1
|
Hoh JFY. Developmental, physiologic and phylogenetic perspectives on the expression and regulation of myosin heavy chains in mammalian skeletal muscles. J Comp Physiol B 2023:10.1007/s00360-023-01499-0. [PMID: 37277594 DOI: 10.1007/s00360-023-01499-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 06/07/2023]
Abstract
The kinetics of myosin controls the speed and power of muscle contraction. Mammalian skeletal muscles express twelve kinetically different myosin heavy chain (MyHC) genes which provides a wide range of muscle speeds to meet different functional demands. Myogenic progenitors from diverse craniofacial and somitic mesoderm specify muscle allotypes with different repertoires for MyHC expression. This review provides a brief synopsis on the historical and current views on how cell lineage, neural impulse patterns, and thyroid hormone influence MyHC gene expression in muscles of the limb allotype during development and in adult life and the molecular mechanisms thereof. During somitic myogenesis, embryonic and foetal myoblast lineages form slow and fast primary and secondary myotube ontotypes which respond differently to postnatal neural and thyroidal influences to generate fully differentiated fibre phenotypes. Fibres of a given phenotype may arise from myotubes of different ontotypes which retain their capacity to respond differently to neural and thyroidal influences during postnatal life. This gives muscles physiological plasticity to adapt to fluctuations in thyroid hormone levels and patterns of use. The kinetics of MyHC isoforms vary inversely with animal body mass. Fast 2b fibres are specifically absent in muscles involved in elastic energy saving in hopping marsupials and generally absent in large eutherian mammals. Changes in MyHC expression are viewed in the context of the physiology of the whole animal. The roles of myoblast lineage and thyroid hormone in regulating MyHC gene expression are phylogenetically the most ancient while that of neural impulse patterns the most recent.
Collapse
Affiliation(s)
- Joseph Foon Yoong Hoh
- Discipline of Physiology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia.
- , PO Box 152, Killara, NSW, 2071, Australia.
| |
Collapse
|
2
|
Sirsat TS, Sirsat SKG, Price ER, Pineda M, Dzialowski EM. Manipulating plasma thyroid hormone levels alters development of endothermy and ventilation in nestling red-winged blackbirds. Front Physiol 2022; 13:1027257. [PMID: 36523554 PMCID: PMC9745037 DOI: 10.3389/fphys.2022.1027257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/14/2022] [Indexed: 03/14/2024] Open
Abstract
Thyroid hormones are key regulators of development and metabolism in vertebrates. During the nestling period, young of altricial species transition from an ectothermic phenotype to an endothermic phenotype. Red-winged blackbirds are an altricial species that exhibit an increase in plasma 3,3', 5-triiodo-L-thyronine (T3) levels during the first 5 days post-hatch (dph), begin to develop endothermic metabolic responses by 7 dph, and fledge within 10 days of hatching. We propose that thyroid hormones play an important role in regulating development of endothermy during the nestling period in altricial birds. To better understand the effects of thyroid hormones on endothermic metabolic development in an altricial species, we treated nestling red-winged blackbirds on 2, 3, and 5 dph with either methimazole (MMI) to induce hypothyroidism or supplemental T3 to induce hyperthyroidism. We then measured on 5, 7, and 9 dph morphology and whole animal O2 consumption (V ˙ o 2 ) and ventilation in the thermal neutral zone and during gradual cooling. Treatment of nestlings with MMI resulted in lower plasma T3 levels on 5 dph that recovered by 7 dph, while supplementing with T3 did not affect plasma T3 levels on 5, 7 and 9 dph. Treatment with MMI resulted in smaller nestlings with smaller hearts and structural characters such as wing chord and femur length, but larger lungs and kidneys. Treatment with T3 produced smaller nestlings with smaller body masses and shorter femur and tarsus lengths. The development ofV ˙ o 2 and ventilation endothermic responses to gradual cooling in MMI treated nestlings were delayed when compared with control nestlings. In 9 dph nestlings, hypothyroidism resulted in alterations in the responses of ventilation frequency and tidal volume to cooling when compared with the control nestlings. Supplemental T3 had no effect on the development ofV ˙ o 2 and ventilation in the thermal neutral zone or in response to cooling. Our data suggest plasma thyroid hormone levels play an active role in the systemic development of endothermic capacity and the development of ventilatory control. In the nestling avian, multiple systems develop in concert to produce an endothermic phenotype, but reduced thyroid hormone delays maturation of endothermic capacity.
Collapse
Affiliation(s)
- Tushar S. Sirsat
- Department of Physician Assistant Studies, Clarkson University, Potsdam, NY, United States
- Developmental Integrative Biology, Department of Biological Sciences, University of North Texas, Denton, TX, United States
| | - Sarah K. G. Sirsat
- Developmental Integrative Biology, Department of Biological Sciences, University of North Texas, Denton, TX, United States
- Department of Biology, SUNY Potsdam, Potsdam, NY, United States
| | - Edwan R. Price
- Developmental Integrative Biology, Department of Biological Sciences, University of North Texas, Denton, TX, United States
- Green Godwit Consulting, Cleveland, OH, United States
| | - Megan Pineda
- Developmental Integrative Biology, Department of Biological Sciences, University of North Texas, Denton, TX, United States
- FUJIFILM Diosynth Biotechnologies Texas, College Station, TX, United States
| | - Edward M. Dzialowski
- Developmental Integrative Biology, Department of Biological Sciences, University of North Texas, Denton, TX, United States
| |
Collapse
|
3
|
Kucharska-Gaca J, Adamski M, Biesek J. Goose Embryonic Development, Glucose and Thyroid Hormone Concentrations, and Eggshell Features Depend on Female Age and Laying Period. Animals (Basel) 2022; 12:2614. [PMID: 36230354 PMCID: PMC9559306 DOI: 10.3390/ani12192614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022] Open
Abstract
This study aimed to evaluate embryonic development; analyze the glucose, triiodothyronine (T3), and thyroxine (T4) concentrations in the blood of embryos and goslings; and assess the structure and temperature (EST) of the eggshell. The eggs that were analyzed were from four laying seasons of White Kołuda® geese at three periods (90 eggs × 4 groups × 3 periods). The different embryo proportions, fetal membranes in the egg, and sizes of internal organs indicate a different growth rate and degree of embryo development depending on the laying age and laying period. The goose age influenced the hormone concentrations in the embryos' blood on the 28th day of incubation, which supports a relationship between the females' age and development. The eggshell thickness and density change depending on the laying age and the laying period. A decrease in eggshell thickness in the eggs up to the third season was found after the 16th day of incubation (simultaneously, the density showed an increasing trend). A lower EST distinguished the eggs from the oldest geese in the first half of the hatch. The formation of the chorioallantois membrane was associated with an increase in EST in the oldest geese.
Collapse
Affiliation(s)
| | | | - Jakub Biesek
- Department of Animal Breeding and Nutrition, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084 Bydgoszcz, Poland
| |
Collapse
|
4
|
Pani P, Bal NC. Avian adjustments to cold and non-shivering thermogenesis: whats, wheres and hows. Biol Rev Camb Philos Soc 2022; 97:2106-2126. [PMID: 35899483 DOI: 10.1111/brv.12885] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/28/2022]
Abstract
Avian cold adaptation is hallmarked by innovative strategies of both heat conservation and thermogenesis. While minimizing heat loss can reduce the thermogenic demands of body temperature maintenance, it cannot eliminate the requirement for thermogenesis. Shivering and non-shivering thermogenesis (NST) are the two synergistic mechanisms contributing to endothermy. Birds are of particular interest in studies of NST as they lack brown adipose tissue (BAT), the major organ of NST in mammals. Critical analysis of the existing literature on avian strategies of cold adaptation suggests that skeletal muscle is the principal site of NST. Despite recent progress, isolating the mechanisms involved in avian muscle NST has been difficult as shivering and NST co-exist with its primary locomotory function. Herein, we re-evaluate various proposed molecular bases of avian skeletal muscle NST. Experimental evidence suggests that sarco(endo)plasmic reticulum Ca2+ -ATPase (SERCA) and ryanodine receptor 1 (RyR1) are key in avian muscle NST, through their mediation of futile Ca2+ cycling and thermogenesis. More recent studies have shown that SERCA regulation by sarcolipin (SLN) facilitates muscle NST in mammals; however, its role in birds is unclear. Ca2+ signalling in the muscle seems to be common to contraction, shivering and NST, but elucidating its roles will require more precise measurement of local Ca2+ levels inside avian myofibres. The endocrine control of avian muscle NST is still poorly defined. A better understanding of the mechanistic details of avian muscle NST will provide insights into the roles of these processes in regulatory thermogenesis, which could further inform our understanding of the evolution of endothermy among vertebrates.
Collapse
Affiliation(s)
- Punyadhara Pani
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| | - Naresh C Bal
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| |
Collapse
|
5
|
Belnap SC, Currea JP, Lickliter R. Prenatal incubation temperature affects neonatal precocial birds' locomotor behavior. Physiol Behav 2019; 206:51-58. [DOI: 10.1016/j.physbeh.2019.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 03/01/2019] [Accepted: 03/01/2019] [Indexed: 02/06/2023]
|
6
|
Erbrech A, Robin JP, Guérin N, Groscolas R, Gilbert C, Martrette JM. Differential muscular myosin heavy chain expression of the pectoral and pelvic girdles during early growth in the king penguin (Aptenodytes patagonicus) chick. J Exp Biol 2011; 214:1829-35. [PMID: 21562169 DOI: 10.1242/jeb.051839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Continuous growth, associated with a steady parental food supply, is a general pattern in offspring development. So that young chicks can acquire their locomotor independence, this period is usually marked by a fast maturation of muscles, during which different myosin heavy chain (MyHC) isoforms are expressed. However, parental food provisioning may fluctuate seasonally, and offspring therefore face a challenge to ensure the necessary maturation of their tissues when energy is limited. To address this trade-off we investigated muscle maturation in both the pectoral and pelvic girdles of king penguin chicks. This species has an exceptionally long rearing period (1 year), which is prolonged when parental food provisioning is drastically reduced during the sub-Antarctic winter. Approximately 1 month post hatching, chicks acquire a functional pedestrian locomotion, which uses pelvic muscles, whereas swimming, which uses the pectoral muscles, only occurs 1 year later. We therefore tested the hypothesis that the MyHC content of the leg muscles reaches a mature state before those of the pectoral muscles. We found that leg muscle MyHC composition changed with the progressive acquisition of pedestrian locomotion, whereas pectoral muscle fibres reached their mature MyHC profile as early as hatching. Contrary to our predictions, the acquisition of the adult profile in pectoral muscles could be related to an early maturation of the contractile muscular proteins, presumably associated with early thermoregulatory capacities of chicks, necessary for survival in their cold environment. This differential maturation appears to reconcile both the locomotor and environmental constraints of king penguin chicks during growth.
Collapse
Affiliation(s)
- Aude Erbrech
- Université de Strasbourg, IPHC, Strasbourg, France.
| | | | | | | | | | | |
Collapse
|
7
|
Srinivas BP, Woo J, Leong WY, Roy S. A conserved molecular pathway mediates myoblast fusion in insects and vertebrates. Nat Genet 2007; 39:781-6. [PMID: 17529975 DOI: 10.1038/ng2055] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Accepted: 04/27/2007] [Indexed: 01/31/2023]
Abstract
Skeletal muscles arise by fusion of precursor cells, myoblasts, into multinucleated fibers. In vertebrates, mechanisms controlling this essential step in myogenesis remain poorly understood. Here we provide evidence that Kirrel, a homolog of receptor proteins that organize myoblast fusion in Drosophila melanogaster, is necessary for muscle precursor fusion in zebrafish. Within developing somites, Kirrel expression localized to membranes of fusion-competent myoblasts of the fast-twitch lineage. Unlike wild-type myoblasts that form spatially arrayed syncytial (multinucleated) fast myofibers, those deficient in Kirrel showed a significant reduction in fusion capacity. Inhibition of Rac, a GTPase and the most downstream intracellular transducer of the fusion signal in D. melanogaster, also compromised fast-muscle precursor fusion in zebrafish. However, unlike in D. melanogaster, constitutive Rac activation in zebrafish led to hyperfused giant syncytia, highlighting an entirely new function for this protein in zebrafish for gating the number and polarity of fusion events. These findings uncover a substantial degree of evolutionary conservation in the genetic regulation of myoblast fusion.
Collapse
Affiliation(s)
- Bhylahalli P Srinivas
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673
| | | | | | | |
Collapse
|
8
|
|
9
|
Wigmore PM, Evans DJR. Molecular and cellular mechanisms involved in the generation of fiber diversity during myogenesis. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 216:175-232. [PMID: 12049208 DOI: 10.1016/s0074-7696(02)16006-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Skeletal muscles have a characteristic proportion and distribution of fiber types, a pattern which is set up early in development. It is becoming clear that different mechanisms produce this pattern during early and late stages of myogenesis. In addition, there are significant differences between the formation of muscles in head and those found in rest of the body. Early fiber type differentiation is dependent upon an interplay between patterning systems which include the Wnt and Hox gene families and different myoblast populations. During later stages, innervation, hormones, and functional demand increasingly act to determine fiber type, but individual muscles still retain an intrinsic commitment to form particular fiber types. Head muscle is the only muscle not derived from the somites and follows a different development pathway which leads to the formation of particular fiber types not found elsewhere. This review discusses the formation of fiber types in both head and other muscles using results from both chick and mammalian systems.
Collapse
Affiliation(s)
- Peter M Wigmore
- School of Biomedical Sciences, Queen's Medical Centre, Nottingham, United Kingdom
| | | |
Collapse
|
10
|
Abstract
This article reviews the complexity, expression, genetics, regulation, function, and evolution of the avian myosin heavy chain (MyHC). The majority of pertinent studies thus far published have focussed on domestic chicken and, to a much lesser extent, Japanese quail. Where possible, information available about wild species has also been incorporated into this review. While studies of additional species might modify current interpretations, existing data suggest that some fundamental properties of myosin proteins and genes in birds are unique among higher vertebrates. We compare the characteristics of myosins in birds to those of mammals, and discuss potential molecular mechanisms and evolutionary forces that may explain how avian MyHCs acquired these properties.
Collapse
Affiliation(s)
- E Bandman
- Department of Food Science and Technology, University of California, Davis, California 95616, USA.
| | | |
Collapse
|
11
|
Gauthier FV, Qadir MA, Merrifield PA, Atkinson BG. Postembryonic expression of the myosin heavy chain genes in the limb, tail, and heart muscles of metamorphosing amphibian tadpoles. Microsc Res Tech 2000; 50:458-72. [PMID: 10998636 DOI: 10.1002/1097-0029(20000915)50:6<458::aid-jemt4>3.0.co;2-v] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Thyroid hormone is presumed to play a role in initiating and/or orchestrating the postembryonic expression of the genes encoding isoforms of the myosin heavy chains (MHCs) that characterize the muscle fibres in an adult organism. The fact that the postembryonic development of a free-living amphibian tadpole takes place during its thyroid hormone-dependent metamorphosis has made the metamorphosing tadpole an ideal system for elucidating the molecular mechanism(s) by which this hormone affects these postembryonic changes. In this review, we summarize the results from recent studies focused on the postembryonic expression of the MHC genes in the skeletal muscles and hearts of metamorphosing anuran (Rana catesbeiana) tadpoles. The demonstration that mRNAs encoding at least five of the MHC isoforms present in the tadpole tail muscles are also present in the adult hind-limb muscles and that an mRNA encoding a cardiac-specific MHC isoform is present in the heart of both the tadpole and adult organism, rules out the possibility that thyroid hormone initiates the expression of these MHC genes. Instead, it seems more likely that this hormone acts by modulating the expression of one or more of the genes encoding these particular MHC isoforms. Whatever the case, the fact that sequence homology suggests that the five distinct skeletal muscle-specific MHCs are all "fast" isoforms raises the question of how these MHCs are distributed among the three different fibre types described for Rana. On the other hand, the possibility exists that the mRNAs for one or more of these fast MHC isoforms encode developmental isoforms that are present but not translated in the muscles of the tadpole and/or adult frog. Finally, an evaluation of the evolutionary relatedness of the R. catesbeiana MHCs to the MHCs in another species of Rana and to the MHCs in other vertebrates discloses, among other things, that the nucleotide sequence in the R. catesbeiana cardiac MHC isoform is more closely related to the chicken ventricular MHC isoform than it is to any of the other MHC isoforms examined.
Collapse
Affiliation(s)
- F V Gauthier
- Department of Zoology, University of Western Ontario, London, Ontario, Canada N6A 5B7
| | | | | | | |
Collapse
|
12
|
Abstract
Sarcomeric myosin is the major skeletal muscle protein and is encoded by a large and complex multigene family whose members are differentially expressed in developing and adult muscle cells. The structure and function of sarcomeric myosins have been extensively analyzed and many myosin genes have now been cloned and sequenced. This manuscript reviews the broad spectrum of myosin research with emphasis on studies in avian systems and discusses how advances in myosin isoform analysis have contributed to muscle and meat science.
Collapse
Affiliation(s)
- E Bandman
- Department of Food Science and Technology, University of California, Davis 95616, USA.
| |
Collapse
|
13
|
Duprez D, Lapointe F, Edom-Vovard F, Kostakopoulou K, Robson L. Sonic hedgehog (SHH) specifies muscle pattern at tissue and cellular chick level, in the chick limb bud. Mech Dev 1999; 82:151-63. [PMID: 10354479 DOI: 10.1016/s0925-4773(99)00040-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Development of the musculature in chick limbs involves tissue and cellular patterning. Patterning at the tissue level leads to the precise arrangement of specific muscles; at the cellular level patterning gives rise to the fibre type diversity in muscles. Although the data suggests that the information controlling muscle patterning is localised within the limb mesenchyme and not in the somitic myogenic precursor cells themselves, the mechanisms underlying muscle organisation have still to be elucidated. The anterior-posterior axis of the limb is specified by a group of cells in the posterior region of the limb mesenchyme, called the zone of polarizing activity (ZPA). When polarizing-region cells are grafted to the anterior margin of the bud, they cause mirror-image digit duplications to be produced. The effect of ZPA grafts can be reproduced by application of retinoic acid (RA) beads and by grafting sonic hedgehog (SHH)-expressing cells to the anterior margin of the limb. Although most previous studies have looked at changes of the skeletal patterning, ZPA and RA also affect muscle patterning. In this report, we investigated the role of SHH in tissue and cellular patterning of forearm wing muscles. Ectopic application of a localised source of SHH to the anterior margin of the wing, leading to complete digit duplication, is able to transform anterior forearm muscles into muscles with a posterior identity. Moreover, the ectopic source of SHH induces a mirror image duplication of the normal posterior muscles fibre types in the new posterior muscles. The reorganisation of the slow fibres can be detected before muscle mass cleavage has started; suggesting that the appropriate fibre type arrangement is in place before the splitting process can be observed.
Collapse
Affiliation(s)
- D Duprez
- Institut d'Embryologie Cellulaire et Moleculaire du CNRS (UPR 9024) et du College de France, 49 bis avenue de la Belle Gabrielle, 94736, Nogent Sur Marne Cedex, France.
| | | | | | | | | |
Collapse
|
14
|
Abstract
Avian skeletal muscles consist of myotubes that can be categorized according to contraction and fatigue properties, which are based largely on the types of myosins and metabolic enzymes present in the cells. Most mature muscles in the head are mixed, but they display a variety of ratios and distributions of fast and slow muscle cells. We examine the development of all head muscles in chick and quail embryos, using immunohistochemical assays that distinguish between fast and slow myosin heavy chain (MyHC) isoforms. Some muscles exhibit the mature spatial organization from the onset of primary myotube differentiation (e.g., jaw adductor complex). Many other muscles undergo substantial transformation during the transition from primary to secondary myogenesis, becoming mixed after having started as exclusively slow (e.g., oculorotatory, neck muscles) or fast (e.g., mandibular depressor) myotube populations. A few muscles are comprised exclusively of fast myotubes throughout their development and in the adult (e.g., the quail quadratus and pyramidalis muscles, chick stylohyoideus muscles). Most developing quail and chick head muscles exhibit identical fiber type composition; exceptions include the genioglossal (chick: initially slow, quail: mixed), quadratus and pyramidalis (chick: mixed, quail: fast), and stylohyoid (chick: fast, quail: mixed). The great diversity of spatial and temporal scenarios during myogenesis of head muscles exceeds that observed in the limbs and trunk, and these observations, coupled with the results of precursor mapping studies, make it unlikely that a lineage based model, in which individual myoblasts are restricted to fast or slow fates, is in operation. More likely, spatiotemporal patterning of muscle fiber types is coupled with the interactions that direct the movements of muscle precursors and subsequent segregation of individual muscles from common myogenic condensations. In the head, most of these events are facilitated by connective tissue precursors derived from the neural crest. Whether these influences act upon uncommitted, or biased but not restricted, myogenic mesenchymal cells remains to be tested.
Collapse
Affiliation(s)
- R S Marcucio
- Department of Anatomy, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA.
| | | |
Collapse
|
15
|
Hughes SM, Blagden CS, Li X, Grimaldi A. The role of hedgehog proteins in vertebrate slow and fast skeletal muscle patterning. ACTA PHYSIOLOGICA SCANDINAVICA 1998; 163:S7-10. [PMID: 9715744 DOI: 10.1046/j.1365-201x.1998.1630s30s7.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- S M Hughes
- Developmental Biology Research Centre, Randall Institute, King's College London, UK.
| | | | | | | |
Collapse
|
16
|
Blagden CS, Currie PD, Ingham PW, Hughes SM. Notochord induction of zebrafish slow muscle mediated by Sonic hedgehog. Genes Dev 1997; 11:2163-75. [PMID: 9303533 PMCID: PMC275397 DOI: 10.1101/gad.11.17.2163] [Citation(s) in RCA: 278] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The patterning of vertebrate somitic muscle is regulated by signals from neighboring tissues. We examined the generation of slow and fast muscle in zebrafish embryos and show that Sonic hedgehog (Shh) secreted from the notochord can induce slow muscle from medial cells of the somite. Slow muscle derives from medial adaxial myoblasts that differentiate early, whereas fast muscle arises later from a separate myoblast pool. Mutant fish lacking shh expression fail to form slow muscle but do form fast muscle. Ectopic expression of shh, either in wild-type or mutant embryos, leads to ectopic slow muscle at the expense of fast. We suggest that Shh acts to induce myoblasts committed to slow muscle differentiation from uncommitted presomitic mesoderm.
Collapse
Affiliation(s)
- C S Blagden
- Developmental Biology Research Centre, The Randall Institute, King's College London, UK
| | | | | | | |
Collapse
|
17
|
Robson LG, Hughes SM. The distal limb environment regulates MyoD accumulation and muscle differentiation in mouse-chick chimaeric limbs. Development 1996; 122:3899-910. [PMID: 9012510 DOI: 10.1242/dev.122.12.3899] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Differentiation of muscle and cartilage within developing vertebrate limbs occurs in a proximodistal progression. To investigate the cues responsible for regulating muscle pattern, mouse myoblasts were implanted into early chick wings prior to endogenous chick muscle differentiation. Fetal myogenic cells originating from transgenic mice carrying a lacZ reporter were readily detected in vivo after implantation and their state of differentiation determined with species-specific antibodies to MyoD and myosin heavy chain. When mouse myogenic cells are implanted at the growing tip of early stage 21 limbs MyoD expression is suppressed and little differentiation of the mouse cells is detected initially. At later stages ectopically implanted mouse cells come to lie within muscle masses, re-express MyoD and differentiate in parallel with differentiating chick myoblasts. However, if mouse cells are implanted either proximally at stage 21 or into the limb tip at stage 24, situations in which mouse cells encounter endogenous differentiating chick myoblasts earlier, MyoD suppression is not detected and a higher proportion of mouse cells differentiate. Mouse cells that remain distal to endogenous differentiating myogenic cells are more likely to remain undifferentiated than myoblasts that lie within differentiated chick muscle. Undifferentiated distal mouse cells are still capable of differentiating if explanted in vitro, suggesting that myoblast differentiation is inhibited in vivo. In vitro, MyoD is suppressed in primary mouse myoblasts by the addition of FGF2 and FGF4 to the culture media. Taken together, our data suggest that the inhibition of myogenic differentiation in the distal limb involves MyoD suppression in myoblasts, possibly through an FGF-like activity.
Collapse
Affiliation(s)
- L G Robson
- MRC Muscle and Cell Motility Unit and Developmental Biology Research Centre, The Randall Institute, King's College London, UK
| | | |
Collapse
|
18
|
Tanaka S, Braga IS, Kimura T, Ochiai K, Itakura C, Mizutani M. Inherited muscular disorder in mutant Japanese quail (Coturnix coturnix japonica): an immunohistochemical study. J Comp Pathol 1996; 115:139-50. [PMID: 8910742 DOI: 10.1016/s0021-9975(96)80036-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cryostat sections of myofibres from the Musculus pectoralis thoracicus of a newly established mutant strain (LWC) of Japanese quail with a myotonic dystrophy-like myopathy were labelled with antibody against myosin heavy chain (MHC) isoforms and neural cell adhesion molecule (N-CAM). The characteristic lesions found in sections of muscle of LWC quail stained with haematoxylin and eosin were type 2B fibre atrophy, sarcoplasmic masses, and ring fibres. Immunohistochemical examination failed to distinguish type 2A and 2B fibres in the LWC quail. Antibody to adult fast MHC, which reacted only with type 2A fibres in normal quail, reacted in LWC quail with type 2B fibres, and to a limited degree with type 2A fibres. Sarcoplasmic masses reacted with both fast and slow MHC antibodies. Some masses also reacted with NCAM antibody, but apparently independently of similar reactions in fibres. These findings suggest that the changes observed in the myofibres of the LWC quail were not neurogenic but represented defects in both the plasma membrane and intermediate filaments.
Collapse
Affiliation(s)
- S Tanaka
- Laboratory of Comparative Pathology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Auda-Boucher G, Merly F, Gardahaut MF, Fontaine-Pérus J. Neural tube can induce fast myosin heavy chain isoform expression during embryonic development. Mech Dev 1995; 50:43-55. [PMID: 7605751 DOI: 10.1016/0925-4773(94)00324-g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We investigated the role of the neural tube in muscle cell differentiation in developing somitic myotome of chick embryo, particularly through fast myosin heavy chain (MHC) isoform expression. An embryonic fast MHC labeled with EB165 mAb was expressed in somitic cells from stage 15 of Hamburger and Hamilton (H.H.) (24 somites). Moreover, a distinct early embryonic fast MHC was expressed only from stage 15 of H.H. to stage 36 (E10). Like neonatal MHC, this isoform was labeled with 2E9 mAb but differed in its immunopeptide mapping. Expression of EB165-labeled embryonic fast MHC occurred in somitic myotomes deprived of neural tube influence by in ovo ablation as well as in somite explants cultured alone in vitro. Conversely, ablation of the neural tube prevented somitic expression of MHC labeled with 2E9 mAb. The neural tube induced in vitro expression of this MHC in explants of somites which failed to express it when cultured alone. These results indicate that signals emanating from the neural tube are required for the expression of early embryonic fast MHC isoform in developing somitic myotome.
Collapse
Affiliation(s)
- G Auda-Boucher
- Faculté des Sciences et des Techniques, CNRS URA 1340, Nantes, France
| | | | | | | |
Collapse
|