1
|
Ferrer MD, Pérez-Ferrer MDM, Blasco M, Jacobs IJ, Li Q, Vanakker OM, Dangreau L, López A, Malagraba G, Bassissi F, Perelló J, Salcedo C. Hexasodium Fytate (SNF472 or CSL525) Inhibits Ectopic Calcification in Various Pseudoxanthoma Elasticum and Calcinosis Cutis Animal Models. Pharmaceuticals (Basel) 2025; 18:567. [PMID: 40284002 PMCID: PMC12030052 DOI: 10.3390/ph18040567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/30/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: Ectopic calcification is a pathological condition characterized by the mineralization of soft tissues due to the deposition of calcium phosphate crystals. Hexasodium fytate (CSL525, previously known as SNF472) is a crystallization inhibitor being developed for the treatment of ectopic calcification-related disorders. Our aim was to investigate CSL525 for the treatment of soft-tissue calcification disorders in animal models of pseudoxanthoma elasticum and calcinosis cutis. Methods: In a first study, abcc6-/- zebrafish larvae were exposed to 1 mM CSL525 for 7 days or kept under the same conditions without CSL525, and spinal mineralization was quantified. In a second study, abcc6-/- mice were administered subcutaneously with CSL525 at 15 mg/kg thrice weekly for eight weeks. Vehicle-treated WT (C57BL/6J) and abcc6-/- mice served as controls, and muzzle skin calcification was quantified. In a third study, calcinosis cutis was induced in rats through subcutaneous administration of 0.15 mg FeCl3 at two sites in the thorax. Rats were administered either subcutaneous CSL525 (60 mg/kg) or vehicle (0.9% NaCl), and calcium content was measured in the skin. Results: CSL525 significantly reduced the calcified area (~40%) in abcc6a-/- zebrafish larvae. The abcc6-/- mice receiving CSL525 showed a 57% inhibition of muzzle calcification compared to vehicle-treated abcc6-/- mice. CSL525 inhibited skin calcification development by 60% in the calcinosis cutis rat model. Conclusions: CSL525 may prove beneficial not only in preventing the progression of cardiovascular calcification but also in treating other ectopic calcification conditions, including skin calcification associated with genetic disorders such as PXE.
Collapse
Affiliation(s)
- Miguel D. Ferrer
- Renal Lithiasis and Pathological Calcification Group (LiRCaP), Research Institute of Health Sciences (IUNICS), University of the Balearic Islands, 07122 Palma, Spain; (M.D.F.); (M.d.M.P.-F.); (M.B.); (G.M.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- Sanifit Therapeutics S.A., a company of CSL Vifor, 07121 Palma, Spain
- Molecular Biology, Health Geography and One Health (MolONE), University of the Balearic Islands, 07122 Palma, Spain
| | - Maria del Mar Pérez-Ferrer
- Renal Lithiasis and Pathological Calcification Group (LiRCaP), Research Institute of Health Sciences (IUNICS), University of the Balearic Islands, 07122 Palma, Spain; (M.D.F.); (M.d.M.P.-F.); (M.B.); (G.M.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- Sanifit Therapeutics S.A., a company of CSL Vifor, 07121 Palma, Spain
| | - Marc Blasco
- Renal Lithiasis and Pathological Calcification Group (LiRCaP), Research Institute of Health Sciences (IUNICS), University of the Balearic Islands, 07122 Palma, Spain; (M.D.F.); (M.d.M.P.-F.); (M.B.); (G.M.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- Sanifit Therapeutics S.A., a company of CSL Vifor, 07121 Palma, Spain
| | - Ida Joely Jacobs
- Department of Biochemistry and Molecular Biology, PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA 19107, USA; (I.J.J.); (Q.L.)
| | - Qiaoli Li
- Department of Biochemistry and Molecular Biology, PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA 19107, USA; (I.J.J.); (Q.L.)
| | - Olivier M. Vanakker
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium; (O.M.V.); (L.D.)
- International Network on Ectopic Calcification (INTEC), 9000 Ghent, Belgium
| | - Lisa Dangreau
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium; (O.M.V.); (L.D.)
| | - Andrea López
- Renal Lithiasis and Pathological Calcification Group (LiRCaP), Research Institute of Health Sciences (IUNICS), University of the Balearic Islands, 07122 Palma, Spain; (M.D.F.); (M.d.M.P.-F.); (M.B.); (G.M.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- Sanifit Therapeutics S.A., a company of CSL Vifor, 07121 Palma, Spain
| | - Gianluca Malagraba
- Renal Lithiasis and Pathological Calcification Group (LiRCaP), Research Institute of Health Sciences (IUNICS), University of the Balearic Islands, 07122 Palma, Spain; (M.D.F.); (M.d.M.P.-F.); (M.B.); (G.M.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
| | - Firas Bassissi
- Sanifit Therapeutics S.A., a company of CSL Vifor, 07121 Palma, Spain
- International Network on Ectopic Calcification (INTEC), 9000 Ghent, Belgium
| | - Joan Perelló
- Renal Lithiasis and Pathological Calcification Group (LiRCaP), Research Institute of Health Sciences (IUNICS), University of the Balearic Islands, 07122 Palma, Spain; (M.D.F.); (M.d.M.P.-F.); (M.B.); (G.M.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- Sanifit Therapeutics S.A., a company of CSL Vifor, 07121 Palma, Spain
| | - Carolina Salcedo
- Sanifit Therapeutics S.A., a company of CSL Vifor, 07121 Palma, Spain
- International Network on Ectopic Calcification (INTEC), 9000 Ghent, Belgium
| |
Collapse
|
2
|
Popov Aleksandrov A, Tucovic D, Kulas J, Popovic D, Kataranovski D, Kataranovski M, Mirkov I. Toxicology of chemical biocides: Anticoagulant rodenticides - Beyond hemostasis disturbance. Comp Biochem Physiol C Toxicol Pharmacol 2024; 277:109841. [PMID: 38237840 DOI: 10.1016/j.cbpc.2024.109841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/28/2023] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
The use of anticoagulant rodenticides (ARs) is one of the most commonly employed management methods for pest rodents. ARs compete with vitamin K (VK) required for the synthesis of blood clotting factors in the liver, resulting in inhibition of blood coagulation and often animal death due to hemorrhage. Besides rodents (target species), ARs may affect non-target animal species and humans. Out of hemostasis disturbance, the effects of ARs may be related to the inhibition of proteins that require VK for their synthesis but are not involved in the coagulation process, to their direct cytotoxicity, and their pro-oxidant/proinflammatory activity. A survey of the cellular and molecular mechanisms of these sublethal/asymptomatic AR effects is given in this review. Data from field, clinical, and experimental studies are presented. Knowledge of these mechanisms might improve hazard characterization and identification of potential ecotoxicological risks associated with ARs, contributing to a safer use of these chemicals.
Collapse
Affiliation(s)
- Aleksandra Popov Aleksandrov
- Immunotoxicology group, Department of Ecology, Institute for Biological Research "Siniša Stanković"- National Institute of the Republic of Serbia, University of Belgrade, 142 Bulevar despota Stefana, Belgrade 11000, Serbia
| | - Dina Tucovic
- Immunotoxicology group, Department of Ecology, Institute for Biological Research "Siniša Stanković"- National Institute of the Republic of Serbia, University of Belgrade, 142 Bulevar despota Stefana, Belgrade 11000, Serbia
| | - Jelena Kulas
- Immunotoxicology group, Department of Ecology, Institute for Biological Research "Siniša Stanković"- National Institute of the Republic of Serbia, University of Belgrade, 142 Bulevar despota Stefana, Belgrade 11000, Serbia
| | - Dusanka Popovic
- Immunotoxicology group, Department of Ecology, Institute for Biological Research "Siniša Stanković"- National Institute of the Republic of Serbia, University of Belgrade, 142 Bulevar despota Stefana, Belgrade 11000, Serbia
| | - Dragan Kataranovski
- Immunotoxicology group, Department of Ecology, Institute for Biological Research "Siniša Stanković"- National Institute of the Republic of Serbia, University of Belgrade, 142 Bulevar despota Stefana, Belgrade 11000, Serbia
| | - Milena Kataranovski
- Immunotoxicology group, Department of Ecology, Institute for Biological Research "Siniša Stanković"- National Institute of the Republic of Serbia, University of Belgrade, 142 Bulevar despota Stefana, Belgrade 11000, Serbia
| | - Ivana Mirkov
- Immunotoxicology group, Department of Ecology, Institute for Biological Research "Siniša Stanković"- National Institute of the Republic of Serbia, University of Belgrade, 142 Bulevar despota Stefana, Belgrade 11000, Serbia.
| |
Collapse
|
3
|
Van Wynsberghe J, Vanakker OM. Significance of Premature Vertebral Mineralization in Zebrafish Models in Mechanistic and Pharmaceutical Research on Hereditary Multisystem Diseases. Biomolecules 2023; 13:1621. [PMID: 38002303 PMCID: PMC10669475 DOI: 10.3390/biom13111621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Zebrafish are increasingly becoming an important model organism for studying the pathophysiological mechanisms of human diseases and investigating how these mechanisms can be effectively targeted using compounds that may open avenues to novel treatments for patients. The zebrafish skeleton has been particularly instrumental in modeling bone diseases as-contrary to other model organisms-the lower load on the skeleton of an aquatic animal enables mutants to survive to early adulthood. In this respect, the axial skeletons of zebrafish have been a good read-out for congenital spinal deformities such as scoliosis and degenerative disorders such as osteoporosis and osteoarthritis, in which aberrant mineralization in humans is reflected in the respective zebrafish models. Interestingly, there have been several reports of hereditary multisystemic diseases that do not affect the vertebral column in human patients, while the corresponding zebrafish models systematically show anomalies in mineralization and morphology of the spine as their leading or, in some cases, only phenotype. In this review, we describe such examples, highlighting the underlying mechanisms, the already-used or potential power of these models to help us understand and amend the mineralization process, and the outstanding questions on how and why this specific axial type of aberrant mineralization occurs in these disease models.
Collapse
Affiliation(s)
- Judith Van Wynsberghe
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium;
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Ectopic Mineralization Research Group, 9000 Ghent, Belgium
| | - Olivier M. Vanakker
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium;
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Ectopic Mineralization Research Group, 9000 Ghent, Belgium
| |
Collapse
|
4
|
Zebrafish Models to Study Ectopic Calcification and Calcium-Associated Pathologies. Int J Mol Sci 2023; 24:ijms24043366. [PMID: 36834795 PMCID: PMC9967340 DOI: 10.3390/ijms24043366] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
Ectopic calcification refers to the pathological accumulation of calcium ions in soft tissues and is often the result of a dysregulated action or disrupted function of proteins involved in extracellular matrix mineralization. While the mouse has traditionally been the go-to model organism for the study of pathologies associated with abnormal calcium deposition, many mouse mutants often have exacerbated phenotypes and die prematurely, limiting the understanding of the disease and the development of effective therapies. Since the mechanisms underlying ectopic calcification share some analogy with those of bone formation, the zebrafish (Danio rerio)-a well-established model for studying osteogenesis and mineralogenesis-has recently gained momentum as a model to study ectopic calcification disorders. In this review, we outline the mechanisms of ectopic mineralization in zebrafish, provide insights into zebrafish mutants that share phenotypic similarities with human pathological mineralization disorders, list the compounds capable of rescuing mutant phenotypes, and describe current methods to induce and characterize ectopic calcification in zebrafish.
Collapse
|
5
|
New Therapeutics Targeting Arterial Media Calcification: Friend or Foe for Bone Mineralization? Metabolites 2022; 12:metabo12040327. [PMID: 35448514 PMCID: PMC9027727 DOI: 10.3390/metabo12040327] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 01/27/2023] Open
Abstract
The presence of arterial media calcification, a highly complex and multifactorial disease, puts patients at high risk for developing serious cardiovascular consequences and mortality. Despite the numerous insights into the mechanisms underlying this pathological mineralization process, there is still a lack of effective treatment therapies interfering with the calcification process in the vessel wall. Current anti-calcifying therapeutics may induce detrimental side effects at the level of the bone, as arterial media calcification is regulated in a molecular and cellular similar way as physiological bone mineralization. This especially is a complication in patients with chronic kidney disease and diabetes, who are the prime targets of this pathology, as they already suffer from a disturbed mineral and bone metabolism. This review outlines recent treatment strategies tackling arterial calcification, underlining their potential to influence the bone mineralization process, including targeting vascular cell transdifferentiation, calcification inhibitors and stimulators, vascular smooth muscle cell (VSMC) death and oxidative stress: are they a friend or foe? Furthermore, this review highlights nutritional additives and a targeted, local approach as alternative strategies to combat arterial media calcification. Paving a way for the development of effective and more precise therapeutic approaches without inducing osseous side effects is crucial for this highly prevalent and mortal disease.
Collapse
|
6
|
Van Gils M, Willaert A, Coucke PJ, Vanakker OM. The Abcc6a Knockout Zebrafish Model as a Novel Tool for Drug Screening for Pseudoxanthoma Elasticum. Front Pharmacol 2022; 13:822143. [PMID: 35317004 PMCID: PMC8934400 DOI: 10.3389/fphar.2022.822143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
Pseudoxanthoma elasticum (PXE) is a multisystem ectopic mineralization disorder caused by pathogenic variants in the ABCC6 gene. Though complications of the disease can be treated, PXE itself remains currently intractable. A strategy for rapid and cost-effective discovery of therapeutic drugs would be to perform chemical compound screening using zebrafish, but this approach remains to be validated for PXE. In this paper, we validate a stable CRISPR/Cas9 abcc6a knockout zebrafish model–which has spinal column hypermineralization as its primary phenotypic feature–as a model system for compound screening in ectopic mineralization. We evaluated the anti-mineralization potential of five compounds, which had (anecdotal) positive effects reported in Abcc6 knockout mice and/or PXE patients. Abcc6a knockout zebrafish larvae were treated from 3 to 10 days post-fertilization with vitamin K1, sodium thiosulfate, etidronate, alendronate or magnesium citrate and compared to matching controls. Following alizarin red S staining, alterations in notochord sheath mineralization were semiquantified and found to largely congrue with the originally reported outcomes. Our results demonstrate that the use of this abcc6a knockout zebrafish model is a validated and promising strategy for drug discovery against ectopic mineralization.
Collapse
Affiliation(s)
- M. Van Gils
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - A. Willaert
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - P. J. Coucke
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - O. M. Vanakker
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- *Correspondence: O. M. Vanakker,
| |
Collapse
|
7
|
Hoareau M, El Kholti N, Debret R, Lambert E. Zebrafish as a Model to Study Vascular Elastic Fibers and Associated Pathologies. Int J Mol Sci 2022; 23:2102. [PMID: 35216218 PMCID: PMC8875079 DOI: 10.3390/ijms23042102] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 02/06/2023] Open
Abstract
Many extensible tissues such as skin, lungs, and blood vessels require elasticity to function properly. The recoil of elastic energy stored during a stretching phase is provided by elastic fibers, which are mostly composed of elastin and fibrillin-rich microfibrils. In arteries, the lack of elastic fibers leads to a weakening of the vessel wall with an increased risk to develop cardiovascular defects such as stenosis, aneurysms, and dissections. The development of new therapeutic molecules involves preliminary tests in animal models that recapitulate the disease and whose response to drugs should be as close as possible to that of humans. Due to its superior in vivo imaging possibilities and the broad tool kit for forward and reverse genetics, the zebrafish has become an important model organism to study human pathologies. Moreover, it is particularly adapted to large scale studies, making it an attractive model in particular for the first steps of investigations. In this review, we discuss the relevance of the zebrafish model for the study of elastic fiber-related vascular pathologies. We evidence zebrafish as a compelling alternative to conventional mouse models.
Collapse
Affiliation(s)
- Marie Hoareau
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Institut de Biologie et Chimie des Protéines, Université Lyon 1, 7, Passage du Vercors, CEDEX 07, F-69367 Lyon, France; (N.E.K.); (R.D.)
| | | | | | - Elise Lambert
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Institut de Biologie et Chimie des Protéines, Université Lyon 1, 7, Passage du Vercors, CEDEX 07, F-69367 Lyon, France; (N.E.K.); (R.D.)
| |
Collapse
|
8
|
Boneski PK, Madhu V, Tomlinson RE, Shapiro IM, van de Wetering K, Risbud MV. Abcc6 Null Mice-a Model for Mineralization Disorder PXE Shows Vertebral Osteopenia Without Enhanced Intervertebral Disc Calcification With Aging. Front Cell Dev Biol 2022; 10:823249. [PMID: 35186933 PMCID: PMC8850990 DOI: 10.3389/fcell.2022.823249] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/03/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic low back pain is a highly prevalent health condition intricately linked to intervertebral disc degeneration. One of the prominent features of disc degeneration that is commonly observed with aging is dystrophic calcification. ATP-binding cassette sub-family C member 6 (ABCC6), a presumed ATP efflux transporter, is a key regulator of systemic levels of the mineralization inhibitor pyrophosphate (PPi). Mutations in ABCC6 result in pseudoxanthoma elasticum (PXE), a progressive human metabolic disorder characterized by mineralization of the skin and elastic tissues. The implications of ABCC6 loss-of-function on pathological mineralization of structures in the spine, however, are unknown. Using the Abcc6 -/- mouse model of PXE, we investigated age-dependent changes in the vertebral bone and intervertebral disc. Abcc6 -/- mice exhibited diminished trabecular bone quality parameters at 7 months, which remained significantly lower than the wild-type mice at 18 months of age. Abcc6 -/- vertebrae showed increased TRAP staining along with decreased TNAP staining, suggesting an enhanced bone resorption as well as decreased bone formation. Surprisingly, however, loss of ABCC6 resulted only in a mild, aging disc phenotype without evidence of dystrophic mineralization. Finally, we tested the utility of oral K3Citrate to treat the vertebral phenotype since it is shown to regulate hydroxyapatite mechanical behavior. The treatment resulted in inhibition of the osteoclastic response and an early improvement in mechanical properties of the bone underscoring the promise of potassium citrate as a therapeutic agent. Our data suggest that although ectopic mineralization is tightly regulated in the disc, loss of ABCC6 compromises vertebral bone quality and dysregulates osteoblast-osteoclast coupling.
Collapse
Affiliation(s)
- Paige K. Boneski
- Department of Orthopedic Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Vedavathi Madhu
- Department of Orthopedic Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Ryan E. Tomlinson
- Department of Orthopedic Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Irving M. Shapiro
- Department of Orthopedic Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Koen van de Wetering
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and PXE International Center of Excellence in Research and Clinical Care, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Makarand V. Risbud
- Department of Orthopedic Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
9
|
Kague E, Karasik D. Functional Validation of Osteoporosis Genetic Findings Using Small Fish Models. Genes (Basel) 2022; 13:279. [PMID: 35205324 PMCID: PMC8872034 DOI: 10.3390/genes13020279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/11/2022] Open
Abstract
The advancement of human genomics has revolutionized our understanding of the genetic architecture of many skeletal diseases, including osteoporosis. However, interpreting results from human association studies remains a challenge, since index variants often reside in non-coding regions of the genome and do not possess an obvious regulatory function. To bridge the gap between genetic association and causality, a systematic functional investigation is necessary, such as the one offered by animal models. These models enable us to identify causal mechanisms, clarify the underlying biology, and apply interventions. Over the past several decades, small teleost fishes, mostly zebrafish and medaka, have emerged as powerful systems for modeling the genetics of human diseases. Due to their amenability to genetic intervention and the highly conserved genetic and physiological features, fish have become indispensable for skeletal genomic studies. The goal of this review is to summarize the evidence supporting the utility of Zebrafish (Danio rerio) for accelerating our understanding of human skeletal genomics and outlining the remaining gaps in knowledge. We provide an overview of zebrafish skeletal morphophysiology and gene homology, shedding light on the advantages of human skeletal genomic exploration and validation. Knowledge of the biology underlying osteoporosis through animal models will lead to the translation into new, better and more effective therapeutic approaches.
Collapse
Affiliation(s)
- Erika Kague
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol BS8 1TD, UK;
| | - David Karasik
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| |
Collapse
|
10
|
Therapy of Pseudoxanthoma Elasticum: Current Knowledge and Future Perspectives. Biomedicines 2021; 9:biomedicines9121895. [PMID: 34944710 PMCID: PMC8698611 DOI: 10.3390/biomedicines9121895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 12/24/2022] Open
Abstract
Pseudoxanthoma elasticum (PXE) is a rare, genetic, metabolic disease with an estimated prevalence of between 1 per 25,000 and 56,000. Its main hallmarks are characteristic skin lesions, development of choroidal neovascularization, and early-onset arterial calcification accompanied by a severe reduction in quality-of-life. Underlying the pathology are recessively transmitted pathogenic variants of the ABCC6 gene, which results in a deficiency of ABCC6 protein. This results in reduced levels of peripheral pyrophosphate, a strong inhibitor of peripheral calcification, but also dysregulation of blood lipids. Although various treatment options have emerged during the last 20 years, many are either already outdated or not yet ready to be applied generally. Clinical physicians often are left stranded while patients suffer from the consequences of outdated therapies, or feel unrecognized by their attending doctors who may feel uncertain about using new therapeutic approaches or not even know about them. In this review, we summarize the broad spectrum of treatment options for PXE, focusing on currently available clinical options, the latest research and development, and future perspectives.
Collapse
|
11
|
Rauner M, Foessl I, Formosa MM, Kague E, Prijatelj V, Lopez NA, Banerjee B, Bergen D, Busse B, Calado Â, Douni E, Gabet Y, Giralt NG, Grinberg D, Lovsin NM, Solan XN, Ostanek B, Pavlos NJ, Rivadeneira F, Soldatovic I, van de Peppel J, van der Eerden B, van Hul W, Balcells S, Marc J, Reppe S, Søe K, Karasik D. Perspective of the GEMSTONE Consortium on Current and Future Approaches to Functional Validation for Skeletal Genetic Disease Using Cellular, Molecular and Animal-Modeling Techniques. Front Endocrinol (Lausanne) 2021; 12:731217. [PMID: 34938269 PMCID: PMC8686830 DOI: 10.3389/fendo.2021.731217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/30/2021] [Indexed: 12/26/2022] Open
Abstract
The availability of large human datasets for genome-wide association studies (GWAS) and the advancement of sequencing technologies have boosted the identification of genetic variants in complex and rare diseases in the skeletal field. Yet, interpreting results from human association studies remains a challenge. To bridge the gap between genetic association and causality, a systematic functional investigation is necessary. Multiple unknowns exist for putative causal genes, including cellular localization of the molecular function. Intermediate traits ("endophenotypes"), e.g. molecular quantitative trait loci (molQTLs), are needed to identify mechanisms of underlying associations. Furthermore, index variants often reside in non-coding regions of the genome, therefore challenging for interpretation. Knowledge of non-coding variance (e.g. ncRNAs), repetitive sequences, and regulatory interactions between enhancers and their target genes is central for understanding causal genes in skeletal conditions. Animal models with deep skeletal phenotyping and cell culture models have already facilitated fine mapping of some association signals, elucidated gene mechanisms, and revealed disease-relevant biology. However, to accelerate research towards bridging the current gap between association and causality in skeletal diseases, alternative in vivo platforms need to be used and developed in parallel with the current -omics and traditional in vivo resources. Therefore, we argue that as a field we need to establish resource-sharing standards to collectively address complex research questions. These standards will promote data integration from various -omics technologies and functional dissection of human complex traits. In this mission statement, we review the current available resources and as a group propose a consensus to facilitate resource sharing using existing and future resources. Such coordination efforts will maximize the acquisition of knowledge from different approaches and thus reduce redundancy and duplication of resources. These measures will help to understand the pathogenesis of osteoporosis and other skeletal diseases towards defining new and more efficient therapeutic targets.
Collapse
Affiliation(s)
- Martina Rauner
- Department of Medicine III, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- University Hospital Carl Gustav Carus, Dresden, Germany
| | - Ines Foessl
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Endocrine Lab Platform, Medical University of Graz, Graz, Austria
| | - Melissa M. Formosa
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Erika Kague
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Vid Prijatelj
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- The Generation R Study, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Nerea Alonso Lopez
- Rheumatology and Bone Disease Unit, CGEM, Institute of Genetics and Cancer (IGC), Edinburgh, United Kingdom
| | - Bodhisattwa Banerjee
- Musculoskeletal Genetics Laboratory, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Dylan Bergen
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ângelo Calado
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Eleni Douni
- Department of Biotechnology, Agricultural University of Athens, Athens, Greece
- Institute for Bioinnovation, B.S.R.C. “Alexander Fleming”, Vari, Greece
| | - Yankel Gabet
- Department of Anatomy & Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Natalia García Giralt
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Barcelona, Spain
| | - Daniel Grinberg
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD, Barcelona, Spain
| | - Nika M. Lovsin
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Xavier Nogues Solan
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Barcelona, Spain
| | - Barbara Ostanek
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Nathan J. Pavlos
- Bone Biology & Disease Laboratory, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | | | - Ivan Soldatovic
- Institute of Medical Statistics and Informatic, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jeroen van de Peppel
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Bram van der Eerden
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Wim van Hul
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Susanna Balcells
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD, Barcelona, Spain
| | - Janja Marc
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Sjur Reppe
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Kent Søe
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - David Karasik
- Azrieli Faculty of Medicine, Bar-Ilan University, Ramat Gan, Israel
- Marcus Research Institute, Hebrew SeniorLife, Boston, MA, United States
| |
Collapse
|
12
|
Shimada BK, Pomozi V, Zoll J, Kuo S, Martin L, Le Saux O. ABCC6, Pyrophosphate and Ectopic Calcification: Therapeutic Solutions. Int J Mol Sci 2021; 22:ijms22094555. [PMID: 33925341 PMCID: PMC8123679 DOI: 10.3390/ijms22094555] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
Pathological (ectopic) mineralization of soft tissues occurs during aging, in several common conditions such as diabetes, hypercholesterolemia, and renal failure and in certain genetic disorders. Pseudoxanthoma elasticum (PXE), a multi-organ disease affecting dermal, ocular, and cardiovascular tissues, is a model for ectopic mineralization disorders. ABCC6 dysfunction is the primary cause of PXE, but also some cases of generalized arterial calcification of infancy (GACI). ABCC6 deficiency in mice underlies an inducible dystrophic cardiac calcification phenotype (DCC). These calcification diseases are part of a spectrum of mineralization disorders that also includes Calcification of Joints and Arteries (CALJA). Since the identification of ABCC6 as the “PXE gene” and the development of several animal models (mice, rat, and zebrafish), there has been significant progress in our understanding of the molecular genetics, the clinical phenotypes, and pathogenesis of these diseases, which share similarities with more common conditions with abnormal calcification. ABCC6 facilitates the cellular efflux of ATP, which is rapidly converted into inorganic pyrophosphate (PPi) and adenosine by the ectonucleotidases NPP1 and CD73 (NT5E). PPi is a potent endogenous inhibitor of calcification, whereas adenosine indirectly contributes to calcification inhibition by suppressing the synthesis of tissue non-specific alkaline phosphatase (TNAP). At present, therapies only exist to alleviate symptoms for both PXE and GACI; however, extensive studies have resulted in several novel approaches to treating PXE and GACI. This review seeks to summarize the role of ABCC6 in ectopic calcification in PXE and other calcification disorders, and discuss therapeutic strategies targeting various proteins in the pathway (ABCC6, NPP1, and TNAP) and direct inhibition of calcification via supplementation by various compounds.
Collapse
Affiliation(s)
- Briana K Shimada
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96817, USA
| | - Viola Pomozi
- Institute of Enzymology, RCNS, Hungarian Academy of Sciences, 1117 Budapest, Hungary
| | - Janna Zoll
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96817, USA
| | - Sheree Kuo
- Department of Pediatrics, Kapi'olani Medical Center for Women and Children, University of Hawaii, Honolulu, HI 96826, USA
| | - Ludovic Martin
- PXE Consultation Center, MAGEC Reference Center for Rare Skin Diseases, Angers University Hospital, 49100 Angers, France
- BNMI, CNRS 6214/INSERM 1083, University Bretagne-Loire, 49100 Angers, France
| | - Olivier Le Saux
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96817, USA
| |
Collapse
|
13
|
Czimer D, Porok K, Csete D, Gyüre Z, Lavró V, Fülöp K, Chen Z, Gyergyák H, Tusnády GE, Burgess SM, Mócsai A, Váradi A, Varga M. A New Zebrafish Model for Pseudoxanthoma Elasticum. Front Cell Dev Biol 2021; 9:628699. [PMID: 33768091 PMCID: PMC7985086 DOI: 10.3389/fcell.2021.628699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/16/2021] [Indexed: 11/30/2022] Open
Abstract
Calcification of various tissues is a significant health issue associated with aging, cancer and autoimmune diseases. There are both environmental and genetic factors behind this phenomenon and understanding them is essential for the development of efficient therapeutic approaches. Pseudoxanthoma elasticum (PXE) is a rare genetic disease, a prototype for calcification disorders, resulting from the dysfunction of ABCC6, a transport protein found in the membranes of cells. It is identified by excess calcification in a variety of tissues (e.g., eyes, skin, arteries) and currently it has no cure, known treatments target the symptoms only. Preclinical studies of PXE have been successful in mice, proving the usefulness of animal models for the study of the disease. Here, we present a new zebrafish (Danio rerio) model for PXE. By resolving some ambiguous assemblies in the zebrafish genome, we show that there are two functional and one non-functional paralogs for ABCC6 in zebrafish (abcc6a, abcc6b.1, and abcc6b.2, respectively). We created single and double mutants for the functional paralogs and characterized their calcification defects with a combination of techniques. Zebrafish deficient in abcc6a show defects in their vertebral calcification and also display ectopic calcification foci in their soft tissues. Our results also suggest that the impairment of abcc6b.1 does not affect this biological process.
Collapse
Affiliation(s)
- Dávid Czimer
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Klaudia Porok
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dániel Csete
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Zsolt Gyüre
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Viktória Lavró
- Division of Biosciences, University College London, London, United Kingdom
| | - Krisztina Fülöp
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Zelin Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Hella Gyergyák
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Gábor E. Tusnády
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Shawn M. Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, United States
| | - Attila Mócsai
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - András Váradi
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Máté Varga
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
14
|
Sun J, She P, Liu X, Gao B, Jin D, Zhong TP. Disruption of Abcc6 Transporter in Zebrafish Causes Ocular Calcification and Cardiac Fibrosis. Int J Mol Sci 2020; 22:ijms22010278. [PMID: 33383974 PMCID: PMC7795442 DOI: 10.3390/ijms22010278] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/18/2020] [Accepted: 12/25/2020] [Indexed: 12/14/2022] Open
Abstract
Pseudoxanthoma elasticum (PXE), caused by ABCC6/MRP6 mutation, is a heritable multisystem disorder in humans. The progressive clinical manifestations of PXE are accompanied by ectopic mineralization in various connective tissues. However, the pathomechanisms underlying the PXE multisystem disorder remains obscure, and effective treatment is currently available. In this study, we generated zebrafish abcc6a mutants using the transcription activator-like effector nuclease (TALEN) technique. In young adult zebrafish, abcc6a is expressed in the eyes, heart, intestine, and other tissues. abcc6a mutants exhibit extensive calcification in the ocular sclera and Bruch's membrane, recapitulating part of the PXE manifestations. Mutations in abcc6a upregulate extracellular matrix (ECM) genes, leading to fibrotic heart with reduced cardiomyocyte number. We found that abcc6a mutation reduced levels of both vitamin K and pyrophosphate (PPi) in the serum and diverse tissues. Vitamin K administration increased the gamma-glutamyl carboxylated form of matrix gla protein (cMGP), alleviating ectopic calcification and fibrosis in vertebrae, eyes, and hearts. Our findings contribute to a comprehensive understanding of PXE pathophysiology from zebrafish models.
Collapse
Affiliation(s)
- Jianjian Sun
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China;
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai 200241, China; (P.S.); (X.L.); (B.G.); (D.J.)
| | - Peilu She
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai 200241, China; (P.S.); (X.L.); (B.G.); (D.J.)
| | - Xu Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai 200241, China; (P.S.); (X.L.); (B.G.); (D.J.)
| | - Bangjun Gao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai 200241, China; (P.S.); (X.L.); (B.G.); (D.J.)
| | - Daqin Jin
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai 200241, China; (P.S.); (X.L.); (B.G.); (D.J.)
| | - Tao P. Zhong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai 200241, China; (P.S.); (X.L.); (B.G.); (D.J.)
- Correspondence: ; Tel.: +86-021-54345021
| |
Collapse
|
15
|
Verschuere S, Van Gils M, Nollet L, Vanakker OM. From membrane to mineralization: the curious case of the ABCC6 transporter. FEBS Lett 2020; 594:4109-4133. [PMID: 33131056 DOI: 10.1002/1873-3468.13981] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022]
Abstract
ATP-binding cassette subfamily C member 6 gene/protein (ABCC6) is an ATP-dependent transmembrane transporter predominantly expressed in the liver and the kidney. ABCC6 first came to attention in human medicine when it was discovered in 2000 that mutations in its encoding gene, ABCC6, caused the autosomal recessive multisystemic mineralization disease pseudoxanthoma elasticum (PXE). Since then, the physiological and pathological roles of ABCC6 have been the subject of intense research. In the last 20 years, significant findings have clarified ABCC6 structure as well as its physiological role in mineralization homeostasis in humans and animal models. Yet, several facets of ABCC6 biology remain currently incompletely understood, ranging from the precise nature of its substrate(s) to the increasingly complex molecular genetics. Nonetheless, advances in our understanding of pathophysiological mechanisms causing mineralization lead to several treatment options being suggested or already tested in pilot clinical trials for ABCC6 deficiency. This review highlights current knowledge of ABCC6 and the challenges ahead, particularly the attempts to translate basic science into clinical practice.
Collapse
Affiliation(s)
- Shana Verschuere
- Center for Medical Genetics, Ghent University Hospital, Belgium.,Department of Biomolecular Medicine, Ghent University, Belgium.,Ectopic Mineralization Research Group Ghent, Ghent, Belgium
| | - Matthias Van Gils
- Center for Medical Genetics, Ghent University Hospital, Belgium.,Department of Biomolecular Medicine, Ghent University, Belgium.,Ectopic Mineralization Research Group Ghent, Ghent, Belgium
| | - Lukas Nollet
- Center for Medical Genetics, Ghent University Hospital, Belgium.,Department of Biomolecular Medicine, Ghent University, Belgium.,Ectopic Mineralization Research Group Ghent, Ghent, Belgium
| | - Olivier M Vanakker
- Center for Medical Genetics, Ghent University Hospital, Belgium.,Department of Biomolecular Medicine, Ghent University, Belgium.,Ectopic Mineralization Research Group Ghent, Ghent, Belgium
| |
Collapse
|
16
|
Quaglino D, Boraldi F, Lofaro FD. The biology of vascular calcification. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 354:261-353. [PMID: 32475476 DOI: 10.1016/bs.ircmb.2020.02.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vascular calcification (VC), characterized by different mineral deposits (i.e., carbonate apatite, whitlockite and hydroxyapatite) accumulating in blood vessels and valves, represents a relevant pathological process for the aging population and a life-threatening complication in acquired and in genetic diseases. Similarly to bone remodeling, VC is an actively regulated process in which many cells and molecules play a pivotal role. This review aims at: (i) describing the role of resident and circulating cells, of the extracellular environment and of positive and negative factors in driving the mineralization process; (ii) detailing the types of VC (i.e., intimal, medial and cardiac valve calcification); (iii) analyzing rare genetic diseases underlining the importance of altered pyrophosphate-dependent regulatory mechanisms; (iv) providing therapeutic options and perspectives.
Collapse
Affiliation(s)
- Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | |
Collapse
|
17
|
Tonelli F, Bek JW, Besio R, De Clercq A, Leoni L, Salmon P, Coucke PJ, Willaert A, Forlino A. Zebrafish: A Resourceful Vertebrate Model to Investigate Skeletal Disorders. Front Endocrinol (Lausanne) 2020; 11:489. [PMID: 32849280 PMCID: PMC7416647 DOI: 10.3389/fendo.2020.00489] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
Animal models are essential tools for addressing fundamental scientific questions about skeletal diseases and for the development of new therapeutic approaches. Traditionally, mice have been the most common model organism in biomedical research, but their use is hampered by several limitations including complex generation, demanding investigation of early developmental stages, regulatory restrictions on breeding, and high maintenance cost. The zebrafish has been used as an efficient alternative vertebrate model for the study of human skeletal diseases, thanks to its easy genetic manipulation, high fecundity, external fertilization, transparency of rapidly developing embryos, and low maintenance cost. Furthermore, zebrafish share similar skeletal cells and ossification types with mammals. In the last decades, the use of both forward and new reverse genetics techniques has resulted in the generation of many mutant lines carrying skeletal phenotypes associated with human diseases. In addition, transgenic lines expressing fluorescent proteins under bone cell- or pathway- specific promoters enable in vivo imaging of differentiation and signaling at the cellular level. Despite the small size of the zebrafish, many traditional techniques for skeletal phenotyping, such as x-ray and microCT imaging and histological approaches, can be applied using the appropriate equipment and custom protocols. The ability of adult zebrafish to remodel skeletal tissues can be exploited as a unique tool to investigate bone formation and repair. Finally, the permeability of embryos to chemicals dissolved in water, together with the availability of large numbers of small-sized animals makes zebrafish a perfect model for high-throughput bone anabolic drug screening. This review aims to discuss the techniques that make zebrafish a powerful model to investigate the molecular and physiological basis of skeletal disorders.
Collapse
Affiliation(s)
- Francesca Tonelli
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Jan Willem Bek
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University-University Hospital, Ghent, Belgium
| | - Roberta Besio
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Adelbert De Clercq
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University-University Hospital, Ghent, Belgium
| | - Laura Leoni
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Paul J. Coucke
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University-University Hospital, Ghent, Belgium
| | - Andy Willaert
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University-University Hospital, Ghent, Belgium
| | - Antonella Forlino
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
- *Correspondence: Antonella Forlino
| |
Collapse
|
18
|
Zebrafish Models of Human Skeletal Disorders: Embryo and Adult Swimming Together. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1253710. [PMID: 31828085 PMCID: PMC6886339 DOI: 10.1155/2019/1253710] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 10/11/2019] [Accepted: 11/01/2019] [Indexed: 02/06/2023]
Abstract
Danio rerio (zebrafish) is an elective model organism for the study of vertebrate development because of its high degree of homology with human genes and organs, including bone. Zebrafish embryos, because of the optical clarity, small size, and fast development, can be easily used in large-scale mutagenesis experiments to isolate mutants with developmental skeletal defects and in high-throughput screenings to find new chemical compounds for the ability to revert the pathological phenotype. On the other hand, the adult zebrafish represents another powerful resource for pathogenic and therapeutic studies about adult human bone diseases. In fish, some characteristics such as bone turnover, reparation, and remodeling of the adult bone tissue cannot be found at the embryonic stage. Several pathological models have been established in adult zebrafish such as bone injury models, osteoporosis, and genetic diseases such as osteogenesis imperfecta. Given the growing interest for metabolic diseases and their complications, adult zebrafish models of type 2 diabetes and obesity have been recently generated and analyzed for bone complications using scales as model system. Interestingly, an osteoporosis-like phenotype has been found to be associated with metabolic alterations suggesting that bone complications share the same mechanisms in humans and fish. Embryo and adult represent powerful resources in rapid development to study bone physiology and pathology from different points of view.
Collapse
|
19
|
Granadeiro L, Dirks RP, Ortiz-Delgado JB, Gavaia PJ, Sarasquete C, Laizé V, Cancela ML, Fernández I. Warfarin-exposed zebrafish embryos resembles human warfarin embryopathy in a dose and developmental-time dependent manner - From molecular mechanisms to environmental concerns. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 181:559-571. [PMID: 31238190 DOI: 10.1016/j.ecoenv.2019.06.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 06/09/2023]
Abstract
Warfarin is the most worldwide used anticoagulant drug and rodenticide. Since it crosses placental barrier it can induce warfarin embryopathy (WE), a fetal mortality in neonates characterized by skeletal deformities in addition to brain hemorrhages. Although the effects of warfarin exposure in aquatic off target species were already described, the particular molecular toxicological mechanisms during early development are still unclear. Here, we used zebrafish (Danio rerio) to describe and compare the developmental effects of warfarin exposure (0, 15.13, 75.68 and 378.43 mM) on two distinct early developmental phases (embryos and eleuthero-embryos). Although exposure to both developmental phases induced fish mortality, only embryos exposed to the highest warfarin level exhibited features mimicking mammalian WE, e.g. high mortality, higher incidence of hemorrhages and altered skeletal development, among other effects. To gain insights into the toxic mechanisms underlying warfarin exposure, the transcriptome of embryos exposed to warfarin was explored through RNA-Seq and compared to that of control embryos. 766 differentially expressed (564 up- and 202 down-regulated) genes were identified. Gene Ontology analysis revealed particular cellular components (cytoplasm, extracellular matrix, lysosome and vacuole), biological processes (mainly amino acid and lipid metabolism and response to stimulus) and pathways (oxidative stress response and apoptosis signaling pathways) being significantly overrepresented in zebrafish embryos upon warfarin exposure. Protein-protein interaction further evidenced an altered redox system, blood coagulation and vasculogenesis, visual phototransduction and collagen formation upon warfarin exposure. The present study not only describes for the first time the WE in zebrafish, it provides new insights for a better risk assessment, and highlights the need for programming the rat eradication actions outside the fish spawning season to avoid an impact on off target fish community. The urge for the development of more species-specific anticoagulants for rodent pest control is also highlighted.
Collapse
Affiliation(s)
- Luis Granadeiro
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Ron P Dirks
- ZF-screens B.V. J.H. Oortweg 19, 2333, CH Leiden, the Netherlands
| | - Juan B Ortiz-Delgado
- Instituto de Ciencias Marinas de Andalucía-ICMAN/CSIC, Campus Universitario Río San Pedro, Apdo. Oficial, 11510, Puerto Real, Cádiz, Spain
| | - Paulo J Gavaia
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Departamento de Ciências Biomédicas e Medicina (DCBM), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Carmen Sarasquete
- Instituto de Ciencias Marinas de Andalucía-ICMAN/CSIC, Campus Universitario Río San Pedro, Apdo. Oficial, 11510, Puerto Real, Cádiz, Spain
| | - Vincent Laizé
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - M Leonor Cancela
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Departamento de Ciências Biomédicas e Medicina (DCBM), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC) and Centre for Biomedical Research (CBMR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Ignacio Fernández
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Center for Aquaculture Research, Agrarian Technological Institute of Castile and Leon, Ctra. Arévalo, S/n. 40196 Zamarramala, Segovia, Spain.
| |
Collapse
|
20
|
Lleras-Forero L, Winkler C, Schulte-Merker S. Zebrafish and medaka as models for biomedical research of bone diseases. Dev Biol 2019; 457:191-205. [PMID: 31325453 DOI: 10.1016/j.ydbio.2019.07.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 07/13/2019] [Indexed: 12/17/2022]
Abstract
The identification of disease-causing mutations has in recent years progressed immensely due to whole genome sequencing approaches using patient material. The task accordingly is shifting from gene identification to functional analysis of putative disease-causing genes, preferably in an in vivo setting which also allows testing of drug candidates or biotherapeutics in whole animal disease models. In this review, we highlight the advances made in the field of bone diseases using small laboratory fish, focusing on zebrafish and medaka. We particularly highlight those human conditions where teleost models are available.
Collapse
Affiliation(s)
- L Lleras-Forero
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Mendelstrasse 7, 48149 Münster, Germany; CiM Cluster of Excellence (EXC-1003-CiM), Münster, Germany.
| | - C Winkler
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 04, 117558 Singapore
| | - S Schulte-Merker
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Mendelstrasse 7, 48149 Münster, Germany; CiM Cluster of Excellence (EXC-1003-CiM), Münster, Germany.
| |
Collapse
|
21
|
Nollet L, Van Gils M, Verschuere S, Vanakker O. The Role of Vitamin K and Its Related Compounds in Mendelian and Acquired Ectopic Mineralization Disorders. Int J Mol Sci 2019; 20:E2142. [PMID: 31052252 PMCID: PMC6540172 DOI: 10.3390/ijms20092142] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 12/11/2022] Open
Abstract
Ectopic mineralization disorders comprise a broad spectrum of inherited or acquired diseases characterized by aberrant deposition of calcium crystals in multiple organs, such as the skin, eyes, kidneys, and blood vessels. Although the precise mechanisms leading to ectopic calcification are still incompletely known to date, various molecular targets leading to a disturbed balance between pro- and anti-mineralizing pathways have been identified in recent years. Vitamin K and its related compounds, mainly those post-translationally activated by vitamin K-dependent carboxylation, may play an important role in the pathogenesis of ectopic mineralization as has been demonstrated in studies on rare Mendelian diseases, but also on highly prevalent disorders, like vascular calcification. This narrative review compiles and summarizes the current knowledge regarding the role of vitamin K, its metabolism, and associated compounds in the pathophysiology of both monogenic ectopic mineralization disorders, like pseudoxanthoma elasticum or Keutel syndrome, as well as acquired multifactorial diseases, like chronic kidney disease. Clinical and molecular aspects of the various disorders are discussed according to the state-of-the-art, followed by a comprehensive literature review regarding the role of vitamin K in molecular pathophysiology and as a therapeutic target in both human and animal models of ectopic mineralization disorders.
Collapse
Affiliation(s)
- Lukas Nollet
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium.
| | - Matthias Van Gils
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium.
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium.
| | - Shana Verschuere
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium.
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium.
| | - Olivier Vanakker
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium.
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
22
|
Van Gils M, Vanakker OM. Morpholino-Mediated Gene Knockdown in Zebrafish: It Is All About Dosage and Validation. J Invest Dermatol 2019; 139:1599-1600. [PMID: 30707900 DOI: 10.1016/j.jid.2019.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/14/2019] [Indexed: 01/17/2023]
Affiliation(s)
- Matthias Van Gils
- Center for Medical Genetics, Ghent University Hospital, Belgium; Department of Biomolecular Medicine, Ghent University, Belgium
| | - Olivier M Vanakker
- Center for Medical Genetics, Ghent University Hospital, Belgium; Department of Biomolecular Medicine, Ghent University, Belgium.
| |
Collapse
|
23
|
Bergen DJM, Kague E, Hammond CL. Zebrafish as an Emerging Model for Osteoporosis: A Primary Testing Platform for Screening New Osteo-Active Compounds. Front Endocrinol (Lausanne) 2019; 10:6. [PMID: 30761080 PMCID: PMC6361756 DOI: 10.3389/fendo.2019.00006] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/09/2019] [Indexed: 12/16/2022] Open
Abstract
Osteoporosis is metabolic bone disease caused by an altered balance between bone anabolism and catabolism. This dysregulated balance is responsible for fragile bones that fracture easily after minor falls. With an aging population, the incidence is rising and as yet pharmaceutical options to restore this imbalance is limited, especially stimulating osteoblast bone-building activity. Excitingly, output from large genetic studies on people with high bone mass (HBM) cases and genome wide association studies (GWAS) on the population, yielded new insights into pathways containing osteo-anabolic players that have potential for drug target development. However, a bottleneck in development of new treatments targeting these putative osteo-anabolic genes is the lack of animal models for rapid and affordable testing to generate functional data and that simultaneously can be used as a compound testing platform. Zebrafish, a small teleost fish, are increasingly used in functional genomics and drug screening assays which resulted in new treatments in the clinic for other diseases. In this review we outline the zebrafish as a powerful model for osteoporosis research to validate potential therapeutic candidates, describe the tools and assays that can be used to study bone homeostasis, and affordable (semi-)high-throughput compound testing.
Collapse
Affiliation(s)
- Dylan J. M. Bergen
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, Southmead Hospital, University of Bristol, Bristol, United Kingdom
| | - Erika Kague
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
| | - Chrissy L. Hammond
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
24
|
Li Q, van de Wetering K, Uitto J. Pseudoxanthoma Elasticum as a Paradigm of Heritable Ectopic Mineralization Disorders: Pathomechanisms and Treatment Development. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 189:216-225. [PMID: 30414410 DOI: 10.1016/j.ajpath.2018.09.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/17/2018] [Accepted: 09/26/2018] [Indexed: 12/24/2022]
Abstract
Ectopic mineralization is a global problem and leading cause of morbidity and mortality. The pathomechanisms of ectopic mineralization are poorly understood. Recent studies on heritable ectopic mineralization disorders with defined gene defects have been helpful in elucidation of the mechanisms of ectopic mineralization in general. The prototype of such disorders is pseudoxanthoma elasticum (PXE), a late-onset, slowly progressing disorder with multisystem clinical manifestations. Other conditions include generalized arterial calcification of infancy (GACI), characterized by severe, early-onset mineralization of the cardiovascular system, often with early postnatal demise. In addition, arterial calcification due to CD73 deficiency (ACDC) occurs late in life, mostly affecting arteries in the lower extremities in elderly individuals. These three conditions, PXE, GACI, and ACDC, caused by mutations in ABCC6, ENPP1, and NT5E, respectively, are characterized by reduced levels of inorganic pyrophosphate (PPi) in plasma. Because PPi is a powerful antimineralization factor, it has been postulated that reduced PPi is a major determinant for ectopic mineralization in these conditions. These and related observations on complementary mechanisms of ectopic mineralization have resulted in development of potential treatment modalities for PXE, including administration of bisphosphonates, stable PPi analogs with antimineralization activity. It is conceivable that efficient treatments may soon become available for heritable ectopic mineralization disorders with application to common calcification disorders.
Collapse
Affiliation(s)
- Qiaoli Li
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, the PXE International Center of Excellence in Research and Clinical Care, and the Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania.
| | - Koen van de Wetering
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, the PXE International Center of Excellence in Research and Clinical Care, and the Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, the PXE International Center of Excellence in Research and Clinical Care, and the Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
25
|
Zebrafish Models of Ectopic Mineralization—The Paradigm of Pseudoxanthoma Elasticum. J Invest Dermatol 2018; 138:2301-2304. [DOI: 10.1016/j.jid.2018.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/11/2018] [Accepted: 07/11/2018] [Indexed: 12/30/2022]
|
26
|
Van Gils M, Willaert A, De Vilder EYG, Coucke PJ, Vanakker OM. Generation and Validation of a Complete Knockout Model of abcc6a in Zebrafish. J Invest Dermatol 2018; 138:2333-2342. [PMID: 30030150 DOI: 10.1016/j.jid.2018.06.183] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 06/08/2018] [Accepted: 06/12/2018] [Indexed: 12/22/2022]
Abstract
Pseudoxanthoma elasticum is an ectopic mineralization disease due to biallelic ABCC6 mutations. As no treatment options are currently available, a reliable zebrafish model is invaluable for high throughput compound screening. However, data from previously reported knockdown and mutant zebrafish models for abcc6a, the functional orthologue of ABCC6, showed phenotypic discrepancies. To address this, we developed a complete abcc6a knockout model using Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 and compared its phenotype to that of a mutant model (Sa963) and a splice junction morpholino model. Our data showed that abcc6a is not required for embryonic survival, but rather that it has an essential role in controlling mineralization. The three models developed very similar hypermineralization of spine and ribs starting embryonically and progressing in adulthood with development of scoliosis. Our results indicate a direct relation between loss of abcc6a expression and dysregulated osteogenesis. As such, our models recapitulate part of the human phenotype in which ectopic mineralization and pro-osteogenic signaling have been reported. Because of its reproducibility in three models and its ease of quantification, we consider this phenotype to be unequivocally the result of abcc6 deficiency and, as such, an excellent readout for drug screening purposes and multiplex mutagene analysis.
Collapse
Affiliation(s)
- M Van Gils
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - A Willaert
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - E Y G De Vilder
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium
| | - P J Coucke
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - O M Vanakker
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
27
|
Zebrafish Models of Rare Hereditary Pediatric Diseases. Diseases 2018; 6:diseases6020043. [PMID: 29789451 PMCID: PMC6023479 DOI: 10.3390/diseases6020043] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/17/2018] [Accepted: 05/19/2018] [Indexed: 12/12/2022] Open
Abstract
Recent advances in sequencing technologies have made it significantly easier to find the genetic roots of rare hereditary pediatric diseases. These novel methods are not panaceas, however, and they often give ambiguous results, highlighting multiple possible causative mutations in affected patients. Furthermore, even when the mapping results are unambiguous, the affected gene might be of unknown function. In these cases, understanding how a particular genotype can result in a phenotype also needs carefully designed experimental work. Model organism genetics can offer a straightforward experimental setup for hypothesis testing. Containing orthologs for over 80% of the genes involved in human diseases, zebrafish (Danio rerio) has emerged as one of the top disease models over the past decade. A plethora of genetic tools makes it easy to create mutations in almost any gene of the zebrafish genome and these mutant strains can be used in high-throughput preclinical screens for active molecules. As this small vertebrate species offers several other advantages as well, its popularity in biomedical research is bound to increase, with “aquarium to bedside” drug development pipelines taking a more prevalent role in the near future.
Collapse
|
28
|
Parreira B, Cardoso JCR, Costa R, Couto AR, Bruges-Armas J, Power DM. Persistence of the ABCC6 genes and the emergence of the bony skeleton in vertebrates. Sci Rep 2018; 8:6027. [PMID: 29662086 PMCID: PMC5902450 DOI: 10.1038/s41598-018-24370-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 03/22/2018] [Indexed: 12/18/2022] Open
Abstract
The ATP-binding cassette transporter 6 (ABCC6) gene encodes a cellular transmembrane protein transporter (MRP6) that is involved in the regulation of tissue calcification in mammals. Mutations in ABCC6 are associated with human ectopic calcification disorders. To gain insight into its evolution and involvement in tissue calcification we conducted a comparative analysis of the ABCC6 gene and the related gene ABCC1 from invertebrates to vertebrates where a bony endoskeleton first evolved. Taking into consideration the role of ABCC6 in ectopic calcification of human skin we analysed the involvement of both genes in the regeneration of scales, mineralized structures that develop in fish skin. The ABCC6 gene was only found in bony vertebrate genomes and was absent from Elasmobranchs, Agnatha and from invertebrates. In teleost fish the abcc6 gene duplicated but the two genes persisted only in some teleost genomes. Six disease causing amino acid mutations in human MRP6 are a normal feature of abcc6 in fish, suggesting they do not have a deleterious effect on the protein. After scale removal the abcc6 (5 and 10 days) and abcc1 (10 days) gene expression was up-regulated relative to the intact control skin and this coincided with a time of intense scale mineralization.
Collapse
Affiliation(s)
- Bruna Parreira
- Serviço Especializado de Epidemiologia e Biologia Molecular (SEEBMO), Hospital de Santo Espírito da Ilha Terceira, Azores, Portugal
| | - João C R Cardoso
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Rita Costa
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Ana Rita Couto
- Serviço Especializado de Epidemiologia e Biologia Molecular (SEEBMO), Hospital de Santo Espírito da Ilha Terceira, Azores, Portugal
| | - Jácome Bruges-Armas
- Serviço Especializado de Epidemiologia e Biologia Molecular (SEEBMO), Hospital de Santo Espírito da Ilha Terceira, Azores, Portugal.,CEDOC - Chronic Diseases Research Center, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Deborah M Power
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal. .,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
29
|
Ziegler SG, Ferreira CR, MacFarlane EG, Riddle RC, Tomlinson RE, Chew EY, Martin L, Ma CT, Sergienko E, Pinkerton AB, Millán JL, Gahl WA, Dietz HC. Ectopic calcification in pseudoxanthoma elasticum responds to inhibition of tissue-nonspecific alkaline phosphatase. Sci Transl Med 2017; 9:eaal1669. [PMID: 28592560 PMCID: PMC5606141 DOI: 10.1126/scitranslmed.aal1669] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/10/2017] [Accepted: 04/25/2017] [Indexed: 12/26/2022]
Abstract
Biallelic mutations in ABCC6 cause pseudoxanthoma elasticum (PXE), a disease characterized by calcification in the skin, eyes, and blood vessels. The function of ATP-binding cassette C6 (ABCC6) and the pathogenesis of PXE remain unclear. We used mouse models and patient fibroblasts to demonstrate genetic interaction and shared biochemical and cellular mechanisms underlying ectopic calcification in PXE and related disorders caused by defined perturbations in extracellular adenosine 5'-triphosphate catabolism. Under osteogenic culture conditions, ABCC6 mutant cells calcified, suggesting a provoked cell-autonomous defect. Using a conditional Abcc6 knockout mouse model, we excluded the prevailing pathogenic hypothesis that singularly invokes failure of hepatic secretion of an endocrine inhibitor of calcification. Instead, deficiency of Abcc6 in both local and distant cells was necessary to achieve the early onset and penetrant ectopic calcification observed upon constitutive gene targeting. ABCC6 mutant cells additionally had increased expression and activity of tissue-nonspecific alkaline phosphatase (TNAP), an enzyme that degrades pyrophosphate, a major inhibitor of calcification. A selective and orally bioavailable TNAP inhibitor prevented calcification in ABCC6 mutant cells in vitro and attenuated both the development and progression of calcification in Abcc6-/- mice in vivo, without the deleterious effects on bone associated with other proposed treatment strategies.
Collapse
Affiliation(s)
- Shira G Ziegler
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Carlos R Ferreira
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Elena Gallo MacFarlane
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ryan C Riddle
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Baltimore Veterans Administrations Medical Center, Baltimore, MD 21201, USA
| | - Ryan E Tomlinson
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Emily Y Chew
- National Eye Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Ludovic Martin
- PXE Reference Center and MitoVasc Institute, Angers University Hospital, Angers, France
| | - Chen-Ting Ma
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Eduard Sergienko
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | | | - José Luis Millán
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - William A Gahl
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Harry C Dietz
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
30
|
Abstract
Pseudoxanthoma elasticum (PXE) is a genetic metabolic disease with autosomal recessive inheritance caused by mutations in the ABCC6 gene. The lack of functional ABCC6 protein leads to ectopic mineralization that is most apparent in the elastic tissues of the skin, eyes and blood vessels. The clinical prevalence of PXE has been estimated at between 1 per 100,000 and 1 per 25,000, with slight female predominance. The first clinical sign of PXE is almost always small yellow papules on the nape and sides of the neck and in flexural areas. The papules coalesce, and the skin becomes loose and wrinkled. The mid-dermal elastic fibers are short, fragmented, clumped and calcified. Dystrophic calcification of Bruch's membrane, revealed by angioid streaks, may trigger choroidal neovascularization and, ultimately, loss of central vision and blindness in late-stage disease. Lesions in small and medium-sized artery walls may result in intermittent claudication and peripheral artery disease. Cardiac complications (myocardial infarction, angina pectoris) are thought to be relatively rare but merit thorough investigation. Ischemic strokes have been reported. PXE is a metabolic disease in which circulating levels of an anti-mineralization factor are low. There is good evidence to suggest that the factor is inorganic pyrophosphate (PPi), and that the circulating low levels of PPi and decreased PPi/Pi ratio result from the lack of ATP release by hepatocytes harboring the mutant ABCC6 protein. However, the substrate(s) bound, transported or modulated by the ABCC6 protein remain unknown. More than 300 sequence variants of the ABCC6 gene have been identified. There is no cure for PXE; the main symptomatic treatments are vascular endothelial growth factor inhibitor therapy (for ophthalmic manifestations), lifestyle, lipid-lowering and dietary measures (for reducing vascular risk factors), and vascular surgery (for severe cardiovascular manifestations). Future treatment options may include gene therapy/editing and pharmacologic chaperone therapy.
Collapse
Affiliation(s)
- Dominique P Germain
- Division of Medical Genetics, University of Versailles - Saint Quentin en Yvelines, Paris-Saclay University, 2 avenue de la source de la Bièvre, F-78180, Montigny, France.
| |
Collapse
|
31
|
Cardeira J, Gavaia PJ, Fernández I, Cengiz IF, Moreira-Silva J, Oliveira JM, Reis RL, Cancela ML, Laizé V. Quantitative assessment of the regenerative and mineralogenic performances of the zebrafish caudal fin. Sci Rep 2016; 6:39191. [PMID: 27991522 PMCID: PMC5171864 DOI: 10.1038/srep39191] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/21/2016] [Indexed: 12/31/2022] Open
Abstract
The ability of zebrafish to fully regenerate its caudal fin has been explored to better understand the mechanisms underlying de novo bone formation and to develop screening methods towards the discovery of compounds with therapeutic potential. Quantifying caudal fin regeneration largely depends on successfully measuring new tissue formation through methods that require optimization and standardization. Here, we present an improved methodology to characterize and analyse overall caudal fin and bone regeneration in adult zebrafish. First, regenerated and mineralized areas are evaluated through broad, rapid and specific chronological and morphometric analysis in alizarin red stained fins. Then, following a more refined strategy, the intensity of the staining within a 2D longitudinal plane is determined through pixel intensity analysis, as an indicator of density or thickness/volume. The applicability of this methodology on live specimens, to reduce animal experimentation and provide a tool for in vivo tracking of the regenerative process, was successfully demonstrated. Finally, the methodology was validated on retinoic acid- and warfarin-treated specimens, and further confirmed by micro-computed tomography. Because it is easily implementable, accurate and does not require sophisticated equipment, the present methodology will certainly provide valuable technical standardization for research in tissue engineering, regenerative medicine and skeletal biology.
Collapse
Affiliation(s)
- João Cardeira
- ProRegeM PhD Programme, Department of Biomedical Sciences and Medicine, University of Algarve, Campus de Gambelas, Faro, Portugal.,Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Paulo J Gavaia
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal.,Department of Biomedical Sciences and Medicine, University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Ignacio Fernández
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Ibrahim Fatih Cengiz
- 3B's Research Group, Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal.,ICVS/3B's, PT Government Associated Laboratory, Portugal
| | | | - Joaquim Miguel Oliveira
- 3B's Research Group, Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal.,ICVS/3B's, PT Government Associated Laboratory, Portugal
| | - Rui L Reis
- 3B's Research Group, Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal.,ICVS/3B's, PT Government Associated Laboratory, Portugal
| | - M Leonor Cancela
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal.,Department of Biomedical Sciences and Medicine, University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Vincent Laizé
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal
| |
Collapse
|
32
|
Li Q, Arányi T, Váradi A, Terry SF, Uitto J. Research Progress in Pseudoxanthoma Elasticum and Related Ectopic Mineralization Disorders. J Invest Dermatol 2016; 136:550-556. [PMID: 26902123 PMCID: PMC4765001 DOI: 10.1016/j.jid.2015.10.065] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Heritable ectopic mineralization disorders represent a phenotypically diverse group of conditions characterized by deposition of calcium phosphate complexes in soft connective tissues. The prototype of such conditions is pseudoxanthoma elasticum, and related conditions with overlapping clinical features include generalized arterial calcification of infancy and arterial calcification due to CD73 deficiency. Molecular genetic investigations have revealed mutations in the genes physiologically involved in generation of inorganic pyrophosphate and inorganic phosphate, and the findings suggest a unifying pathomechanism relating to reduced inorganic pyrophosphate/inorganic phosphate ratio. This hypothesis is based on the notion that inorganic pyrophosphate serves as a powerful inhibitor of mineralization, whereas inorganic phosphate is a promineralization factor, and an appropriate inorganic pyrophosphate/inorganic phosphate ratio is critical for prevention of ectopic mineralization under homeostatic conditions.
Collapse
Affiliation(s)
- Qiaoli Li
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Tamás Arányi
- Institute of Enzymology, RCNS, Hungarian Academy of Science, Budapest, Hungary
| | - András Váradi
- Institute of Enzymology, RCNS, Hungarian Academy of Science, Budapest, Hungary
| | | | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
33
|
Jeradi S, Hammerschmidt M. Retinoic acid-induced premature osteoblast-to-preosteocyte transitioning has multiple effects on calvarial development. Development 2016; 143:1205-16. [PMID: 26903503 DOI: 10.1242/dev.129189] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 02/17/2016] [Indexed: 12/25/2022]
Abstract
We have previously shown that, in human and zebrafish, hypomorphic mutations of the gene encoding the retinoic acid (RA)-metabolizing enzyme Cyp26b1 result in coronal craniosynostosis, caused by an RA-induced premature transitioning of suture osteoblasts to preosteocytes, inducing ectopic mineralization of the suture's osteoid matrix. In addition, we showed that human CYP26B1 null patients have more severe and seemingly opposite skull defects, characterized by smaller and fragmented calvaria, but the cellular basis of these defects remained largely unclear. Here, by treating juvenile zebrafish with exogenous RA or a chemical Cyp26 inhibitor in the presence or absence of osteogenic cells or bone-resorbing osteoclasts, we demonstrate that both reduced calvarial size and calvarial fragmentation are also caused by RA-induced premature osteoblast-to-preosteocyte transitioning. During calvarial growth, the resulting osteoblast deprival leads to decreased osteoid production and thereby smaller and thinner calvaria, whereas calvarial fragmentation is caused by increased osteoclast stimulation through the gained preosteocytes. Together, our data demonstrate that RA-induced osteoblast-to-preosteocyte transitioning has multiple effects on developing bone in Cyp26b1 mutants, ranging from gain to loss of bone, depending on the allelic strength, the developmental stage and the cellular context.
Collapse
Affiliation(s)
- Shirine Jeradi
- Institute of Developmental Biology, University of Cologne, 50674 Cologne, Germany
| | - Matthias Hammerschmidt
- Institute of Developmental Biology, University of Cologne, 50674 Cologne, Germany Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
34
|
Gistelinck C, Gioia R, Gagliardi A, Tonelli F, Marchese L, Bianchi L, Landi C, Bini L, Huysseune A, Witten PE, Staes A, Gevaert K, De Rocker N, Menten B, Malfait F, Leikin S, Carra S, Tenni R, Rossi A, De Paepe A, Coucke P, Willaert A, Forlino A. Zebrafish Collagen Type I: Molecular and Biochemical Characterization of the Major Structural Protein in Bone and Skin. Sci Rep 2016; 6:21540. [PMID: 26876635 PMCID: PMC4753508 DOI: 10.1038/srep21540] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/26/2016] [Indexed: 12/27/2022] Open
Abstract
Over the last years the zebrafish imposed itself as a powerful model to study skeletal diseases, but a limit to its use is the poor characterization of collagen type I, the most abundant protein in bone and skin. In tetrapods collagen type I is a trimer mainly composed of two α1 chains and one α2 chain, encoded by COL1A1 and COL1A2 genes, respectively. In contrast, in zebrafish three type I collagen genes exist, col1a1a, col1a1b and col1a2 coding for α1(I), α3(I) and α2(I) chains. During embryonic and larval development the three collagen type I genes showed a similar spatio-temporal expression pattern, indicating their co-regulation and interdependence at these stages. In both embryonic and adult tissues, the presence of the three α(I) chains was demonstrated, although in embryos α1(I) was present in two distinct glycosylated states, suggesting a developmental-specific collagen composition. Even though in adult bone, skin and scales equal amounts of α1(I), α3(I) and α2(I) chains are present, the presented data suggest a tissue-specific stoichiometry and/or post-translational modification status for collagen type I. In conclusion, this data will be useful to properly interpret results and insights gained from zebrafish models of skeletal diseases.
Collapse
Affiliation(s)
- C Gistelinck
- Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium
| | - R Gioia
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - A Gagliardi
- Functional Proteomics Lab., Department of Life Sciences, University of Siena, Siena, Italy
| | - F Tonelli
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - L Marchese
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - L Bianchi
- Functional Proteomics Lab., Department of Life Sciences, University of Siena, Siena, Italy
| | - C Landi
- Functional Proteomics Lab., Department of Life Sciences, University of Siena, Siena, Italy
| | - L Bini
- Functional Proteomics Lab., Department of Life Sciences, University of Siena, Siena, Italy
| | - A Huysseune
- Biology Department, Ghent University, Ghent, Belgium
| | - P E Witten
- Biology Department, Ghent University, Ghent, Belgium
| | - A Staes
- Department of Medical Protein Research, VIB, Ghent, Belgium.,Department of Biochemistry, Ghent University, Ghent, Belgium
| | - K Gevaert
- Department of Medical Protein Research, VIB, Ghent, Belgium.,Department of Biochemistry, Ghent University, Ghent, Belgium
| | - N De Rocker
- Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium
| | - B Menten
- Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium
| | - F Malfait
- Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium
| | - S Leikin
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - S Carra
- Department of Biosciences, University of Milano, Milan, Italy
| | - R Tenni
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - A Rossi
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - A De Paepe
- Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium
| | - P Coucke
- Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium
| | - A Willaert
- Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium
| | - A Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| |
Collapse
|
35
|
De Vilder EYG, Hosen MJ, Vanakker OM. The ABCC6 Transporter as a Paradigm for Networking from an Orphan Disease to Complex Disorders. BIOMED RESEARCH INTERNATIONAL 2015; 2015:648569. [PMID: 26356190 PMCID: PMC4555454 DOI: 10.1155/2015/648569] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/15/2015] [Accepted: 06/23/2015] [Indexed: 01/16/2023]
Abstract
The knowledge on the genetic etiology of complex disorders largely results from the study of rare monogenic disorders. Often these common and rare diseases show phenotypic overlap, though monogenic diseases generally have a more extreme symptomatology. ABCC6, the gene responsible for pseudoxanthoma elasticum, an autosomal recessive ectopic mineralization disorder, can be considered a paradigm gene with relevance that reaches far beyond this enigmatic orphan disease. Indeed, common traits such as chronic kidney disease or cardiovascular disorders have been linked to the ABCC6 gene. While during the last decade the awareness of the wide ramifications of ABCC6 has increased significantly, the gene itself and the transmembrane transporter it encodes have not unveiled all of the mysteries that surround them. To gain more insights, multiple approaches are being used including next-generation sequencing, computational methods, and various "omics" technologies. Much effort is made to place the vast amount of data that is gathered in an integrated system-biological network; the involvement of ABCC6 in common disorders provides a good view on the wide implications and potential of such a network. In this review, we summarize the network approaches used to study ABCC6 and the role of this gene in several complex diseases.
Collapse
Affiliation(s)
- Eva Y. G. De Vilder
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium
- Department of Ophthalmology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Mohammad Jakir Hosen
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | | |
Collapse
|