1
|
Hopwood N. Species Choice and Model Use: Reviving Research on Human Development. JOURNAL OF THE HISTORY OF BIOLOGY 2024; 57:231-279. [PMID: 39075321 PMCID: PMC11341657 DOI: 10.1007/s10739-024-09775-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 07/31/2024]
Abstract
While model organisms have had many historians, this article places studies of humans, and particularly our development, in the politics of species choice. Human embryos, investigated directly rather than via animal surrogates, have gone through cycles of attention and neglect. In the past 60 years they moved from the sidelines to center stage. Research was resuscitated in anatomy, launched in reproductive biomedicine, molecular genetics, and stem-cell science, and made attractive in developmental biology. I explain this surge of interest in terms of rivalry with models and reliance on them. The greater involvement of medicine in human reproduction, especially through in vitro fertilization, gave access to fresh sources of material that fed critiques of extrapolation from mice and met demands for clinical relevance or "translation." Yet much of the revival depended on models. Supply infrastructures and digital standards, including biobanks and virtual atlases, emulated community resources for model organisms. Novel culture, imaging, molecular, and postgenomic methods were perfected on less precious samples. Toing and froing from the mouse affirmed the necessity of the exemplary mammal and its insufficiency justified inquiries into humans. Another kind of model-organoids and embryo-like structures derived from stem cells-enabled experiments that encouraged the organization of a new field, human developmental biology. Research on humans has competed with and counted on models.
Collapse
Affiliation(s)
- Nick Hopwood
- Department of History and Philosophy of Science, University of Cambridge, Free School Lane, Cambridge, CB2 3RH, UK.
| |
Collapse
|
2
|
Luo Q, Wang N, Que H, Mai E, Hu Y, Tan R, Gu J, Gong P. Pluripotent Stem Cell-Derived Hepatocyte-like Cells: Induction Methods and Applications. Int J Mol Sci 2023; 24:11592. [PMID: 37511351 PMCID: PMC10380504 DOI: 10.3390/ijms241411592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The development of regenerative medicine provides new options for the treatment of end-stage liver diseases. Stem cells, such as bone marrow mesenchymal stem cells, embryonic stem cells, and induced pluripotent stem cells (iPSCs), are effective tools for tissue repair in regenerative medicine. iPSCs are an appropriate source of hepatocytes for the treatment of liver disease due to their unlimited multiplication capacity, their coverage of the entire range of genetics required to simulate human disease, and their evasion of ethical implications. iPSCs have the ability to gradually produce hepatocyte-like cells (HLCs) with homologous phenotypes and physiological functions. However, how to induce iPSCs to differentiate into HLCs efficiently and accurately is still a hot topic. This review describes the existing approaches for inducing the differentiation of iPSCs into HLCs, as well as some challenges faced, and summarizes various parameters for determining the quality and functionality of HLCs. Furthermore, the application of iPSCs for in vitro hepatoprotective drug screening and modeling of liver disease is discussed. In conclusion, iPSCs will be a dependable source of cells for stem-cell therapy to treat end-stage liver disease and are anticipated to facilitate individualized treatment for liver disease in the future.
Collapse
Affiliation(s)
- Qiulin Luo
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Nan Wang
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Hanyun Que
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Erziya Mai
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Yanting Hu
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Rui Tan
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610032, China
| | - Jian Gu
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Puyang Gong
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| |
Collapse
|
3
|
Ehnes DD, Alghadeer A, Hanson-Drury S, Zhao YT, Tilmes G, Mathieu J, Ruohola-Baker H. Sci-Seq of Human Fetal Salivary Tissue Introduces Human Transcriptional Paradigms and a Novel Cell Population. FRONTIERS IN DENTAL MEDICINE 2022; 3:887057. [PMID: 36540608 PMCID: PMC9762771 DOI: 10.3389/fdmed.2022.887057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Abstract
Multiple pathologies and non-pathological factors can disrupt the function of the non-regenerative human salivary gland including cancer and cancer therapeutics, autoimmune diseases, infections, pharmaceutical side effects, and traumatic injury. Despite the wide range of pathologies, no therapeutic or regenerative approaches exist to address salivary gland loss, likely due to significant gaps in our understanding of salivary gland development. Moreover, identifying the tissue of origin when diagnosing salivary carcinomas requires an understanding of human fetal development. Using computational tools, we identify developmental branchpoints, a novel stem cell-like population, and key signaling pathways in the human developing salivary glands by analyzing our human fetal single-cell sequencing data. Trajectory and transcriptional analysis suggest that the earliest progenitors yield excretory duct and myoepithelial cells and a transitional population that will yield later ductal cell types. Importantly, this single-cell analysis revealed a previously undescribed population of stem cell-like cells that are derived from SD and expresses high levels of genes associated with stem cell-like function. We have observed these rare cells, not in a single niche location but dispersed within the developing duct at later developmental stages. Our studies introduce new human-specific developmental paradigms for the salivary gland and lay the groundwork for the development of translational human therapeutics.
Collapse
Affiliation(s)
- Devon Duron Ehnes
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Ammar Alghadeer
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Sesha Hanson-Drury
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, United States
| | - Yan Ting Zhao
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, United States
| | - Gwen Tilmes
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Julie Mathieu
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Comparative Medicine, University of Washington, Seattle, WA, United States
| | - Hannele Ruohola-Baker
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| |
Collapse
|
4
|
Brovold M, Almeida JI, Pla-Palacín I, Sainz-Arnal P, Sánchez-Romero N, Rivas JJ, Almeida H, Dachary PR, Serrano-Aulló T, Soker S, Baptista PM. Naturally-Derived Biomaterials for Tissue Engineering Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1077:421-449. [PMID: 30357702 PMCID: PMC7526297 DOI: 10.1007/978-981-13-0947-2_23] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Naturally-derived biomaterials have been used for decades in multiple regenerative medicine applications. From the simplest cell microcarriers made of collagen or alginate, to highly complex decellularized whole-organ scaffolds, these biomaterials represent a class of substances that is usually first in choice at the time of electing a functional and useful biomaterial. Hence, in this chapter we describe the several naturally-derived biomaterials used in tissue engineering applications and their classification, based on composition. We will also describe some of the present uses of the generated tissues like drug discovery, developmental biology, bioprinting and transplantation.
Collapse
Affiliation(s)
- Matthew Brovold
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA
| | - Joana I Almeida
- Health Research Institute of Aragón (IIS Aragón), Zaragoza, Spain
| | - Iris Pla-Palacín
- Health Research Institute of Aragón (IIS Aragón), Zaragoza, Spain
| | - Pilar Sainz-Arnal
- Health Research Institute of Aragón (IIS Aragón), Zaragoza, Spain
- Aragon Health Sciences Institute (IACS), Zaragoza, Spain
| | | | - Jesus J Rivas
- Health Research Institute of Aragón (IIS Aragón), Zaragoza, Spain
| | - Helen Almeida
- Health Research Institute of Aragón (IIS Aragón), Zaragoza, Spain
| | - Pablo Royo Dachary
- Instituto de Investigación Sanitária de Aragón (IIS Aragón), Zaragoza, Spain
- Liver Transplant Unit, Gastroenterology Department, Lozano Blesa University Hospital, Zaragoza, Spain
| | - Trinidad Serrano-Aulló
- Instituto de Investigación Sanitária de Aragón (IIS Aragón), Zaragoza, Spain
- Liver Transplant Unit, Gastroenterology Department, Lozano Blesa University Hospital, Zaragoza, Spain
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA.
| | - Pedro M Baptista
- Instituto de Investigación Sanitária de Aragón (IIS Aragón), Zaragoza, Spain.
- Center for Biomedical Research Network Liver and Digestive Diseases (CIBERehd), Zaragoza, Spain.
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain.
- Biomedical and Aerospace Engineering Department, Universidad Carlos III de Madrid, Madrid, Spain.
- Fundación ARAID, Zaragoza, Spain.
| |
Collapse
|
5
|
Wu F, Wu D, Ren Y, Huang Y, Feng B, Zhao N, Zhang T, Chen X, Chen S, Xu A. Generation of hepatobiliary organoids from human induced pluripotent stem cells. J Hepatol 2019; 70:1145-1158. [PMID: 30630011 DOI: 10.1016/j.jhep.2018.12.028] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 11/28/2018] [Accepted: 12/19/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Human induced pluripotent stem cell (hiPSC)-derived liver modeling systems have the potential to overcome the shortage of donors for clinical application and become a model for drug development. Although several strategies are available to generate hepatic micro-tissues, few have succeeded in generating a liver organoid with hepatobiliary structure from hiPSCs. METHODS At differentiation stages I and II (day 1-15), 25% of mTeSR™ culture medium was added to hepatic differentiation medium to induce endodermal and mesodermal commitment and thereafter hepatic and biliary co-differentiation. At stage III (day 15-45), 10% cholesterol+ MIX was added to the maturation medium to promote the formation and maturation of the hepatobiliary organoids. Phenotypes and functions of organoids were determined by specific markers and multiple functional assays both in vitro and in vivo. RESULTS In this system, hiPSCs were induced to form 3D hepatobiliary organoids and to some extent recapitulated key aspects of early hepatogenesis in a parallel fashion. The organoids displayed a series of functional attributes. Specifically, the induced hepatocyte-like cells could take up indocyanine green, accumulate lipid and glycogen, and displayed appropriate secretion ability (albumin and urea) and drug metabolic ability (CYP3A4 activity and inducibility); the biliary structures in the system showed gamma glutamyltransferase activity and the ability to efflux rhodamine and store bile acids. Furthermore, after transplantation into the immune-deficient mice, the organoids survived for more than 8 weeks. CONCLUSION This is the first time that functional hepatobiliary organoids have been generated from hiPSCs. The organoid model will be useful for in vitro studies of the molecular mechanisms of liver development and has important potential in the therapy of liver diseases. LAY SUMMARY Herein, we established a system to generate human induced pluripotent stem cell-derived functional hepatobiliary organoids in vitro, without any exogenous cells or genetic manipulation. To some extent this model was able to recapitulate several key aspects of hepatobiliary organogenesis in a parallel fashion, holding great promise for drug development and liver transplantation.
Collapse
Affiliation(s)
- Fenfang Wu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Di Wu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Yong Ren
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Yuhua Huang
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Bo Feng
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Nan Zhao
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Taotao Zhang
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Xiaoni Chen
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Shangwu Chen
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Anlong Xu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China; School of Life Science, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China.
| |
Collapse
|
6
|
Vyas D, Baptista PM, Brovold M, Moran E, Brovold M, Gaston B, Booth C, Samuel M, Atala A, Soker S. Self-assembled liver organoids recapitulate hepatobiliary organogenesis in vitro. Hepatology 2018; 67:750-761. [PMID: 28834615 PMCID: PMC5825235 DOI: 10.1002/hep.29483] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 08/01/2017] [Accepted: 08/16/2017] [Indexed: 12/17/2022]
Abstract
Several three-dimensional cell culture systems are currently available to create liver organoids. In gneral, these systems display better physiologic and metabolic aspects of intact liver tissue compared with two-dimensional culture systems. However, none reliably mimic human liver development, including parallel formation of hepatocyte and cholangiocyte anatomical structures. Here, we show that human fetal liver progenitor cells self-assembled inside acellular liver extracellular matrix scaffolds to form three-dimensional liver organoids that recapitulated several aspects of hepatobiliary organogenesis and resulted in concomitant formation of progressively more differentiated hepatocytes and bile duct structures. The duct morphogenesis process was interrupted by inhibiting Notch signaling, in an attempt to create a liver developmental disease model with a similar phenotype to Alagille syndrome. Conclusion: In the current study, we created an in vitro model of human liver development and disease, physiology, and metabolism, supported by liver extracellular matrix substrata; we envision that it will be used in the future to study mechanisms of hepatic and biliary development and for disease modeling and drug screening. (Hepatology 2018;67:750-761).
Collapse
Affiliation(s)
- Dipen Vyas
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Health, Winston-Salem, NC, USA
| | - Pedro M. Baptista
- Aragon Health Research Institute (IIS Aragon), Zaragoza, Spain,CIBERehd, Spain,Corresponding Authors: Shay Soker, Wake Forest Institute for Regenerative Medicine, 391 Technology Way, Winston Salem, NC 27101. Phone: 336-713-7295; Fax: 336-713-7290. ; Pedro M. Baptista, Aragon’s Health Research Institute (IIS Aragon), Zaragoza, Spain.
| | - Matthew Brovold
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Health, Winston-Salem, NC, USA
| | - Emma Moran
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Health, Winston-Salem, NC, USA
| | - Matthew Brovold
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Health, Winston-Salem, NC, USA
| | - Brandon Gaston
- Department of Surgery, University of California, San Francisco, CA, USA
| | - Chris Booth
- John Hopkins Medical Institute, Baltimore, MD, USA
| | - Michael Samuel
- Mass Spectrometry Core Facility, Lipid Sciences Department, Wake Forest Baptist Health, Winston-Salem, NC, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Health, Winston-Salem, NC, USA
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Health, Winston-Salem, NC, USA,Corresponding Authors: Shay Soker, Wake Forest Institute for Regenerative Medicine, 391 Technology Way, Winston Salem, NC 27101. Phone: 336-713-7295; Fax: 336-713-7290. ; Pedro M. Baptista, Aragon’s Health Research Institute (IIS Aragon), Zaragoza, Spain.
| |
Collapse
|
7
|
Monsarrat P, Vergnes JN, Planat-Bénard V, Ravaud P, Kémoun P, Sensebé L, Casteilla L. An Innovative, Comprehensive Mapping and Multiscale Analysis of Registered Trials for Stem Cell-Based Regenerative Medicine. Stem Cells Transl Med 2016; 5:826-35. [PMID: 27075765 DOI: 10.5966/sctm.2015-0329] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/13/2016] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED We aim to provide an innovative, comprehensive way of mapping the profusion of stem cell-based clinical trials registered at ClinicalTrials.gov to explore the diversity of the fields of application and the temporal complexity of the domain. We used a chord diagram and phylogenetic-like tree visualizations to assist in data mining and knowledge discovery. The search strategy used the following terms: "stromal OR stem OR mesenchymal OR progenitor." The Medical Subject Headings (MeSH) thesaurus was used to more finely classify diseases treated by stem cells, from large fields of application to specific diseases. Of the 5,788 trials screened, 939 were included, 51.1% of which were related to mesenchymal stem cells (MSCs). No real specificity emerged as to the therapeutic uses of the different types of stem cells. More than half the MSC studies concerned allogeneic MSCs and received more support from industry than autologous MSC studies (p < .001). Over time, the uses of cultured cells have increased greatly, particularly since 2009. Cells derived from adipose tissue are also increasingly used in trials compared with bone marrow cells. The use of adipose-derived stromal cells was predominantly autologous (p < .001), restricted to European countries (p < .01), and supported by industry (p = .02) compared with other MSCs. Details about MeSH keywords are available at http://multireview.perso.sfr.fr/. In conclusion, mapping may reveal a lack of global strategy despite the regulations and the related costs associated with good manufacturing practices. A systematic approach to preclinical data, intended to objectively and robustly reveal the most appropriate fields with the most efficient cells, is needed. Repeated exchanges between the bench and the bedside are necessary. SIGNIFICANCE Except for a few trials concerning specific tissue stem cells used in their corresponding tissues, this global analysis revealed no real specificity of stem cell uses (including mesenchymal stromal cells). This raised the question of the physiopathological rationale for these uses and the lack of a global strategy despite the regulations and the related costs associated with good manufacturing practices. This original method, leading to the development of new concepts from already available data, would help policymakers to optimize resources and investments in terms of public health priorities. Such an approach should draw parallels between in vitro, in vivo, and human data. Exchanges in both directions between preclinical and clinical research could optimize the parameters of clinical trials step by step.
Collapse
Affiliation(s)
- Paul Monsarrat
- Department of Anatomical Sciences and Radiology, Dental Faculty, Toulouse University Hospital, Toulouse, France STROMALab, Université de Toulouse, CNRS ERL 5311, EFS, INP-ENVT, Inserm, UPS, Toulouse, France
| | - Jean-Noel Vergnes
- Department of Epidemiology and Public Health, Dental Faculty, Toulouse University Hospital, Toulouse, France Division of Oral Health and Society, Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | - Valérie Planat-Bénard
- STROMALab, Université de Toulouse, CNRS ERL 5311, EFS, INP-ENVT, Inserm, UPS, Toulouse, France
| | - Philippe Ravaud
- Faculty of Medicine, Paris Descartes University, Paris, France Department of Epidemiology, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Philippe Kémoun
- Department of Biological Sciences, Dental Faculty, Toulouse University Hospital, Toulouse, France
| | - Luc Sensebé
- STROMALab, Université de Toulouse, CNRS ERL 5311, EFS, INP-ENVT, Inserm, UPS, Toulouse, France
| | - Louis Casteilla
- STROMALab, Université de Toulouse, CNRS ERL 5311, EFS, INP-ENVT, Inserm, UPS, Toulouse, France
| |
Collapse
|
8
|
Affiliation(s)
- Olivier Pourquié
- Harvard Medical School, Department of Genetics, Brigham and Women's Hospital, Department of Pathology, HIM118, 4 Blackfan Circle, Boston, MA 02115, USA
| | - Katherine Brown
- The Company of Biologists, Bidder Building, Station Road, Histon, Cambridge CB24 9LF, UK
| | - Claire Moulton
- The Company of Biologists, Bidder Building, Station Road, Histon, Cambridge CB24 9LF, UK
| |
Collapse
|