1
|
Jeon H, Jin S, Kim J, Joo S, Choe CP. Pax1a-EphrinB2a pathway in the first pharyngeal pouch controls hyomandibular plate formation by promoting chondrocyte formation in zebrafish. Front Cell Dev Biol 2025; 13:1482906. [PMID: 40109361 PMCID: PMC11919851 DOI: 10.3389/fcell.2025.1482906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 02/10/2025] [Indexed: 03/22/2025] Open
Abstract
The hyomandibular (HM) cartilage securing the lower jaw to the neurocranium in fish is a craniofacial skeletal element whose shape and function have changed dramatically in vertebrate evolution, yet the genetic mechanisms shaping this cartilage are less understood. Using mutants and rescue experiments in zebrafish, we reveal a previously unappreciated role of Pax1a in the anterior HM plate formation through EphrinB2a. During craniofacial development, pax1a is expressed in the pharyngeal endoderm from the pharyngeal segmentation stage to chondrocyte formation. Loss of pax1a leads to defects in the first pouch and to the absence of chondrocytes in the anterior region of the HM plate caused by increased cell death in differentiating osteochondral progenitors. In pax1 mutants, a forced expression of pax1a by the heat shock before pouch formation rescues the defects in the first pouch and HM plate together, whereas a forced expression of pax1a after pouch formation rescues only the defects in the HM plate without rescuing the first pouch defects. In pax1a mutants, ephrinb2a expressed in the first pouch is downregulated when adjacent osteochondral progenitors differentiate into the chondrocytes, with mutations in ephrinb2a causing hyomandibular plate defects. Lastly, pax1 mutants rescue the anterior hyomandibular plate defects by pouch-specific restoration of EphrinB2a or a heat-shock-treated expression of ephrinb2a after pouch formation. We propose that the Pax1a-EphrinB2a pathway in the first pouch is directly required to shape the HM plate in addition to the early role of Pax1a in the first pouch formation.
Collapse
Affiliation(s)
- Haewon Jeon
- Division of Applied Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Sil Jin
- Division of Applied Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Jihyeon Kim
- Division of Applied Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Saehoon Joo
- Division of Applied Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Chong Pyo Choe
- Division of Life Science, Gyeongsang National University, Jinju, Republic of Korea
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
2
|
Klem JR, Schwantes-An TH, Abreu M, Suttie M, Gray R, Vo H, Conley G, Foroud TM, Wetherill L, Lovely CB. Mutations in the Bone Morphogenetic Protein signaling pathway sensitize zebrafish and humans to ethanol-induced jaw malformations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.28.546932. [PMID: 37425959 PMCID: PMC10327032 DOI: 10.1101/2023.06.28.546932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Fetal Alcohol Spectrum Disorders (FASD) describe ethanol-induced developmental defects including craniofacial malformations. While ethanol-sensitive genetic mutations contribute to facial malformations, the impacted cellular mechanisms remain unknown. Bmp signaling is a key regulator of epithelial morphogenesis driving facial development, providing a possible ethanol-sensitive mechanism. We found that zebrafish mutants for Bmp signaling components are ethanol-sensitive and affect anterior pharyngeal endoderm shape and gene expression, indicating ethanol-induced malformations of the anterior pharyngeal endoderm cause facial malformations. Integrating FASD patient data, we provide the first evidence that variants in the human Bmp receptor gene BMPR1B associate with ethanol-related differences in jaw volume. Our results show that ethanol exposure disrupts proper morphogenesis of, and tissue interactions between, facial epithelia that mirror overall viscerocranial shape changes and are predictive for Bmp-ethanol associations in human jaw development. Our data provide a mechanistic paradigm linking ethanol to disrupted epithelial cell behaviors that underlie facial defects in FASD. Summary Statement In this study, we apply a unique combination of zebrafish-based approaches and human genetic and facial dysmorphology analyses to resolve the cellular mechanisms driven by the ethanol-sensitive Bmp pathway.
Collapse
|
3
|
Jin S, Jeon H, Choe CP. Expression and Functional Analysis of cofilin1-like in Craniofacial Development in Zebrafish. Dev Reprod 2022; 26:23-36. [PMID: 35528320 PMCID: PMC9042393 DOI: 10.12717/dr.2022.26.1.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/14/2021] [Accepted: 03/09/2021] [Indexed: 11/17/2022]
Abstract
Pharyngeal pouches, a series of outgrowths of the pharyngeal endoderm, are a key
epithelial structure governing facial skeleton development in vertebrates. Pouch
formation is achieved through collective cell migration and rearrangement of
pouch-forming cells controlled by actin cytoskeleton dynamics. While essential
transcription factors and signaling molecules have been identified in pouch
formation, regulators of actin cytoskeleton dynamics have not been reported yet
in any vertebrates. Cofilin1-like (Cfl1l) is a fish-specific member of the
Actin-depolymerizing factor (ADF)/Cofilin family, a critical regulator of actin
cytoskeleton dynamics in eukaryotic cells. Here, we report the expression and
function of cfl1l in pouch development in zebrafish. We first
showed that fish cfl1l might be an ortholog of vertebrate
adf, based on phylogenetic analysis of vertebrate
adf and cfl genes. During pouch formation,
cfl1l was expressed sequentially in the developing pouches
but not in the posterior cell mass in which future pouch-forming cells are
present. However, pouches, as well as facial cartilages whose development is
dependent upon pouch formation, were unaffected by loss-of-function mutations in
cfl1l. Although it could not be completely ruled out a
possibility of a genetic redundancy of Cfl1l with other Cfls, our results
suggest that the cfl1l expression in the developing pouches
might be dispensable for regulating actin cytoskeleton dynamics in pouch-forming
cells.
Collapse
Affiliation(s)
- Sil Jin
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Haewon Jeon
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Chong Pyo Choe
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea.,Division of Life Science, Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
4
|
Wilkinson DG. Interplay of Eph-Ephrin Signalling and Cadherin Function in Cell Segregation and Boundary Formation. Front Cell Dev Biol 2021; 9:784039. [PMID: 34869386 PMCID: PMC8633894 DOI: 10.3389/fcell.2021.784039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
The segregation of distinct cell populations to form sharp boundaries is crucial for stabilising tissue organisation, for example during hindbrain segmentation in craniofacial development. Two types of mechanisms have been found to underlie cell segregation: differential adhesion mediated by cadherins, and Eph receptor and ephrin signalling at the heterotypic interface which regulates cell adhesion, cortical tension and repulsion. An interplay occurs between these mechanisms since cadherins have been found to contribute to Eph-ephrin-mediated cell segregation. This may reflect that Eph receptor activation acts through multiple pathways to decrease cadherin-mediated adhesion which can drive cell segregation. However, Eph receptors mainly drive cell segregation through increased heterotypic tension or repulsion. Cadherins contribute to cell segregation by antagonising homotypic tension within each cell population. This suppression of homotypic tension increases the difference with heterotypic tension triggered by Eph receptor activation, and it is this differential tension that drives cell segregation and border sharpening.
Collapse
|
5
|
Jin S, Na H, Jeon H, Park J, Choe CP. egfl6 expression in the pharyngeal pouch is dispensable for craniofacial development. Anim Cells Syst (Seoul) 2021; 25:255-263. [PMID: 34745432 PMCID: PMC8567925 DOI: 10.1080/19768354.2021.1970018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Epidermal growth factor-like domain multiple 6 (Egfl6) is a basement membrane protein and plays an important role in hair follicle morphogenesis, angiogenesis, notochord development in vertebrates. Although egfl6 expression in the developing head was observed in zebrafish, its role for craniofacial development and the determination of the pharyngeal region expressing egfl6, have not been reported yet. Here, we report the expression patterns and function of egfl6 in craniofacial development in zebrafish. egfl6 was expressed sequentially in the developing pharyngeal pouches that are key epithelial structures governing the development of the vertebrate head. However, loss-of-function mutations in egfl6 did not cause any craniofacial defects, including the pouches as well as the thymus and facial cartilages whose development is contingent upon appropriate pouch formation. egfl6 was unlikely redundant with egfl7 expressed in a distinct pharyngeal region from that of egfl6 in craniofacial development because reduction of egfl7 with a MO in egfl6 mutants did not affect craniofacial development. In addition, we found that egfl6 carried an endogenous start loss mutation in the wild-type Tübingen strain, implying egfl6 would be a non-functional gene. Taken all together, we suggest that egfl6 expression in the pharyngeal pouches is not required for craniofacial development in zebrafish.
Collapse
Affiliation(s)
- Sil Jin
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Hyejee Na
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Haewon Jeon
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Jangwon Park
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Chong Pyo Choe
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea.,Division of Life Science, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
6
|
Choe CP, Choi SY, Kee Y, Kim MJ, Kim SH, Lee Y, Park HC, Ro H. Transgenic fluorescent zebrafish lines that have revolutionized biomedical research. Lab Anim Res 2021; 37:26. [PMID: 34496973 PMCID: PMC8424172 DOI: 10.1186/s42826-021-00103-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/26/2021] [Indexed: 12/22/2022] Open
Abstract
Since its debut in the biomedical research fields in 1981, zebrafish have been used as a vertebrate model organism in more than 40,000 biomedical research studies. Especially useful are zebrafish lines expressing fluorescent proteins in a molecule, intracellular organelle, cell or tissue specific manner because they allow the visualization and tracking of molecules, intracellular organelles, cells or tissues of interest in real time and in vivo. In this review, we summarize representative transgenic fluorescent zebrafish lines that have revolutionized biomedical research on signal transduction, the craniofacial skeletal system, the hematopoietic system, the nervous system, the urogenital system, the digestive system and intracellular organelles.
Collapse
Affiliation(s)
- Chong Pyo Choe
- Division of Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea.,Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Seok-Yong Choi
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Yun Kee
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Min Jung Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Seok-Hyung Kim
- Department of Marine Life Sciences and Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - Yoonsung Lee
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Hae-Chul Park
- Department of Biomedical Sciences, College of Medicine, Korea University, Ansan, 15355, Republic of Korea
| | - Hyunju Ro
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| |
Collapse
|
7
|
Okada K, Takada S. The second pharyngeal pouch is generated by dynamic remodeling of endodermal epithelium in zebrafish. Development 2020; 147:dev194738. [PMID: 33158927 DOI: 10.1242/dev.194738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/28/2020] [Indexed: 11/20/2022]
Abstract
Pharyngeal arches (PAs) are segmented by endodermal outpocketings called pharyngeal pouches (PPs). Anterior and posterior PAs appear to be generated by different mechanisms, but it is unclear how the anterior and posterior PAs combine. Here, we addressed this issue with precise live imaging of PP development and cell tracing of pharyngeal endoderm in zebrafish embryos. We found that two endodermal bulges are initially generated in the future second PP (PP2) region, which separates anterior and posterior PAs. Subsequently, epithelial remodeling causes contact between these two bulges, resulting in the formation of mature PP2 with a bilayered morphology. The rostral and caudal bulges develop into the operculum and gill, respectively. Development of the caudal PP2 and more posterior PPs is affected by impaired retinoic acid signaling or pax1a/b dysfunction, suggesting that the rostral front of posterior PA development corresponds to the caudal PP2. Our study clarifies an aspect of PA development that is essential for generation of a seamless array of PAs in zebrafish.
Collapse
Affiliation(s)
- Kazunori Okada
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaijicho, Okazaki 444-8787, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787, Japan
| | - Shinji Takada
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaijicho, Okazaki 444-8787, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787, Japan
- Department for Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787, Japan
| |
Collapse
|
8
|
Antiangiogenic molecules from marine actinomycetes and the importance of using zebrafish model in cancer research. Heliyon 2020; 6:e05662. [PMID: 33319107 PMCID: PMC7725737 DOI: 10.1016/j.heliyon.2020.e05662] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/11/2020] [Accepted: 12/01/2020] [Indexed: 12/15/2022] Open
Abstract
Blood vessel sprouting from pre-existing vessels or angiogenesis plays a significant role in tumour progression. Development of novel biomolecules from marine natural sources has a promising role in drug discovery specifically in the area of antiangiogenic chemotherapeutics. Symbiotic actinomycetes from marine origin proved to be potent and valuable sources of antiangiogenic compounds. Zebrafish represent a well-established model for small molecular screening and employed to study tumour angiogenesis over the last decade. Use of zebrafish has increased in the laboratory due to its various advantages like rapid embryo development, optically transparent embryos, large clutch size of embryos and most importantly high genetic conservation comparable to humans. Zebrafish also shares similar physiopathology of tumour angiogenesis with humans and with these advantages, zebrafish has become a popular model in the past decade to study on angiogenesis related disorders like diabetic retinopathy and cancer. This review focuses on the importance of antiangiogenic compounds from marine actinomycetes and utility of zebrafish in cancer angiogenesis research.
Collapse
|
9
|
Peng X, Lai KS, She P, Kang J, Wang T, Li G, Zhou Y, Sun J, Jin D, Xu X, Liao L, Liu J, Lee E, Poss KD, Zhong TP. Induction of Wnt signaling antagonists and p21-activated kinase enhances cardiomyocyte proliferation during zebrafish heart regeneration. J Mol Cell Biol 2020; 13:41-58. [PMID: 33582796 PMCID: PMC8035995 DOI: 10.1093/jmcb/mjaa046] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 12/13/2022] Open
Abstract
Heart regeneration occurs by dedifferentiation and proliferation of pre-existing cardiomyocytes (CMs). However, the signaling mechanisms by which injury induces CM renewal remain incompletely understood. Here, we find that cardiac injury in zebrafish induces expression of the secreted Wnt inhibitors, including Dickkopf 1 (Dkk1), Dkk3, secreted Frizzled-related protein 1 (sFrp1), and sFrp2, in cardiac tissue adjacent to injury sites. Experimental blocking of Wnt activity via Dkk1 overexpression enhances CM proliferation and heart regeneration, whereas ectopic activation of Wnt8 signaling blunts injury-induced CM dedifferentiation and proliferation. Although Wnt signaling is dampened upon injury, the cytoplasmic β-catenin is unexpectedly increased at disarrayed CM sarcomeres in myocardial wound edges. Our analyses indicated that p21-activated kinase 2 (Pak2) is induced at regenerating CMs, where it phosphorylates cytoplasmic β-catenin at Ser 675 and increases its stability at disassembled sarcomeres. Myocardial-specific induction of the phospho-mimetic β-catenin (S675E) enhances CM dedifferentiation and sarcomere disassembly in response to injury. Conversely, inactivation of Pak2 kinase activity reduces the Ser 675-phosphorylated β-catenin (pS675-β-catenin) and attenuates CM sarcomere disorganization and dedifferentiation. Taken together, these findings demonstrate that coordination of Wnt signaling inhibition and Pak2/pS675-β-catenin signaling enhances zebrafish heart regeneration by supporting CM dedifferentiation and proliferation.
Collapse
Affiliation(s)
- Xiangwen Peng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhong Shan Hospital, Fudan University, Shanghai 200438, China.,Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, East China Normal University School of Life Sciences, Shanghai 200241, China
| | - Kaa Seng Lai
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhong Shan Hospital, Fudan University, Shanghai 200438, China.,Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, East China Normal University School of Life Sciences, Shanghai 200241, China
| | - Peilu She
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, East China Normal University School of Life Sciences, Shanghai 200241, China
| | - Junsu Kang
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Tingting Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, East China Normal University School of Life Sciences, Shanghai 200241, China
| | - Guobao Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhong Shan Hospital, Fudan University, Shanghai 200438, China
| | - Yating Zhou
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, East China Normal University School of Life Sciences, Shanghai 200241, China
| | - Jianjian Sun
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, East China Normal University School of Life Sciences, Shanghai 200241, China
| | - Daqing Jin
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, East China Normal University School of Life Sciences, Shanghai 200241, China
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Lujian Liao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, East China Normal University School of Life Sciences, Shanghai 200241, China
| | - Jiandong Liu
- Department of Pathology and Laboratory Medicine, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ethan Lee
- Department of Developmental and Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kenneth D Poss
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Tao P Zhong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, East China Normal University School of Life Sciences, Shanghai 200241, China
| |
Collapse
|
10
|
Hasten E, Morrow BE. Tbx1 and Foxi3 genetically interact in the pharyngeal pouch endoderm in a mouse model for 22q11.2 deletion syndrome. PLoS Genet 2019; 15:e1008301. [PMID: 31412026 PMCID: PMC6709926 DOI: 10.1371/journal.pgen.1008301] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 08/26/2019] [Accepted: 07/10/2019] [Indexed: 11/18/2022] Open
Abstract
We investigated whether Tbx1, the gene for 22q11.2 deletion syndrome (22q11.2DS) and Foxi3, both required for segmentation of the pharyngeal apparatus (PA) to individual arches, genetically interact. We found that all Tbx1+/-;Foxi3+/- double heterozygous mouse embryos had thymus and parathyroid gland defects, similar to those in 22q11.2DS patients. We then examined Tbx1 and Foxi3 heterozygous, null as well as conditional Tbx1Cre and Sox172A-iCre/+ null mutant embryos. While Tbx1Cre/+;Foxi3f/f embryos had absent thymus and parathyroid glands, Foxi3-/- and Sox172A-iCre/+;Foxi3f/f endoderm conditional mutant embryos had in addition, interrupted aortic arch type B and retroesophageal origin of the right subclavian artery, which are all features of 22q11.2DS. Tbx1Cre/+;Foxi3f/f embryos had failed invagination of the third pharyngeal pouch with greatly reduced Gcm2 and Foxn1 expression, thereby explaining the absence of thymus and parathyroid glands. Immunofluorescence on tissue sections with E-cadherin and ZO-1 antibodies in wildtype mouse embryos at E8.5-E10.5, revealed that multilayers of epithelial cells form where cells are invaginating as a normal process. We noted that excessive multilayers formed in Foxi3-/-, Sox172A-iCre/+;Foxi3f/f as well as Tbx1 null mutant embryos where invagination should have occurred. Several genes expressed in the PA epithelia were downregulated in both Tbx1 and Foxi3 null mutant embryos including Notch pathway genes Jag1, Hes1, and Hey1, suggesting that they may, along with other genes, act downstream to explain the observed genetic interaction. We found Alcam and Fibronectin extracellular matrix proteins were reduced in expression in Foxi3 null but not Tbx1 null embryos, suggesting that some, but not all of the downstream mechanisms are shared.
Collapse
Affiliation(s)
- Erica Hasten
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Bernice E. Morrow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
11
|
Periderm invasion contributes to epithelial formation in the teleost pharynx. Sci Rep 2019; 9:10082. [PMID: 31300674 PMCID: PMC6626026 DOI: 10.1038/s41598-019-46040-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 06/17/2019] [Indexed: 01/20/2023] Open
Abstract
The gnathostome pharyngeal cavity functions in food transport and respiration. In amniotes the mouth and nares are the only channels allowing direct contact between internal and external epithelia. In teleost fish, gill slits arise through opening of endodermal pouches and connect the pharynx to the exterior. Using transgenic zebrafish lines, cell tracing, live imaging and different markers, we investigated if pharyngeal openings enable epithelial invasion and how this modifies the pharyngeal epithelium. We conclude that in zebrafish the pharyngeal endoderm becomes overlain by cells with a peridermal phenotype. In a wave starting from pouch 2, peridermal cells from the outer skin layer invade the successive pouches until halfway their depth. Here the peridermal cells connect to a population of cells inside the pharyngeal cavity that express periderm markers, yet do not invade from outside. The latter population expands along the midline from anterior to posterior until the esophagus-gut boundary. Together, our results show a novel role for the periderm as an internal epithelium becomes adapted to function as an external surface.
Collapse
|
12
|
Kindberg AA, Bush JO. Cellular organization and boundary formation in craniofacial development. Genesis 2019; 57:e23271. [PMID: 30548771 PMCID: PMC6503678 DOI: 10.1002/dvg.23271] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 12/24/2022]
Abstract
Craniofacial morphogenesis is a highly dynamic process that requires changes in the behaviors and physical properties of cells in order to achieve the proper organization of different craniofacial structures. Boundary formation is a critical process in cellular organization, patterning, and ultimately tissue separation. There are several recurring cellular mechanisms through which boundary formation and cellular organization occur including, transcriptional patterning, cell segregation, cell adhesion and migratory guidance. Disruption of normal boundary formation has dramatic morphological consequences, and can result in human craniofacial congenital anomalies. In this review we discuss boundary formation during craniofacial development, specifically focusing on the cellular behaviors and mechanisms underlying the self-organizing properties that are critical for craniofacial morphogenesis.
Collapse
Affiliation(s)
- Abigail A. Kindberg
- Department of Cell and Tissue Biology, Program in Craniofacial Biology, and Institute of Human Genetics, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Jeffrey O. Bush
- Department of Cell and Tissue Biology, Program in Craniofacial Biology, and Institute of Human Genetics, University of California at San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
13
|
Jin S, O J, Stellabotte F, Choe CP. Foxi1 promotes late-stage pharyngeal pouch morphogenesis through ectodermal Wnt4a activation. Dev Biol 2018; 441:12-18. [PMID: 29932895 DOI: 10.1016/j.ydbio.2018.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/08/2018] [Accepted: 06/18/2018] [Indexed: 11/26/2022]
Abstract
The pharyngeal pouches are a series of epithelial outgrowths of the foregut endoderm. Pharyngeal pouches segment precursors of the vertebrate face into pharyngeal arches and pattern the facial skeleton. These pouches fail to develop normally in zebrafish foxi1 mutants, yet the role Foxi1 plays in pouch development remains to be determined. Here we show that ectodermal Foxi1 acts downstream of Fgf8a during the late stage of pouch development to promote rearrangement of pouch-forming cells into bilayers. During this phase, foxi1 and wnt4a are coexpressed in the facial ectoderm and their expression is expanded in fgf8a mutants. foxi1 expression is unaffected in wnt4a mutants; conversely, ectodermal wnt4a expression is abolished in foxi1 mutants. Consistent with this, foxi1 mutant pouch and facial skeletal defects resemble those of wnt4a mutants. These findings suggest that ectodermal Foxi1 mediates late-stage pouch morphogenesis through wnt4a expression. We therefore propose that Fox1 activation of Wnt4a in the ectoderm signals the epithelial stabilization of pouch-forming cells during late-stage of pouch morphogenesis.
Collapse
Affiliation(s)
- Sil Jin
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jiyun O
- Division of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Frank Stellabotte
- School of Allied Health, Business, and STEM, Middlesex Community College, Middletown, CT 06457, USA
| | - Chong Pyo Choe
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea.
| |
Collapse
|
14
|
O'Neill AK, Kindberg AA, Niethamer TK, Larson AR, Ho HYH, Greenberg ME, Bush JO. Unidirectional Eph/ephrin signaling creates a cortical actomyosin differential to drive cell segregation. J Cell Biol 2016; 215:217-229. [PMID: 27810913 PMCID: PMC5084648 DOI: 10.1083/jcb.201604097] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/13/2016] [Indexed: 01/01/2023] Open
Abstract
Cell segregation is the process by which cells self-organize to establish developmental boundaries, an essential step in tissue formation. Cell segregation is a common outcome of Eph/ephrin signaling, but the mechanisms remain unclear. In craniofrontonasal syndrome, X-linked mosaicism for ephrin-B1 expression has been hypothesized to lead to aberrant Eph/ephrin-mediated cell segregation. Here, we use mouse genetics to exploit mosaicism to study cell segregation in the mammalian embryo and integrate live-cell imaging to examine the underlying cellular and molecular mechanisms. Our data demonstrate that dramatic ephrin-B1-mediated cell segregation occurs in the early neuroepithelium. In contrast to the paradigm that repulsive bidirectional signaling drives cell segregation, unidirectional EphB kinase signaling leads to cell sorting by the Rho kinase-dependent generation of a cortical actin differential between ephrin-B1- and EphB-expressing cells. These results define mechanisms of Eph/ephrin-mediated cell segregation, implicating unidirectional regulation of cortical actomyosin contractility as a key effector of this fundamental process.
Collapse
Affiliation(s)
- Audrey K O'Neill
- Department of Cell and Tissue Biology, Program in Craniofacial Biology and Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143
| | - Abigail A Kindberg
- Department of Cell and Tissue Biology, Program in Craniofacial Biology and Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143
| | - Terren K Niethamer
- Department of Cell and Tissue Biology, Program in Craniofacial Biology and Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143
| | - Andrew R Larson
- Department of Cell and Tissue Biology, Program in Craniofacial Biology and Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143
| | - Hsin-Yi Henry Ho
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, CA 95817
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | | | - Jeffrey O Bush
- Department of Cell and Tissue Biology, Program in Craniofacial Biology and Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
15
|
Lovely CB, Swartz ME, McCarthy N, Norrie JL, Eberhart JK. Bmp signaling mediates endoderm pouch morphogenesis by regulating Fgf signaling in zebrafish. Development 2016; 143:2000-11. [PMID: 27122171 DOI: 10.1242/dev.129379] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 04/12/2016] [Indexed: 02/03/2023]
Abstract
The endodermal pouches are a series of reiterated structures that segment the pharyngeal arches and help pattern the vertebrate face. Multiple pathways regulate the complex process of endodermal development, including the Bone morphogenetic protein (Bmp) pathway. However, the role of Bmp signaling in pouch morphogenesis is poorly understood. Using genetic and chemical inhibitor approaches, we show that pouch morphogenesis requires Bmp signaling from 10-18 h post-fertilization, immediately following gastrulation. Blocking Bmp signaling during this window results in morphological defects to the pouches and craniofacial skeleton. Using genetic chimeras we show that Bmp signals directly to the endoderm for proper morphogenesis. Time-lapse imaging and analysis of reporter transgenics show that Bmp signaling is necessary for pouch outpocketing via the Fibroblast growth factor (Fgf) pathway. Double loss-of-function analyses demonstrate that Bmp and Fgf signaling interact synergistically in craniofacial development. Collectively, our analyses shed light on the tissue and signaling interactions that regulate development of the vertebrate face.
Collapse
Affiliation(s)
- C Ben Lovely
- Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Mary E Swartz
- Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Neil McCarthy
- Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | | | - Johann K Eberhart
- Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
16
|
Chávez MN, Aedo G, Fierro FA, Allende ML, Egaña JT. Zebrafish as an Emerging Model Organism to Study Angiogenesis in Development and Regeneration. Front Physiol 2016; 7:56. [PMID: 27014075 PMCID: PMC4781882 DOI: 10.3389/fphys.2016.00056] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/05/2016] [Indexed: 01/04/2023] Open
Abstract
Angiogenesis is the process through which new blood vessels are formed from preexisting ones and plays a critical role in several conditions including embryonic development, tissue repair and disease. Moreover, enhanced therapeutic angiogenesis is a major goal in the field of regenerative medicine and efficient vascularization of artificial tissues and organs is one of the main hindrances in the implementation of tissue engineering approaches, while, on the other hand, inhibition of angiogenesis is a key therapeutic target to inhibit for instance tumor growth. During the last decades, the understanding of cellular and molecular mechanisms involved in this process has been matter of intense research. In this regard, several in vitro and in vivo models have been established to visualize and study migration of endothelial progenitor cells, formation of endothelial tubules and the generation of new vascular networks, while assessing the conditions and treatments that either promote or inhibit such processes. In this review, we address and compare the most commonly used experimental models to study angiogenesis in vitro and in vivo. In particular, we focus on the implementation of the zebrafish (Danio rerio) as a model to study angiogenesis and discuss the advantages and not yet explored possibilities of its use as model organism.
Collapse
Affiliation(s)
- Myra N Chávez
- Department of Plastic Surgery and Hand Surgery, University Hospital rechts der Isar, Technische Universität MünchenMunich, Germany; Department of Biology, FONDAP Center for Genome Regulation, Faculty of Science, Universidad de ChileSantiago, Chile; Department of Biochemistry and Molecular Biology, FONDAP Advanced Center for Chronic Diseases (ACCDiS) and Center for Molecular Studies of the Cell (CEMC), Faculty of Chemical and Pharmaceutical Sciences, Faculty of Medicine, University of ChileSantiago, Chile
| | - Geraldine Aedo
- Department of Biology, FONDAP Center for Genome Regulation, Faculty of Science, Universidad de Chile Santiago, Chile
| | - Fernando A Fierro
- Department of Cell Biology and Human Anatomy, University of California Davis, Sacramento, CA, USA
| | - Miguel L Allende
- Department of Biology, FONDAP Center for Genome Regulation, Faculty of Science, Universidad de Chile Santiago, Chile
| | - José T Egaña
- Institute for Medical and Biological Engineering, Schools of Engineering, Biological Sciences and Medicine, Pontifícia Universidad Católica de Chile Santiago, Chile
| |
Collapse
|
17
|
Mayor R, Etienne-Manneville S. The front and rear of collective cell migration. Nat Rev Mol Cell Biol 2016; 17:97-109. [PMID: 26726037 DOI: 10.1038/nrm.2015.14] [Citation(s) in RCA: 565] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Collective cell migration has a key role during morphogenesis and during wound healing and tissue renewal in the adult, and it is involved in cancer spreading. In addition to displaying a coordinated migratory behaviour, collectively migrating cells move more efficiently than if they migrated separately, which indicates that a cellular interplay occurs during collective cell migration. In recent years, evidence has accumulated confirming the importance of such intercellular communication and exploring the molecular mechanisms involved. These mechanisms are based both on direct physical interactions, which coordinate the cellular responses, and on the collective cell behaviour that generates an optimal environment for efficient directed migration. The recent studies have described how leader cells at the front of cell groups drive migration and have highlighted the importance of follower cells and cell-cell communication, both between followers and between follower and leader cells, to improve the efficiency of collective movement.
Collapse
Affiliation(s)
- Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Sandrine Etienne-Manneville
- Institut Pasteur, CNRS UMR 3691, Cell Polarity, Migration and Cancer Unit, 25 Rue du Dr Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
18
|
Choe CP, Gage Crump J. Eph-Pak2a signaling regulates branching of the pharyngeal endoderm by inhibiting late-stage epithelial dynamics. J Cell Sci 2015. [DOI: 10.1242/jcs.171090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
19
|
Choe CP, Crump JG. Dynamic epithelia of the developing vertebrate face. Curr Opin Genet Dev 2015; 32:66-72. [PMID: 25748249 DOI: 10.1016/j.gde.2015.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/29/2015] [Accepted: 02/01/2015] [Indexed: 10/23/2022]
Abstract
A segmental series of endoderm-derived pouch and ectoderm-derived cleft epithelia act as signaling centers in the developing face. Their precise morphogenesis is therefore essential for proper patterning of the vertebrate head. Intercellular adhesion and polarity are highly dynamic within developing facial epithelial cells, with signaling from the adjacent mesenchyme controlling both epithelial character and directional migration. Endodermal and ectodermal epithelia fuse to form the primary mouth and gill slits, which involves basement membrane dissolution, cell intercalations, and apoptosis, as well as undergo further morphogenesis to generate the middle ear cavity and glands of the neck. Recent studies of facial epithelia are revealing both core programs of epithelial morphogenesis and insights into the coordinated assembly of the vertebrate head.
Collapse
Affiliation(s)
- Chong Pyo Choe
- Broad California Institute of Regenerative Medicine Center, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - J Gage Crump
- Broad California Institute of Regenerative Medicine Center, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|