1
|
Hawes J, Gonzalez-Manteiga A, Murphy KP, Sanchez-Petidier M, Moreno-Manzano V, Pathak B, Lampe K, Lin CY, Peiro JL, Oria M. Noggin-Loaded PLA/PCL Patch Inhibits BMP-Initiated Reactive Astrogliosis. Int J Mol Sci 2024; 25:11626. [PMID: 39519177 PMCID: PMC11545872 DOI: 10.3390/ijms252111626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/18/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Myelomeningocele (MMC) is a congenital birth defect of the spine and spinal cord, commonly treated clinically through prenatal or postnatal surgery by repairing the unclosed spinal canal. Having previously developed a PLA/PCL polymer smart patch for this condition, we aim to further expand the potential therapeutic options by providing additional cellular and biochemical support in addition to its mechanical properties. Bone morphogenetic proteins (BMPs) are a large class of secreted factors that serve as modulators of development in multiple organ systems, including the CNS. We hypothesize that our smart patch mitigates the astrogenesis induced, at least partly, by increased BMP activity during MMC. To test this hypothesis, neural stem or precursor cells were isolated from rat fetuses and cultured in the presence of Noggin, an endogenous antagonist of BMP action, with recombinant BMPs. We found that the developed PLA/PCL patch not only serves as a biocompatible material for developing neural stem cells but was also able to act as a carrier for BMP-Notch pathway inhibitor Noggin, effectively minimizing the effect of BMP2 or BMP4 on NPCs cultured with the Noggin-loaded patch.
Collapse
Affiliation(s)
- James Hawes
- Center for Fetal and Placental Research, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA; (J.H.); (K.P.M.); (B.P.); (K.L.); (J.L.P.)
| | - Ana Gonzalez-Manteiga
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA;
| | - Kendall P. Murphy
- Center for Fetal and Placental Research, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA; (J.H.); (K.P.M.); (B.P.); (K.L.); (J.L.P.)
| | - Marina Sanchez-Petidier
- Neuronal and Tissue Regeneration Laboratory, Prince Felipe Research Institute, 46512 Valencia, Spain; (M.S.-P.); (V.M.-M.)
- Neuronal Circuits and Behaviour Group, Hospital Nacional de Parapléjicos, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - Victoria Moreno-Manzano
- Neuronal and Tissue Regeneration Laboratory, Prince Felipe Research Institute, 46512 Valencia, Spain; (M.S.-P.); (V.M.-M.)
| | - Bedika Pathak
- Center for Fetal and Placental Research, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA; (J.H.); (K.P.M.); (B.P.); (K.L.); (J.L.P.)
| | - Kristin Lampe
- Center for Fetal and Placental Research, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA; (J.H.); (K.P.M.); (B.P.); (K.L.); (J.L.P.)
| | - Chia-Ying Lin
- Convergent Bioscience and Technology Institute, Department of Biomedical Engineering and Informatics, Indiana University, Indianapolis, IN 46202, USA;
| | - Jose L. Peiro
- Center for Fetal and Placental Research, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA; (J.H.); (K.P.M.); (B.P.); (K.L.); (J.L.P.)
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
| | - Marc Oria
- Center for Fetal and Placental Research, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA; (J.H.); (K.P.M.); (B.P.); (K.L.); (J.L.P.)
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA;
- University of Cincinnati Cancer Center (UCCC), Cincinnati, OH 45219, USA
- University of Cincinnati Brain Tumor Center (BTC), Cincinnati, OH 45219, USA
| |
Collapse
|
2
|
Bamaga A, Muthaffar O, Alyazidi A, Bahowarth S, Shawli M, Alotibi F, Alsehemi M, Almohammal M, Alawwadh A, Alghamdi N. MED23 pathogenic variant: genomic-phenotypic analysis. J Med Life 2024; 17:500-507. [PMID: 39144687 PMCID: PMC11320618 DOI: 10.25122/jml-2024-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/02/2024] [Indexed: 08/16/2024] Open
Abstract
The mediator complex subunit 23 (MED23) gene encodes a protein that acts as a tail module mediator complex, a multi-subunit co-activator involved in several cellular activities. MED23 has been shown to have substantial roles in myogenesis and other molecular mechanisms. The functions of MED23 in the neurological system remain unclear and the clinical phenotype is not thoroughly described. Whole exome sequencing was used to identify a novel mutation in the MED23 gene. DNA capture probes using next-generation sequencing-based copy number variation analysis with Illumina array were performed. The clinical, demographic, neuroimaging, and electrophysiological data of the patients were collected, and similarly, the data of all reported cases in the literature were extracted to compare findings. Screening a total of 9,662 articles, we identified 22 main regulatory processes for the MED23 gene, including suppressive activity for carcinogenic processes. MED23 is also involved in the brain's neurogenesis and functions. The identified cases mainly presented with intellectual disability (87.5%) and developmental delay (50%). Seizures were present in only 18.75% of the patients. Slow backgrounds and spike and sharp-wave complexes were reported on the electroencephalogram (EEG) of a few patients and delayed myelination, thin corpus callosum, and pontine hypoplasia on magnetic resonance imaging (MRI). The MED23 gene regulates several processes in which its understanding promotes considerable therapeutic potential for patients. It is crucial to consider genetic and laboratory testing, particularly when encountering potential carriers. Intellectual disability and developmental delay are the most notable clinical signs with heterogeneous features on EEG and MRI.
Collapse
Affiliation(s)
- Ahmed Bamaga
- Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Neuromuscular Medicine Unit, Department of Pediatrics, Faculty of Medicine, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Osama Muthaffar
- Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anas Alyazidi
- Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sarah Bahowarth
- Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Shawli
- Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad Alotibi
- Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Matar Alsehemi
- Pediatric Neurology Unit, Department of Pediatrics, King Fahad Hospital, Albaha, Saudi Arabia
| | | | - Adel Alawwadh
- Department of Pediatrics, Khamis Mushait Maternity and Children Hospital, Abha, Saudi Arabia
| | - Njood Alghamdi
- Faculty of Medicine, Albaha University, Albaha, Saudi Arabia
| |
Collapse
|
3
|
Salzano E, Niceta M, Pizzi S, Radio FC, Busè M, Mercadante F, Barresi S, Ferrara A, Mancini C, Tartaglia M, Piccione M. Case report: Novel compound heterozygosity for pathogenic variants in MED23 in a syndromic patient with postnatal microcephaly. Front Neurol 2023; 14:1090082. [PMID: 36824420 PMCID: PMC9941528 DOI: 10.3389/fneur.2023.1090082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/11/2023] [Indexed: 02/10/2023] Open
Abstract
Biallelic loss-of-function variants in MED23 cause a recessive syndromic intellectual disability condition with or without epilepsy (MRT18). Due to the small number of reported individuals, the clinical phenotype of the disorder has not been fully delineated yet, and the spectrum and frequency of neurologic features have not been fully characterized. Here, we report a 5-year-old girl with compound heterozygous for two additional MED23 variants. Besides global developmental delay, axial hypotonia and peripheral increased muscular tone, absent speech, and generalized tonic seizures, which fit well MRT18, the occurrence of postnatal progressive microcephaly has been here documented. A retrospective assessment of the previously reported clinical data for these subjects confirms the occurrence of postnatal progressive microcephaly as a previously unappreciated feature of the phenotype of MED23-related disorder.
Collapse
Affiliation(s)
- Emanuela Salzano
- Medical Genetics Unit, AOOR Villa Sofia-Cervello Hospitals, Palermo, Italy,*Correspondence: Emanuela Salzano ✉
| | - Marcello Niceta
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Simone Pizzi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | | | - Martina Busè
- Medical Genetics Unit, AOOR Villa Sofia-Cervello Hospitals, Palermo, Italy
| | | | - Sabina Barresi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Arturo Ferrara
- Medical Genetics Unit, AOOR Villa Sofia-Cervello Hospitals, Palermo, Italy
| | - Cecilia Mancini
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Maria Piccione
- Medical Genetics Unit, AOOR Villa Sofia-Cervello Hospitals, Palermo, Italy,Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| |
Collapse
|
4
|
Tan C, Zhu S, Chen Z, Liu C, Li YE, Zhu M, Zhang Z, Zhang Z, Zhang L, Gu Y, Liang Z, Boyer TG, Ouyang K, Evans SM, Fang X. Mediator complex proximal Tail subunit MED30 is critical for Mediator core stability and cardiomyocyte transcriptional network. PLoS Genet 2021; 17:e1009785. [PMID: 34506481 PMCID: PMC8432849 DOI: 10.1371/journal.pgen.1009785] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/18/2021] [Indexed: 01/28/2023] Open
Abstract
Dysregulation of cardiac transcription programs has been identified in patients and families with heart failure, as well as those with morphological and functional forms of congenital heart defects. Mediator is a multi-subunit complex that plays a central role in transcription initiation by integrating regulatory signals from gene-specific transcriptional activators to RNA polymerase II (Pol II). Recently, Mediator subunit 30 (MED30), a metazoan specific Mediator subunit, has been associated with Langer-Giedion syndrome (LGS) Type II and Cornelia de Lange syndrome-4 (CDLS4), characterized by several abnormalities including congenital heart defects. A point mutation in MED30 has been identified in mouse and is associated with mitochondrial cardiomyopathy. Very recent structural analyses of Mediator revealed that MED30 localizes to the proximal Tail, anchoring Head and Tail modules, thus potentially influencing stability of the Mediator core. However, in vivo cellular and physiological roles of MED30 in maintaining Mediator core integrity remain to be tested. Here, we report that deletion of MED30 in embryonic or adult cardiomyocytes caused rapid development of cardiac defects and lethality. Importantly, cardiomyocyte specific ablation of MED30 destabilized Mediator core subunits, while the kinase module was preserved, demonstrating an essential role of MED30 in stability of the overall Mediator complex. RNAseq analyses of constitutive cardiomyocyte specific Med30 knockout (cKO) embryonic hearts and inducible cardiomyocyte specific Med30 knockout (icKO) adult cardiomyocytes further revealed critical transcription networks in cardiomyocytes controlled by Mediator. Taken together, our results demonstrated that MED30 is essential for Mediator stability and transcriptional networks in both developing and adult cardiomyocytes. Our results affirm the key role of proximal Tail modular subunits in maintaining core Mediator stability in vivo.
Collapse
Affiliation(s)
- Changming Tan
- Department of Medicine, University of California, San Diego, California, United States of America
- Department of Cardiovascular Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Siting Zhu
- Department of Medicine, University of California, San Diego, California, United States of America
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Zee Chen
- Department of Medicine, University of California, San Diego, California, United States of America
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Canzhao Liu
- Department of Medicine, University of California, San Diego, California, United States of America
| | - Yang E. Li
- Department of Medicine, University of California, San Diego, California, United States of America
| | - Mason Zhu
- Department of Medicine, University of California, San Diego, California, United States of America
| | - Zhiyuan Zhang
- Department of Medicine, University of California, San Diego, California, United States of America
- Department of Cardiovascular Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhiwei Zhang
- Department of Medicine, University of California, San Diego, California, United States of America
- Department of Cardiovascular Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lunfeng Zhang
- Department of Medicine, University of California, San Diego, California, United States of America
| | - Yusu Gu
- Department of Medicine, University of California, San Diego, California, United States of America
| | - Zhengyu Liang
- Department of Medicine, University of California, San Diego, California, United States of America
| | - Thomas G. Boyer
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Kunfu Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Sylvia M. Evans
- Department of Medicine, University of California, San Diego, California, United States of America
- Department of Pharmacology, University of California, San Diego, California, United States of America
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California, United States of America
| | - Xi Fang
- Department of Medicine, University of California, San Diego, California, United States of America
| |
Collapse
|
5
|
Dash S, Bhatt S, Sandell LL, Seidel CW, Ahn Y, Krumlauf RE, Trainor PA. The Mediator Subunit, Med23 Is Required for Embryonic Survival and Regulation of Canonical WNT Signaling During Cranial Ganglia Development. Front Physiol 2020; 11:531933. [PMID: 33192541 PMCID: PMC7642510 DOI: 10.3389/fphys.2020.531933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 09/16/2020] [Indexed: 11/13/2022] Open
Abstract
Development of the vertebrate head is a complex and dynamic process, which requires integration of all three germ layers and their derivatives. Of special importance are ectoderm-derived cells that form the cranial placodes, which then differentiate into the cranial ganglia and sensory organs. Critical to a fully functioning head, defects in cranial placode and sensory organ development can result in congenital craniofacial anomalies. In a forward genetic screen aimed at identifying novel regulators of craniofacial development, we discovered an embryonically lethal mouse mutant, snouty, which exhibits malformation of the facial prominences, cranial nerves and vasculature. The snouty mutation was mapped to a single nucleotide change in a ubiquitously expressed gene, Med23, which encodes a subunit of the global transcription co-factor complex, Mediator. Phenotypic analyses revealed that the craniofacial anomalies, particularly of the cranial ganglia, were caused by a failure in the proper specification of cranial placode neuronal precursors. Molecular analyses determined that defects in cranial placode neuronal differentiation in Med23 sn/sn mutants were associated with elevated WNT/β-catenin signaling, which can be partially rescued through combined Lrp6 and Wise loss-of-function. Our work therefore reveals a surprisingly tissue specific role for the ubiquitously expressed mediator complex protein Med23 in placode differentiation during cranial ganglia development. This highlights the importance of coupling general transcription to the regulation of WNT signaling during embryogenesis.
Collapse
Affiliation(s)
- Soma Dash
- Stowers Institute for Medical Research, Kansas City, MO, United States
| | - Shachi Bhatt
- Stowers Institute for Medical Research, Kansas City, MO, United States.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Lisa L Sandell
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States
| | | | - Youngwook Ahn
- Stowers Institute for Medical Research, Kansas City, MO, United States
| | - Robb E Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO, United States.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, United States.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
6
|
Chen GY, Zhang S, Li CH, Qi CC, Wang YZ, Chen JY, Wang G, Ding YQ, Su CJ. Mediator Med23 Regulates Adult Hippocampal Neurogenesis. Front Cell Dev Biol 2020; 8:699. [PMID: 32850819 PMCID: PMC7403405 DOI: 10.3389/fcell.2020.00699] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/09/2020] [Indexed: 11/13/2022] Open
Abstract
Mammalian Mediator (Med) is a key regulator of gene expression by linking transcription factors to RNA polymerase II (Pol II) transcription machineries. The Mediator subunit 23 (Med23) is a member of the conserved Med protein complex and plays essential roles in diverse biological processes including adipogenesis, carcinogenesis, osteoblast differentiation, and T-cell activation. However, its potential functions in the nervous system remain unknown. We report here that Med23 is required for adult hippocampal neurogenesis in mouse. Deletion of Med23 in adult hippocampal neural stem cells (NSCs) was achieved in Nestin-CreER:Med23flox/flox mice by oral administration of tamoxifen. We found an increased number of proliferating NSCs shown by pulse BrdU-labeling and immunostaining of MCM2 and Ki67, which is possibly due to a reduction in cell cycle length, with unchanged GFAP+/Sox2+ NSCs and Tbr2+ progenitors. On the other hand, neuroblasts and immature neurons indicated by NeuroD and DCX were decreased in number in the dentate gyrus (DG) of Med23-deficient mice. In addition, these mice also displayed defective dendritic morphogenesis, as well as a deficiency in spatial and contextual fear memory. Gene ontology (GO) analysis of hippocampal NSCs revealed an enrichment in genes involved in cell proliferation, Pol II-associated transcription, Notch signaling pathway and apoptosis. These results demonstrate that Med23 plays roles in regulating adult brain neurogenesis and functions.
Collapse
Affiliation(s)
- Guo-Yan Chen
- Department of Neurology, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, China.,Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Shuai Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
| | - Chong-Hui Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Cong-Cong Qi
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Brain Science, and Department of Laboratory Animal Science, Fudan University, Shanghai, China
| | - Ya-Zhou Wang
- Department of Neurobiology, Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Jia-Yin Chen
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Gang Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,School of Life Sciences, Fudan University, Shanghai, China
| | - Yu-Qiang Ding
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Brain Science, and Department of Laboratory Animal Science, Fudan University, Shanghai, China
| | - Chang-Jun Su
- Department of Neurology, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, China
| |
Collapse
|
7
|
Bomkamp C, Tripathy SJ, Bengtsson Gonzales C, Hjerling-Leffler J, Craig AM, Pavlidis P. Transcriptomic correlates of electrophysiological and morphological diversity within and across excitatory and inhibitory neuron classes. PLoS Comput Biol 2019; 15:e1007113. [PMID: 31211786 PMCID: PMC6599125 DOI: 10.1371/journal.pcbi.1007113] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/28/2019] [Accepted: 05/18/2019] [Indexed: 12/31/2022] Open
Abstract
In order to further our understanding of how gene expression contributes to key functional properties of neurons, we combined publicly accessible gene expression, electrophysiology, and morphology measurements to identify cross-cell type correlations between these data modalities. Building on our previous work using a similar approach, we distinguished between correlations which were "class-driven," meaning those that could be explained by differences between excitatory and inhibitory cell classes, and those that reflected graded phenotypic differences within classes. Taking cell class identity into account increased the degree to which our results replicated in an independent dataset as well as their correspondence with known modes of ion channel function based on the literature. We also found a smaller set of genes whose relationships to electrophysiological or morphological properties appear to be specific to either excitatory or inhibitory cell types. Next, using data from PatchSeq experiments, allowing simultaneous single-cell characterization of gene expression and electrophysiology, we found that some of the gene-property correlations observed across cell types were further predictive of within-cell type heterogeneity. In summary, we have identified a number of relationships between gene expression, electrophysiology, and morphology that provide testable hypotheses for future studies.
Collapse
Affiliation(s)
- Claire Bomkamp
- Department of Psychiatry, University of British Columbia, Vancouver BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver BC, Canada
| | - Shreejoy J. Tripathy
- Department of Psychiatry, University of British Columbia, Vancouver BC, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver BC, Canada
| | - Carolina Bengtsson Gonzales
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jens Hjerling-Leffler
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ann Marie Craig
- Department of Psychiatry, University of British Columbia, Vancouver BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver BC, Canada
| | - Paul Pavlidis
- Department of Psychiatry, University of British Columbia, Vancouver BC, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver BC, Canada
| |
Collapse
|
8
|
Hashemi‐Gorji F, Fardaei M, Tabei SMB, Miryounesi M. Novel mutation in the MED23 gene for intellectual disability: A case report and literature review. Clin Case Rep 2019; 7:331-335. [PMID: 30847200 PMCID: PMC6389469 DOI: 10.1002/ccr3.1942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/05/2018] [Accepted: 11/08/2018] [Indexed: 01/19/2023] Open
Abstract
MED23 deficiency causes the autosomal recessive Intellectual Disability (ID). Here we report an Iranian case with nonsyndromic ID presenting with developmental delay, microcephaly, hypotonia, severe ID, speech delay, and spasticity, who was homozygous for the novel MED23 c.670C>G variant. These results expand the clinical and mutation spectrum of MED23 deficiency.
Collapse
Affiliation(s)
| | - Majid Fardaei
- Department of Medical Genetics, School of MedicineShiraz University of Medical SciencesShirazIran
| | | | - Mohammad Miryounesi
- Genomic Research CenterShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
9
|
Med23 serves as a gatekeeper of the myeloid potential of hematopoietic stem cells. Nat Commun 2018; 9:3746. [PMID: 30218073 PMCID: PMC6138688 DOI: 10.1038/s41467-018-06282-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/22/2018] [Indexed: 12/19/2022] Open
Abstract
In response to myeloablative stresses, HSCs are rapidly activated to replenish myeloid progenitors, while maintaining full potential of self-renewal to ensure life-long hematopoiesis. However, the key factors that orchestrate HSC activities during physiological stresses remain largely unknown. Here we report that Med23 controls the myeloid potential of activated HSCs. Ablation of Med23 in hematopoietic system leads to lymphocytopenia. Med23-deficient HSCs undergo myeloid-biased differentiation and lose the self-renewal capacity. Interestingly, Med23-deficient HSCs are much easier to be activated in response to physiological stresses. Mechanistically, Med23 plays essential roles in maintaining stemness genes expression and suppressing myeloid lineage genes expression. Med23 is downregulated in HSCs and Med23 deletion results in better survival under myeloablative stress. Altogether, our findings identify Med23 as a gatekeeper of myeloid potential of HSCs, thus providing unique insights into the relationship among Med23-mediated transcriptional regulations, the myeloid potential of HSCs and HSC activation upon stresses. Hematopoietic stem cells (HSCs) in the bone marrow are quiescent, but are activated in response to stress. Here, the authors show that loss of Med23 leads to greater activation and enhanced myeloid potential of HSCs in response to stress, also Med23 maintains stemness gene expression and suppresses myeloid genes.
Collapse
|
10
|
Matsuzaki T, Matsumoto S, Kasai T, Yoshizawa E, Okamoto S, Yoshikawa HY, Taniguchi H, Takebe T. Defining Lineage-Specific Membrane Fluidity Signatures that Regulate Adhesion Kinetics. Stem Cell Reports 2018; 11:852-860. [PMID: 30197117 PMCID: PMC6178887 DOI: 10.1016/j.stemcr.2018.08.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/10/2018] [Accepted: 08/11/2018] [Indexed: 12/13/2022] Open
Abstract
Cellular membrane fluidity is a critical modulator of cell adhesion and migration, prompting us to define the systematic landscape of lineage-specific cellular fluidity throughout differentiation. Here, we have unveiled membrane fluidity landscapes in various lineages ranging from human pluripotency to differentiated progeny: (1) membrane rigidification precedes the exit from pluripotency, (2) membrane composition modulates activin signaling transmission, and (3) signatures are relatively germ layer specific presumably due to unique lipid compositions. By modulating variable lineage-specific fluidity, we developed a label-free “adhesion sorting (AdSort)” method with simple cultural manipulation, effectively eliminating pluripotent stem cells and purifying target population as a result of the over 1,150 of screened conditions combining compounds and matrices. These results underscore the important role of tunable membrane fluidity in influencing stem cell maintenance and differentiation that can be translated into lineage-specific cell purification strategy. Membrane rigidification precedes the exit from pluripotency Germ layer-specific membrane fluidity signature exists Identification of polyphenols as a membrane fluidity modulator Fluidity-based adhesion sorting purify differentiated progeny from pluripotency
Collapse
Affiliation(s)
- Takahisa Matsuzaki
- Institute of Research, Tokyo Medical and Dental University (TMDU), 15-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Kanazawa-ku 3-9, Yokohama, Kanagawa 236-0004, Japan
| | - Shinya Matsumoto
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Kanazawa-ku 3-9, Yokohama, Kanagawa 236-0004, Japan
| | - Toshiharu Kasai
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Kanazawa-ku 3-9, Yokohama, Kanagawa 236-0004, Japan
| | - Emi Yoshizawa
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Kanazawa-ku 3-9, Yokohama, Kanagawa 236-0004, Japan
| | - Satoshi Okamoto
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Kanazawa-ku 3-9, Yokohama, Kanagawa 236-0004, Japan
| | - Hiroshi Y Yoshikawa
- Department of Chemistry, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Hideki Taniguchi
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Kanazawa-ku 3-9, Yokohama, Kanagawa 236-0004, Japan; Advanced Medical Research Center, Yokohama City University, Kanazawa-ku 3-9, Yokohama, Kanagawa 236-0004, Japan
| | - Takanori Takebe
- Institute of Research, Tokyo Medical and Dental University (TMDU), 15-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Kanazawa-ku 3-9, Yokohama, Kanagawa 236-0004, Japan; Advanced Medical Research Center, Yokohama City University, Kanazawa-ku 3-9, Yokohama, Kanagawa 236-0004, Japan; Division of Gastroenterology, Hepatology & Nutrition, Developmental Biology, Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA.
| |
Collapse
|
11
|
Transcriptome Analysis of Four Arabidopsis thaliana Mediator Tail Mutants Reveals Overlapping and Unique Functions in Gene Regulation. G3-GENES GENOMES GENETICS 2018; 8:3093-3108. [PMID: 30049745 PMCID: PMC6118316 DOI: 10.1534/g3.118.200573] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The Mediator complex is a central component of transcriptional regulation in Eukaryotes. The complex is structurally divided into four modules known as the head, middle, tail and kinase modules, and in Arabidopsis thaliana, comprises 28-34 subunits. Here, we explore the functions of four Arabidopsis Mediator tail subunits, MED2, MED5a/b, MED16, and MED23, by comparing the impact of mutations in each on the Arabidopsis transcriptome. We find that these subunits affect both unique and overlapping sets of genes, providing insight into the functional and structural relationships between them. The mutants primarily exhibit changes in the expression of genes related to biotic and abiotic stress. We find evidence for a tissue specific role for MED23, as well as in the production of alternative transcripts. Together, our data help disentangle the individual contributions of these MED subunits to global gene expression and suggest new avenues for future research into their functions.
Collapse
|
12
|
Xia M, Chen K, Yao X, Xu Y, Yao J, Yan J, Shao Z, Wang G. Mediator MED23 Links Pigmentation and DNA Repair through the Transcription Factor MITF. Cell Rep 2018; 20:1794-1804. [PMID: 28834744 DOI: 10.1016/j.celrep.2017.07.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 04/08/2017] [Accepted: 07/19/2017] [Indexed: 12/20/2022] Open
Abstract
DNA repair is related to many physiological and pathological processes, including pigmentation. Little is known about the role of the transcriptional cofactor Mediator complex in DNA repair and pigmentation. Here, we demonstrate that Mediator MED23 plays an important role in coupling UV-induced DNA repair to pigmentation. The loss of Med23 specifically impairs the pigmentation process in melanocyte-lineage cells and in zebrafish. Med23 deficiency leads to enhanced nucleotide excision repair (NER) and less DNA damage following UV radiation because of the enhanced expression and recruitment of NER factors to chromatin for genomic stability. Integrative analyses of melanoma cells reveal that MED23 controls the expression of a melanocyte master regulator, Mitf, by modulating its distal enhancer activity, leading to opposing effects on pigmentation and DNA repair. Collectively, the Mediator MED23/MITF axis connects DNA repair to pigmentation, thus providing molecular insights into the DNA damage response and skin-related diseases.
Collapse
Affiliation(s)
- Min Xia
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Kun Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Xiao Yao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yichi Xu
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiaying Yao
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jun Yan
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhen Shao
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Gang Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China.
| |
Collapse
|
13
|
He R, Xhabija B, Al-Qanber B, Kidder BL. OCT4 supports extended LIF-independent self-renewal and maintenance of transcriptional and epigenetic networks in embryonic stem cells. Sci Rep 2017; 7:16360. [PMID: 29180818 PMCID: PMC5703885 DOI: 10.1038/s41598-017-16611-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 11/15/2017] [Indexed: 12/29/2022] Open
Abstract
Embryonic stem (ES) cell pluripotency is governed by OCT4-centric transcriptional networks. Conventional ES cells can be derived and maintained in vitro with media containing the cytokine leukemia inhibitory factor (LIF), which propagates the pluripotent state by activating STAT3 signaling, and simultaneous inhibition of glycogen synthase kinase-3 (GSK3) and MAP kinase/ERK kinase signaling. However, it is unclear whether overexpression of OCT4 is sufficient to overcome LIF-dependence. Here, we show that inducible expression of OCT4 (iOCT4) supports long-term LIF-independent self-renewal of ES cells cultured in media containing fetal bovine serum (FBS) and a glycogen synthase kinase-3 (GSK3) inhibitor, and in serum-free media. Global expression analysis revealed that LIF-independent iOCT4 ES cells and control ES cells exhibit similar transcriptional programs relative to epiblast stem cells (EpiSCs) and differentiated cells. Epigenomic profiling also demonstrated similar patterns of histone modifications between LIF-independent iOCT4 and control ES cells. Moreover, LIF-independent iOCT4 ES cells retain the capacity to differentiate in vitro and in vivo upon downregulation of OCT4 expression. These findings indicate that OCT4 expression is sufficient to sustain intrinsic signaling in a LIF-independent manner to promote ES cell pluripotency and self-renewal.
Collapse
Affiliation(s)
- Runsheng He
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Besa Xhabija
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Chemistry and Biochemistry, University of Michigan-Flint, Flint, MI, USA
| | - Batool Al-Qanber
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Benjamin L Kidder
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA. .,Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
14
|
Li Z, Liu Z, Dong S, Zhang J, Tan J, Wang Y, Ge C, Li R, Xue Y, Li M, Wang W, Xiang X, Yang J, Ding H, Geng T, Yao K, Song X. miR-506 Inhibits Epithelial-to-Mesenchymal Transition and Angiogenesis in Gastric Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 185:2412-20. [PMID: 26362716 DOI: 10.1016/j.ajpath.2015.05.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/20/2015] [Accepted: 05/26/2015] [Indexed: 12/19/2022]
Abstract
Gastric cancer is one of the most common malignancies in developing countries. We examined the possible role of miR-506 in gastric cancer, investigated its associations with the clinical outcomes of gastric cancer patients, and explored its potential role in angiogenesis and the metastasis of gastric cancer cells. We found that miR-506 expression was a useful marker for stratifying patients from early to advanced clinical stages and for overall survival prediction. miR-506 overexpression inhibited the epithelial-to-mesenchymal transition of gastric cancer cells; however, depletion of miR-506 promoted it. In addition, miR-506 suppressed gastric cancer angiogenesis and was associated with decreased matrix metalloproteinase-9 expression. We also found that ETS1 was a miR-506 target, and it was expressed in 71.10% of gastric cancer tissue samples. Moreover, ETS1 expression was associated with matrix metalloproteinase-9 expression (P < 0.001). In conclusion, miR-506 was identified as an ETS1 targeting suppressor of metastatic invasion and angiogenesis in gastric cancer.
Collapse
Affiliation(s)
- Zhen Li
- Cancer Research Institute of Southern Medical University, Guangzhou, People's Republic of China; Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, People's Republic of China
| | - Zhimin Liu
- Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, People's Republic of China
| | - Suwei Dong
- Cancer Research Institute of Southern Medical University, Guangzhou, People's Republic of China; Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, People's Republic of China
| | - Jianhua Zhang
- Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, People's Republic of China
| | - Jing Tan
- Department of General Surgery, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, People's Republic of China
| | - Ying Wang
- Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, People's Republic of China
| | - Chunlei Ge
- Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, People's Republic of China
| | - Ruilei Li
- Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, People's Republic of China
| | - Yuanbo Xue
- Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, People's Republic of China
| | - Mei Li
- Department Pathology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, People's Republic of China
| | - Weiwei Wang
- Department Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, People's Republic of China
| | - Xudong Xiang
- Department Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, People's Republic of China
| | - Jinyan Yang
- Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, People's Republic of China
| | - Haiyan Ding
- Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, People's Republic of China
| | - Tao Geng
- Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, People's Republic of China
| | - Kaitai Yao
- Cancer Research Institute of Southern Medical University, Guangzhou, People's Republic of China.
| | - Xin Song
- Cancer Research Institute of Southern Medical University, Guangzhou, People's Republic of China; Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, People's Republic of China.
| |
Collapse
|
15
|
Qiu Z, Elsayed Z, Peterkin V, Alkatib S, Bennett D, Landry JW. Ino80 is essential for proximal-distal axis asymmetry in part by regulating Bmp4 expression. BMC Biol 2016; 14:18. [PMID: 26975355 PMCID: PMC4790052 DOI: 10.1186/s12915-016-0238-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 02/16/2016] [Indexed: 12/12/2022] Open
Abstract
Background Understanding how embryos specify asymmetric axes is a major focus of biology. While much has been done to discover signaling pathways and transcription factors important for axis specification, comparatively little is known about how epigenetic regulators are involved. Epigenetic regulators operate downstream of signaling pathways and transcription factors to promote nuclear processes, most prominently transcription. To discover novel functions for these complexes in axis establishment during early embryonic development, we characterized phenotypes of a mouse knockout (KO) allele of the chromatin remodeling Ino80 ATPase. Results Ino80 KO embryos implant, but fail to develop beyond the egg cylinder stage. Ino80 KO embryonic stem cells (ESCs) are viable and maintain alkaline phosphatase activity, which is suggestive of pluripotency, but they fail to fully differentiate as either embryoid bodies or teratomas. Gene expression analysis of Ino80 KO early embryos by in situ hybridization and embryoid bodies by RT-PCR shows elevated Bmp4 expression and reduced expression of distal visceral endoderm (DVE) markers Cer1, Hex, and Lefty1. In culture, Bmp4 maintains stem cell pluripotency and when overexpressed is a known negative regulator of DVE differentiation in the early embryo. Consistent with the early embryo, we observed upregulated Bmp4 expression and down-regulated Cer1, Hex, and Lefty1 expression when Ino80 KO ESCs are differentiated in a monolayer. Molecular studies in these same cells demonstrate that Ino80 bound to the Bmp4 promoter regulates its chromatin structure, which correlates with enhanced SP1 binding. These results in combination suggest that Ino80 directly regulates the chromatin structure of the Bmp4 promoter with consequences to gene expression. Conclusions In contrast to Ino80 KO differentiated cells, our experiments show that undifferentiated Ino80 KO ESCs are viable, but fail to differentiate in culture and in the early embryo. Ino80 KO ESCs and the early embryo up-regulate Bmp4 expression and down-regulate the expression of DVE markers Cer1, Hex and Lefty1. Based on this data, we propose a model where the Ino80 chromatin remodeling complex represses Bmp4 expression in the early embryo, thus promoting DVE differentiation and successful proximal-distal axis establishment. These results are significant because they show that epigenetic regulators have specific roles in establishing embryonic axes. By further characterizing these complexes, we will deepen our understanding of how the mammalian embryo is patterned by epigenetic regulators. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0238-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhijun Qiu
- Department of Human and Molecular Genetics, Virginia Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Zeinab Elsayed
- Department of Human and Molecular Genetics, Virginia Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Veronica Peterkin
- Department of Human and Molecular Genetics, Virginia Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Suehyb Alkatib
- Department of Human and Molecular Genetics, Virginia Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Dorothy Bennett
- Department of Human and Molecular Genetics, Virginia Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Joseph W Landry
- Department of Human and Molecular Genetics, Virginia Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA.
| |
Collapse
|