeneration therapy for the transected recurrent laryngeal nerve (RLN). Sk-MSCs were isolated from green fluorescence protein transgenic mice and then expanded and transplanted with PGA felt for the hybrid transplantation (HY group) into the RLN transected mouse model. Transplantation of culture medium (M group) and PGA + medium (PGA group) were examined as controls. After eight weeks, trans-oral video laryngoscopy demonstrated 80% recovery of spontaneous vocal-fold movement during breathing in the HY group, whereas the M and PGA groups showed wholly no recoveries. The Sk-MSCs showed active engraftment confined to the damaged RLN portion, representing favorable prevention of cell diffusion on PGA, with an enhanced expression of nerve growth factor mRNAs. Axonal re-connection in the HY group was confirmed by histological serial sections. Immunohistochemical analysis revealed the differentiation of Sk-MSCs into Schwann cells and perineurial/endoneurial cells and axonal growth supportive of perineurium/endoneurium. The number of axons recovered was over 86%. These results showed that the stem cell and cytokine delivery system using hybrid transplantation of Sk-MSCs/PGA-felt is a potentially practical and useful approach for the recovery of transected RLN.
Collapse
Affiliation(s)
- Akihito Kazuno
- Department of Gastroenterological Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
- Muscle Physiology & Cell Biology Unit, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
| | - Daisuke Maki
- Muscle Physiology & Cell Biology Unit, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
- Department of Otolaryngology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
| | - Ippei Yamato
- Muscle Physiology & Cell Biology Unit, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
- Department of Medical Education, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
| | - Nobuyuki Nakajima
- Muscle Physiology & Cell Biology Unit, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
- Department of Urology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
| | - Hiroya Seta
- Muscle Physiology & Cell Biology Unit, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
| | - Shuichi Soeda
- Muscle Physiology & Cell Biology Unit, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
| | - Soji Ozawa
- Department of Gastroenterological Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
| | - Yoshiyasu Uchiyama
- Muscle Physiology & Cell Biology Unit, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
- Department of Orthopedics, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
| | - Tetsuro Tamaki
- Muscle Physiology & Cell Biology Unit, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
- Department of Human Structure and Function, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
| |
Collapse
|
31
|
Kim SM, Long DW, Tsang MWK, Wang Y. Zebrafish extracellular matrix improves neuronal viability and network formation in a 3-dimensional culture. Biomaterials 2018; 170:137-146. [PMID: 29665503 DOI: 10.1016/j.biomaterials.2018.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/31/2018] [Accepted: 04/04/2018] [Indexed: 12/11/2022]
Abstract
Mammalian central nervous system (CNS) has limited capacity for regeneration. CNS injuries cause life-long debilitation and lead to $50 billion in healthcare costs in U.S. alone each year. Despite numerous efforts in the last few decades, CNS-related injuries remain as detrimental as they were 50 years ago. Some functional recovery can occur, but most regeneration are limited by an extracellular matrix (ECM) that actively inhibits axonal repair and promotes glial scarring. In most tissues, the ECM is an architectural foundation that plays an active role in supporting cellular development and regenerative response after injury. In mammalian CNS, however, this is not the case - its composition is not conducive for regeneration, with various molecules restricting plasticity and neuronal growth. In fact, the CNS ECM alters its composition dramatically following injury to restrict regeneration and to prioritize containment of injury as well as preservation of intact neural circuitry. This leads us to hypothesize that the inhibitory extracellular environment needs be modified or supplemented to be more regeneration-permissive for significant CNS regeneration. Mammalian nervous tissue cannot provide such ECM, and synthesizing it in a laboratory is beyond current technology. Evolutionarily lower species possess remarkably regenerative neural tissue. For example, small fresh-water dwelling zebrafish (Danio rerio) can regenerate severed spinal cord, re-gaining full motor function in a week. We believe their ECM contributes to its regenerative capability and that it can be harnessed to induce more regeneration in mammalian CNS. This study shows that ECM derived from zebrafish brains promotes more neuronal survival and axonal network formation than the widely studied and available ECM derived from mammalian tissues such as porcine brains, porcine urinary bladder, and rat brains. We believe its regenerative potential, combined with its affordability, easy handling, and fast reproduction, will make zebrafish an excellent candidate as a novel ECM source.
Collapse
Affiliation(s)
- Sung-Min Kim
- Department of Bioengineering, University of Pittsburgh, USA
| | | | | | - Yadong Wang
- Department of Bioengineering, University of Pittsburgh, USA.
| |
Collapse
|
32
|
Abstract
The basement membrane is a thin but dense, sheet-like specialized type of extracellular matrix that has remarkably diverse functions tailored to individual tissues and organs. Tightly controlled spatial and temporal changes in its composition and structure contribute to the diversity of basement membrane functions. These different basement membranes undergo dynamic transformations throughout animal life, most notably during development. Numerous developmental mechanisms are regulated or mediated by basement membranes, often by a combination of molecular and mechanical processes. A particularly important process involves cell transmigration through a basement membrane because of its link to cell invasion in disease. While developmental and disease processes share some similarities, what clearly distinguishes the two is dysregulation of cells and extracellular matrices in disease. With its relevance to many developmental and disease processes, the basement membrane is a vitally important area of research that may provide novel insights into biological mechanisms and development of innovative therapeutic approaches. Here we present a review of developmental and disease dynamics of basement membranes in Caenorhabditis elegans, Drosophila, and vertebrates.
Collapse
|
33
|
Abstract
Tyrosine kinase substrate (Tks) adaptor proteins are considered important regulators of various physiological and/or pathological processes, particularly cell migration and invasion, and cancer progression. These proteins contain PX and SH3 domains, and act as scaffolds, bringing membrane and cellular components in close proximity in structures known as invadopodia or podosomes. Tks proteins, analogous to the related proteins p47phox, p40phox and NoxO1, also facilitate local generation of reactive oxygen species (ROS), which aid in signaling at invadopodia and/or podosomes to promote their activity. As their name suggests, Tks adaptor proteins are substrates for tyrosine kinases, especially Src. In this Cell Science at a Glance article and accompanying poster, we discuss the known structural and functional aspects of Tks adaptor proteins. As the science of Tks proteins is evolving, this article will point out where we stand and what still needs to be explored. We also underscore pathological conditions involving these proteins, providing a basis for future research to develop therapies for treatment of these diseases.
Collapse
Affiliation(s)
- Priyanka Saini
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Sara A Courtneidge
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR, USA
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
34
|
Naegeli KM, Hastie E, Garde A, Wang Z, Keeley DP, Gordon KL, Pani AM, Kelley LC, Morrissey MA, Chi Q, Goldstein B, Sherwood DR. Cell Invasion In Vivo via Rapid Exocytosis of a Transient Lysosome-Derived Membrane Domain. Dev Cell 2017; 43:403-417.e10. [PMID: 29161591 DOI: 10.1016/j.devcel.2017.10.024] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/19/2017] [Accepted: 10/22/2017] [Indexed: 11/27/2022]
Abstract
Invasive cells use small invadopodia to breach basement membrane (BM), a dense matrix that encases tissues. Following the breach, a large protrusion forms to clear a path for tissue entry by poorly understood mechanisms. Using RNAi screening for defects in Caenorhabditis elegans anchor cell (AC) invasion, we found that UNC-6(netrin)/UNC-40(DCC) signaling at the BM breach site directs exocytosis of lysosomes using the exocyst and SNARE SNAP-29 to form a large protrusion that invades vulval tissue. Live-cell imaging revealed that the protrusion is enriched in the matrix metalloprotease ZMP-1 and transiently expands AC volume by more than 20%, displacing surrounding BM and vulval epithelium. Photobleaching and genetic perturbations showed that the BM receptor dystroglycan forms a membrane diffusion barrier at the neck of the protrusion, which enables protrusion growth. Together these studies define a netrin-dependent pathway that builds an invasive protrusion, an isolated lysosome-derived membrane structure specialized to breach tissue barriers.
Collapse
Affiliation(s)
- Kaleb M Naegeli
- Department of Biology, Regeneration Next, Duke University, 130 Science Drive, Box 90338, Durham, NC 27708, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27708, USA
| | - Eric Hastie
- Department of Biology, Regeneration Next, Duke University, 130 Science Drive, Box 90338, Durham, NC 27708, USA
| | - Aastha Garde
- Department of Biology, Regeneration Next, Duke University, 130 Science Drive, Box 90338, Durham, NC 27708, USA
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Daniel P Keeley
- Department of Biology, Regeneration Next, Duke University, 130 Science Drive, Box 90338, Durham, NC 27708, USA
| | - Kacy L Gordon
- Department of Biology, Regeneration Next, Duke University, 130 Science Drive, Box 90338, Durham, NC 27708, USA
| | - Ariel M Pani
- Biology Department and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura C Kelley
- Department of Biology, Regeneration Next, Duke University, 130 Science Drive, Box 90338, Durham, NC 27708, USA
| | - Meghan A Morrissey
- The Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Qiuyi Chi
- Department of Biology, Regeneration Next, Duke University, 130 Science Drive, Box 90338, Durham, NC 27708, USA
| | - Bob Goldstein
- Biology Department and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David R Sherwood
- Department of Biology, Regeneration Next, Duke University, 130 Science Drive, Box 90338, Durham, NC 27708, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27708, USA; Regeneration Next, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
35
|
Banks DA, Dahal A, McFarland AG, Flowers BM, Stephens CA, Swack B, Gugssa A, Anderson WA, Hinton SD. MK-STYX Alters the Morphology of Primary Neurons, and Outgrowths in MK-STYX Overexpressing PC-12 Cells Develop a Neuronal Phenotype. Front Mol Biosci 2017; 4:76. [PMID: 29250526 PMCID: PMC5715325 DOI: 10.3389/fmolb.2017.00076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 11/02/2017] [Indexed: 01/14/2023] Open
Abstract
We previously reported that the pseudophosphatase MK-STYX (mitogen activated kinase phosphoserine/threonine/tyrosine binding protein) dramatically increases the number of what appeared to be primary neurites in rat pheochromocytoma (PC-12) cells; however, the question remained whether these MK-STYX-induced outgrowths were bona fide neurites, and formed synapses. Here, we report that microtubules and microfilaments, components of the cytoskeleton that are involved in the formation of neurites, are present in MK-STYX-induced outgrowths. In addition, in response to nerve growth factor (NGF), MK-STYX-expressing cells produced more growth cones than non-MK-STYX-expressing cells, further supporting a model in which MK-STYX has a role in actin signaling. Furthermore, immunoblot analysis demonstrates that MK-STYX modulates actin expression. Transmission electron microscopy confirmed that MK-STYX-induced neurites form synapses. To determine whether these MK-STYX-induced neurites have pre-synaptic or post-synaptic properties, we used classical markers for axons and dendrites, Tau-1 and MAP2 (microtubule associated protein 2), respectively. MK-STYX induced neurites were dopaminergic and expression of both Tau-1 and MAP2 suggests that they have both axonal and dendritic properties. Further studies in rat hippocampal primary neurons demonstrated that MK-STYX altered their morphology. A significant number of primary neurons in the presence of MK-STYX had more than the normal number of primary neurites. Our data illustrate the novel findings that MK-STYX induces outgrowths in PC-12 cells that fit the criteria for neurites, have a greater number of growth cones, form synapses, and have pre-synaptic and post-synaptic properties. It also highlights that the pseudophosphatase MK-STYX significantly alters the morphology of primary neurons.
Collapse
Affiliation(s)
- Dallas A Banks
- Department of Biology, Integrated Science Center, College of William and Mary, Williamsburg, VA, United States
| | - Arya Dahal
- Department of Biology, Integrated Science Center, College of William and Mary, Williamsburg, VA, United States
| | - Alexander G McFarland
- Department of Biology, Integrated Science Center, College of William and Mary, Williamsburg, VA, United States
| | - Brittany M Flowers
- Department of Biology, Integrated Science Center, College of William and Mary, Williamsburg, VA, United States.,National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Christina A Stephens
- Department of Chemistry, Integrated Science Center, College of William and Mary, Williamsburg, VA, United States
| | - Benjamin Swack
- Department of Biology, Integrated Science Center, College of William and Mary, Williamsburg, VA, United States
| | - Ayele Gugssa
- Department of Biology, Howard University, Washington, DC, United States
| | | | - Shantá D Hinton
- Department of Biology, Integrated Science Center, College of William and Mary, Williamsburg, VA, United States
| |
Collapse
|
36
|
Smith GM, Gallo G. The role of mitochondria in axon development and regeneration. Dev Neurobiol 2017; 78:221-237. [PMID: 29030922 DOI: 10.1002/dneu.22546] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/12/2017] [Accepted: 10/08/2017] [Indexed: 12/26/2022]
Abstract
Mitochondria are dynamic organelles that undergo transport, fission, and fusion. The three main functions of mitochondria are to generate ATP, buffer cytosolic calcium, and generate reactive oxygen species. A large body of evidence indicates that mitochondria are either primary targets for neurological disease states and nervous system injury, or are major contributors to the ensuing pathologies. However, the roles of mitochondria in the development and regeneration of axons have just begun to be elucidated. Advances in the understanding of the functional roles of mitochondria in neurons had been largely impeded by insufficient knowledge regarding the molecular mechanisms that regulate mitochondrial transport, stalling, fission/fusion, and a paucity of approaches to image and analyze mitochondria in living axons at the level of the single mitochondrion. However, technical advances in the imaging and analysis of mitochondria in living neurons and significant insights into the mechanisms that regulate mitochondrial dynamics have allowed the field to advance. Mitochondria have now been attributed important roles in the mechanism of axon extension, regeneration, and axon branching. The availability of new experimental tools is expected to rapidly increase our understanding of the functions of axonal mitochondria during both development and later regenerative attempts. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 221-237, 2018.
Collapse
Affiliation(s)
- George M Smith
- Department of Neuroscience, Temple University, Lewis Katz School of Medicine, Philadelphia, Pennsylvania, 19140.,Shriners Hospitals Pediatric Research Center, Temple University, Lewis Katz School of Medicine, Philadelphia, Pennsylvania, 19140
| | - Gianluca Gallo
- Department of Anatomy and Cell Biology, Temple University, Lewis Katz School of Medicine, Philadelphia, Pennsylvania, 19140.,Shriners Hospitals Pediatric Research Center, Temple University, Lewis Katz School of Medicine, Philadelphia, Pennsylvania, 19140
| |
Collapse
|
37
|
Morris DC, Popp JL, Tang LK, Gibbs HC, Schmitt E, Chaki SP, Bywaters BC, Yeh AT, Porter WW, Burghardt RC, Barhoumi R, Rivera GM. Nck deficiency is associated with delayed breast carcinoma progression and reduced metastasis. Mol Biol Cell 2017; 28:3500-3516. [PMID: 28954862 PMCID: PMC5683761 DOI: 10.1091/mbc.e17-02-0106] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 09/15/2017] [Accepted: 09/20/2017] [Indexed: 12/16/2022] Open
Abstract
Nck promotes breast carcinoma progression and metastasis by directing the polarized interaction of carcinoma cells with collagen fibrils, decreasing actin turnover, and enhancing the localization and activity of MMP14 at the cell surface through modulation of the spatiotemporal activation of Cdc42 and RhoA. Although it is known that noncatalytic region of tyrosine kinase (Nck) regulates cell adhesion and migration by bridging tyrosine phosphorylation with cytoskeletal remodeling, the role of Nck in tumorigenesis and metastasis has remained undetermined. Here we report that Nck is required for the growth and vascularization of primary tumors and lung metastases in a breast cancer xenograft model as well as extravasation following injection of carcinoma cells into the tail vein. We provide evidence that Nck directs the polarization of cell–matrix interactions for efficient migration in three-dimensional microenvironments. We show that Nck advances breast carcinoma cell invasion by regulating actin dynamics at invadopodia and enhancing focalized extracellular matrix proteolysis by directing the delivery and accumulation of MMP14 at the cell surface. We find that Nck-dependent cytoskeletal changes are mechanistically linked to enhanced RhoA but restricted spatiotemporal activation of Cdc42. Using a combination of protein silencing and forced expression of wild-type/constitutively active variants, we provide evidence that Nck is an upstream regulator of RhoA-dependent, MMP14-mediated breast carcinoma cell invasion. By identifying Nck as an important driver of breast carcinoma progression and metastasis, these results lay the groundwork for future studies assessing the therapeutic potential of targeting Nck in aggressive cancers.
Collapse
Affiliation(s)
- David C Morris
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas 77843-4467
| | - Julia L Popp
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas 77843-4467
| | - Leung K Tang
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas 77843-4467
| | - Holly C Gibbs
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-4467
| | - Emily Schmitt
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4467
| | - Sankar P Chaki
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas 77843-4467
| | - Briana C Bywaters
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas 77843-4467
| | - Alvin T Yeh
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-4467
| | - Weston W Porter
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4467
| | - Robert C Burghardt
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4467
| | - Rola Barhoumi
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4467
| | - Gonzalo M Rivera
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas 77843-4467
| |
Collapse
|
38
|
Paterson EK, Courtneidge SA. Invadosomes are coming: new insights into function and disease relevance. FEBS J 2017; 285:8-27. [PMID: 28548369 DOI: 10.1111/febs.14123] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/09/2017] [Accepted: 05/24/2017] [Indexed: 12/21/2022]
Abstract
Invadopodia and podosomes are discrete, actin-based molecular protrusions that form in cancer cells and normal cells, respectively, in response to diverse signaling pathways and extracellular matrix cues. Although they participate in a host of different cellular processes, they share a common functional theme of controlling pericellular proteolytic activity, which sets them apart from other structures that function in migration and adhesion, including focal adhesions, lamellipodia, and filopodia. In this review, we highlight research that explores the function of these complex structures, including roles for podosomes in embryonic and postnatal development, in angiogenesis and remodeling of the vasculature, in maturation of the postsynaptic membrane, in antigen sampling and recognition, and in cell-cell fusion mechanisms, as well as the involvement of invadopodia at multiple steps of the metastatic cascade, and how all of this may apply in the treatment of human disease states. Finally, we explore recent research that implicates a novel role for exosomes and microvesicles in invadopodia-dependent and invadopodia-independent mechanisms of invasion, respectively.
Collapse
Affiliation(s)
- Elyse K Paterson
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Sara A Courtneidge
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA.,Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA.,Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
39
|
Bouissou A, Proag A, Bourg N, Pingris K, Cabriel C, Balor S, Mangeat T, Thibault C, Vieu C, Dupuis G, Fort E, Lévêque-Fort S, Maridonneau-Parini I, Poincloux R. Podosome Force Generation Machinery: A Local Balance between Protrusion at the Core and Traction at the Ring. ACS NANO 2017; 11:4028-4040. [PMID: 28355484 DOI: 10.1021/acsnano.7b00622] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Determining how cells generate and transduce mechanical forces at the nanoscale is a major technical challenge for the understanding of numerous physiological and pathological processes. Podosomes are submicrometer cell structures with a columnar F-actin core surrounded by a ring of adhesion proteins, which possess the singular ability to protrude into and probe the extracellular matrix. Using protrusion force microscopy, we have previously shown that single podosomes produce local nanoscale protrusions on the extracellular environment. However, how cellular forces are distributed to allow this protruding mechanism is still unknown. To investigate the molecular machinery of protrusion force generation, we performed mechanical simulations and developed quantitative image analyses of nanoscale architectural and mechanical measurements. First, in silico modeling showed that the deformations of the substrate made by podosomes require protrusion forces to be balanced by local traction forces at the immediate core periphery where the adhesion ring is located. Second, we showed that three-ring proteins are required for actin polymerization and protrusion force generation. Third, using DONALD, a 3D nanoscopy technique that provides 20 nm isotropic localization precision, we related force generation to the molecular extension of talin within the podosome ring, which requires vinculin and paxillin, indicating that the ring sustains mechanical tension. Our work demonstrates that the ring is a site of tension, balancing protrusion at the core. This local coupling of opposing forces forms the basis of protrusion and reveals the podosome as a nanoscale autonomous force generator.
Collapse
Affiliation(s)
- Anaïs Bouissou
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse , CNRS, UPS, Toulouse 31400, France
| | - Amsha Proag
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse , CNRS, UPS, Toulouse 31400, France
| | - Nicolas Bourg
- Institut des Sciences Moléculaires d'Orsay, Université Paris-Sud , CNRS UMR8214, Orsay 91405, France
- Université Paris-Sud , Centre de Photonique BioMédicale, Fédération LUMAT, CNRS, FR 2764, Orsay 91405, France
| | - Karine Pingris
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse , CNRS, UPS, Toulouse 31400, France
| | - Clément Cabriel
- Institut des Sciences Moléculaires d'Orsay, Université Paris-Sud , CNRS UMR8214, Orsay 91405, France
- Université Paris-Sud , Centre de Photonique BioMédicale, Fédération LUMAT, CNRS, FR 2764, Orsay 91405, France
| | | | - Thomas Mangeat
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse , CNRS, UPS, Toulouse 31062, France
| | - Christophe Thibault
- CNRS, LAAS , Toulouse 31031, France
- Université de Toulouse , INSA, Toulouse 31077, France
| | - Christophe Vieu
- CNRS, LAAS , Toulouse 31031, France
- Université de Toulouse , INSA, Toulouse 31077, France
| | - Guillaume Dupuis
- Université Paris-Sud , Centre de Photonique BioMédicale, Fédération LUMAT, CNRS, FR 2764, Orsay 91405, France
| | - Emmanuel Fort
- Institut Langevin, ESPCI, CNRS, PSL Research University , Paris 75005, France
| | - Sandrine Lévêque-Fort
- Institut des Sciences Moléculaires d'Orsay, Université Paris-Sud , CNRS UMR8214, Orsay 91405, France
- Université Paris-Sud , Centre de Photonique BioMédicale, Fédération LUMAT, CNRS, FR 2764, Orsay 91405, France
| | - Isabelle Maridonneau-Parini
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse , CNRS, UPS, Toulouse 31400, France
| | - Renaud Poincloux
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse , CNRS, UPS, Toulouse 31400, France
| |
Collapse
|
40
|
Identification of six new genetic loci associated with atrial fibrillation in the Japanese population. Nat Genet 2017; 49:953-958. [DOI: 10.1038/ng.3842] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/20/2017] [Indexed: 11/08/2022]
|
41
|
Tumor Cell Invadopodia: Invasive Protrusions that Orchestrate Metastasis. Trends Cell Biol 2017; 27:595-607. [PMID: 28412099 DOI: 10.1016/j.tcb.2017.03.003] [Citation(s) in RCA: 267] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/09/2017] [Accepted: 03/13/2017] [Indexed: 12/26/2022]
Abstract
Invadopodia are a subset of invadosomes that are implicated in the integration of signals from the tumor microenvironment to support tumor cell invasion and dissemination. Recent progress has begun to define how tumor cells regulate the plasticity necessary for invadopodia to assemble and function efficiently in the different microenvironments encountered during dissemination in vivo. Exquisite mapping by many laboratories of the pathways involved in integrating diverse invadopodium initiation signals, from growth factors, to extracellular matrix (ECM) and cell-cell contact in the tumor microenvironment, has led to insight into the molecular basis of this plasticity. Here, we integrate this new information to discuss how the invadopodium is an important conductor that orchestrates tumor cell dissemination during metastasis.
Collapse
|
42
|
Kershner L, Welshhans K. RACK1 is necessary for the formation of point contacts and regulates axon growth. Dev Neurobiol 2017; 77:1038-1056. [PMID: 28245531 DOI: 10.1002/dneu.22491] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 02/17/2017] [Accepted: 02/19/2017] [Indexed: 11/08/2022]
Abstract
Receptor for activated C kinase 1 (RACK1) is a multifunctional ribosomal scaffolding protein that can interact with multiple signaling molecules concurrently through its seven WD40 repeats. We recently found that RACK1 is localized to mammalian growth cones, prompting an investigation into its role during neural development. Here, we show for the first time that RACK1 localizes to point contacts within mouse cortical growth cones. Point contacts are adhesion sites that link the actin network within growth cones to the extracellular matrix, and are necessary for appropriate axon guidance. Our experiments show that RACK1 is necessary for point contact formation. Brain-derived neurotrophic factor (BDNF) stimulates an increase in point contact density, which was eliminated by RACK1 shRNA or overexpression of a nonphosphorylatable mutant form of RACK1. We also found that axonal growth requires both RACK1 expression and phosphorylation. We have previously shown that the local translation of β-actin mRNA within growth cones is necessary for appropriate axon guidance and is dependent on RACK1. Thus, we examined the location of members of the local translation complex relative to point contacts. Indeed, both β-actin mRNA and RACK1 colocalize with point contacts, and this colocalization increases following BDNF stimulation. This implies the novel finding that local translation is regulated at point contacts. Taken together, these data suggest that point contacts are a targeted site of local translation within growth cones, and RACK1 is a critical member of the point contact complex and necessary for appropriate neural development. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1038-1056, 2017.
Collapse
Affiliation(s)
- Leah Kershner
- Department of Biological Sciences, Kent State University, Kent, Ohio, 44242
| | - Kristy Welshhans
- Department of Biological Sciences, Kent State University, Kent, Ohio, 44242.,School of Biomedical Sciences, Kent State University, Kent, Ohio, 44242
| |
Collapse
|
43
|
VEGF-A/Notch-Induced Podosomes Proteolyse Basement Membrane Collagen-IV during Retinal Sprouting Angiogenesis. Cell Rep 2016; 17:484-500. [DOI: 10.1016/j.celrep.2016.09.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/23/2016] [Accepted: 09/03/2016] [Indexed: 11/21/2022] Open
|
44
|
Pacheco A, Gallo G. Actin filament-microtubule interactions in axon initiation and branching. Brain Res Bull 2016; 126:300-310. [PMID: 27491623 DOI: 10.1016/j.brainresbull.2016.07.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/28/2016] [Accepted: 07/30/2016] [Indexed: 10/21/2022]
Abstract
Neurons begin life as spherical cells. A major hallmark of neuronal development is the formation of elongating processes from the cell body which subsequently differentiate into dendrites and the axon. The formation and later development of neuronal processes is achieved through the concerted organization of actin filaments and microtubules. Here, we review the literature regarding recent advances in the understanding of cytoskeletal interactions in neurons focusing on the initiation of processes from neuronal cell bodies and the collateral branching of axons. The complex crosstalk between cytoskeletal elements is mediated by a cohort of proteins that either bind both cytoskeletal systems or allow one to regulate the other. Recent studies have highlighted the importance of microtubule plus-tip proteins in the regulation of the dynamics and organization of actin filaments, while also providing a mechanism for the subcellular capture and guidance of microtubule tips by actin filaments. Although the understanding of cytoskeletal crosstalk and interactions in neuronal morphogenesis has advanced significantly in recent years the appreciation of the neuron as an integrated cytoskeletal system remains a frontier.
Collapse
Affiliation(s)
- Almudena Pacheco
- Temple University, Lewis Kats School of Medicine, Shriners Hospitals Pediatric Research Center, Department of Anatomy and Cell Biology, 3500 North Broad Street, Philadelphia, PA 19140, United States
| | - Gianluca Gallo
- Temple University, Lewis Kats School of Medicine, Shriners Hospitals Pediatric Research Center, Department of Anatomy and Cell Biology, 3500 North Broad Street, Philadelphia, PA 19140, United States.
| |
Collapse
|
45
|
Abstract
UNLABELLED Growth cones interact with the extracellular matrix (ECM) through integrin receptors at adhesion sites termed point contacts. Point contact adhesions link ECM proteins to the actin cytoskeleton through numerous adaptor and signaling proteins. One presumed function of growth cone point contacts is to restrain or "clutch" myosin-II-based filamentous actin (F-actin) retrograde flow (RF) to promote leading edge membrane protrusion. In motile non-neuronal cells, myosin-II binds and exerts force upon actin filaments at the leading edge, where clutching forces occur. However, in growth cones, it is unclear whether similar F-actin-clutching forces affect axon outgrowth and guidance. Here, we show in Xenopus spinal neurons that RF is reduced in rapidly migrating growth cones on laminin (LN) compared with non-integrin-binding poly-d-lysine (PDL). Moreover, acute stimulation with LN accelerates axon outgrowth over a time course that correlates with point contact formation and reduced RF. These results suggest that RF is restricted by the assembly of point contacts, which we show occurs locally by two-channel imaging of RF and paxillin. Further, using micropatterns of PDL and LN, we demonstrate that individual growth cones have differential RF rates while interacting with two distinct substrata. Opposing effects on RF rates were also observed in growth cones treated with chemoattractive and chemorepulsive axon guidance cues that influence point contact adhesions. Finally, we show that RF is significantly attenuated in vivo, suggesting that it is restrained by molecular clutching forces within the spinal cord. Together, our results suggest that local clutching of RF can control axon guidance on ECM proteins downstream of axon guidance cues. SIGNIFICANCE STATEMENT Here, we correlate point contact adhesions directly with clutching of filamentous actin retrograde flow (RF), which our findings strongly suggest guides developing axons. Acute assembly of new point contact adhesions is temporally and spatially linked to attenuation of RF at sites of forward membrane protrusion. Importantly, clutching of RF is modulated by extracellular matrix (ECM) proteins and soluble axon guidance cues, suggesting that it may regulate axon guidance in vivo. Consistent with this notion, we found that RF rates of spinal neuron growth cones were slower in vivo than what was observed in vitro. Together, our study provides the best evidence that growth cone-ECM adhesions clutch RF locally to guide axons in vivo.
Collapse
|
46
|
Abstract
Super resolution imaging is becoming an increasingly important tool in the arsenal of methods available to cell biologists. In recognition of its potential, the Nobel Prize for chemistry was awarded to three investigators involved in the development of super resolution imaging methods in 2014. The availability of commercial instruments for super resolution imaging has further spurred the development of new methods and reagents designed to take advantage of super resolution techniques. Super resolution offers the advantages traditionally associated with light microscopy, including the use of gentle fixation and specimen preparation methods, the ability to visualize multiple elements within a single specimen, and the potential to visualize dynamic changes in living specimens over time. However, imaging of living cells over time is difficult and super resolution imaging is computationally demanding. In this review, we discuss the advantages/disadvantages of different super resolution systems for imaging fixed live specimens, with particular regard to cytoskeleton structures.
Collapse
Affiliation(s)
- Eric A Shelden
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| | - Zachary T Colburn
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| | - Jonathan C R Jones
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
47
|
Cell adhesion and invasion mechanisms that guide developing axons. Curr Opin Neurobiol 2016; 39:77-85. [PMID: 27135389 DOI: 10.1016/j.conb.2016.04.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 01/15/2023]
Abstract
Axon extension, guidance and tissue invasion share many similarities to normal cell migration and cancer cell metastasis. Proper cell and growth cone migration requires tightly regulated adhesion complex assembly and detachment from the extracellular matrix (ECM). In addition, many cell types actively remodel the ECM using matrix metalloproteases (MMPs) to control tissue invasion and cell dispersal. Targeting and activating MMPs is a tightly regulated process, that when dysregulated, can lead to cancer cell metastasis. Interestingly, new evidence suggests that growth cones express similar cellular and molecular machinery as migrating cells to clutch retrograde actin flow on ECM proteins and target matrix degradation, which may be used to facilitate axon pathfinding through the basal lamina and across tissues.
Collapse
|
48
|
Di Martino J, Henriet E, Ezzoukhry Z, Goetz JG, Moreau V, Saltel F. The microenvironment controls invadosome plasticity. J Cell Sci 2016; 129:1759-68. [PMID: 27029343 DOI: 10.1242/jcs.182329] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Invadosomes are actin-based structures involved in extracellular matrix degradation. Invadosomes is a term that includes podosomes and invadopodia, which decorate normal and tumour cells, respectively. They are mainly organised into dots or rosettes, and podosomes and invadopodia are often compared and contrasted. Various internal or external stimuli have been shown to induce their formation and/or activity. In this Commentary, we address the impact of the microenvironment and the role of matrix receptors on the formation, and dynamic and degradative activities of invadosomes. In particular, we highlight recent findings regarding the role of type I collagen fibrils in inducing the formation of a new linear organisation of invadosomes. We will also discuss invadosome plasticity more generally and emphasise its physio-pathological relevance.
Collapse
Affiliation(s)
- Julie Di Martino
- Institut National de la Santé et de la Recherche Médicale, U1053, Bordeaux F-33076, France Université de Bordeaux, Bordeaux F-33076, France
| | - Elodie Henriet
- Institut National de la Santé et de la Recherche Médicale, U1053, Bordeaux F-33076, France Université de Bordeaux, Bordeaux F-33076, France
| | - Zakaria Ezzoukhry
- Institut National de la Santé et de la Recherche Médicale, U1053, Bordeaux F-33076, France Université de Bordeaux, Bordeaux F-33076, France
| | - Jacky G Goetz
- MN3T, Inserm U1109, Strasbourg 67200, France Université de Strasbourg, Strasbourg 67000, France LabEx Medalis, Université de Strasbourg, Strasbourg 67000, France Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg 67000, France
| | - Violaine Moreau
- Institut National de la Santé et de la Recherche Médicale, U1053, Bordeaux F-33076, France Université de Bordeaux, Bordeaux F-33076, France
| | - Frederic Saltel
- Institut National de la Santé et de la Recherche Médicale, U1053, Bordeaux F-33076, France Université de Bordeaux, Bordeaux F-33076, France
| |
Collapse
|
49
|
Wang F, Chang JTH, Kao CJ, Huang RS. High Expression of miR-532-5p, a Tumor Suppressor, Leads to Better Prognosis in Ovarian Cancer Both In Vivo and In Vitro. Mol Cancer Ther 2016; 15:1123-31. [PMID: 26873729 DOI: 10.1158/1535-7163.mct-15-0943] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/01/2016] [Indexed: 12/19/2022]
Abstract
Ovarian cancer is the leading cause of death for gynecologic cancers, ranking fifth overall for cancer-related death among women. The identification of biomarkers and the elucidation of molecular mechanisms for improving treatment options have received extensive efforts in ovarian cancer research. miRNAs have high potential to act as both ovarian cancer biomarkers and as critical regulators of ovarian tumor behavior. We comprehensively analyzed global mRNA, miRNA expression, and survival data for ovarian cancer from The Cancer Genome Atlas (TCGA) to pinpoint miRNAs that play critical roles in ovarian cancer survival through their effect on mRNA expression. We performed miRNA overexpression and gene knockdown experiments to confirm mechanisms predicted in our bioinformatics approach. We established that overexpression of miR-532-5p in OVCAR-3 cells resulted in a significant decrease in cell viability over a 96-hour time period. In the TCGA ovarian cancer dataset, we found 67 genes whose expression levels were negatively correlated with miR-532-5p expression and correlated with patient survival, such as WNT9A, CSNK2A2, CHD4, and SH3PXD2A The potential miR-532-5p-regulated gene targets were found to be enriched in the Wnt pathway. Overexpression of miR-532-5p through miRNA mimic caused downregulation of CSNK2A2, CHD4, and SH3PXD2A in the OVCAR-3 cell line. We have discovered and validated the tumor-suppressing capabilities of miR-532-5p both in vivo through TCGA analysis and in vitro through ovarian cancer cell lines. Our work highlights the potential clinical importance of miR-532-5p expression in ovarian cancer patients. Mol Cancer Ther; 15(5); 1123-31. ©2016 AACR.
Collapse
Affiliation(s)
- Fan Wang
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Jeremy T-H Chang
- Biological Sciences Collegiate Division, University of Chicago, Chicago, Illinois
| | | | | |
Collapse
|
50
|
Simiczyjew A, Mazur AJ, Ampe C, Malicka-Błaszkiewicz M, van Troys M, Nowak D. Active invadopodia of mesenchymally migrating cancer cells contain both β and γ cytoplasmic actin isoforms. Exp Cell Res 2015; 339:206-19. [PMID: 26548725 DOI: 10.1016/j.yexcr.2015.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 10/30/2015] [Accepted: 11/04/2015] [Indexed: 10/25/2022]
Abstract
Invadopodia are actin-rich protrusions formed by mesenchymally migrating cancer cells. They are mainly composed of actin, actin-associated proteins, integrins and proteins of signaling machineries. These protrusions display focalized proteolytic activity towards the extracellular matrix. It is well known that polymerized (F-)actin is present in these structures, but the nature of the actin isoform has not been studied before. We here show that both cytoplasmic actin isoforms, β- and γ-actin, are present in the invadopodia of MDA-MB-231 breast cancer cells cultured on a 2D-surface, where they colocalize with the invadopodial marker cortactin. Invadopodial structures formed by the cells in a 3D-collagen matrix also contain β- and γ-actin. We demonstrate this using isoform-specific antibodies and expression of fluorescently-tagged actin isoforms. Additionally, using simultaneous expression of differentially tagged β- and γ-actin in cells, we show that the actin isoforms are present together in a single invadopodium. Cells with an increased level of β- or γ-actin, display a similar increase in the number and size of invadopodia in comparison to control cells. Moreover, increasing the level of either actin isoforms also increases invasion velocity.
Collapse
Affiliation(s)
- Aleksandra Simiczyjew
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Antonina Joanna Mazur
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Christophe Ampe
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
| | - Maria Malicka-Błaszkiewicz
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Marleen van Troys
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
| | - Dorota Nowak
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland
| |
Collapse
|