1
|
Swann K. The characteristics of the calcium signals that activate mammalian eggs at fertilization. Curr Top Dev Biol 2024; 162:317-350. [PMID: 40180513 DOI: 10.1016/bs.ctdb.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Gamete membrane fusion in mammals brings the paternal genome into the cytoplasm of the egg. It also enables signals to pass from the sperm into the egg to trigger the completion of meiosis and the start of embryo development. The essential signal to activate development in all mammals studied, consists of a series of transient increases in the cytosolic Ca2+ concentration driven by cycles of InsP3 production. This review focusses on the characteristics of these sperm-induced Ca2+ signals. I consider how some specific features of sperm-derived phospholipase C-zeta (PLCζ), along with the known properties of the type 1 InsP3 receptor, provide a basis for understanding the mechanisms of the dynamic changes in Ca2+ observed in fertilizing eggs. I describe how the PLCζ targeting of cytoplasmic vesicles in the egg cytoplasm, that contain PI(4,5)P2, is necessary to explain the rapid waves associated with the rising phase of each Ca2+ transient. I also discuss the importance of the repetitive Ca2+ rises for egg activation and the way mitochondrial ATP production may modulate Ca2+ release in eggs. Finally, I consider the role that a sperm-induced ATP increase may play in the egg activation process.
Collapse
Affiliation(s)
- Karl Swann
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, Wales, United Kingdom.
| |
Collapse
|
2
|
Ma X, Xu R, Chen J, Wang S, Hu P, Wu Y, Que Y, Du W, Cai X, Chen H, Guo J, Li TC, Ruan YC. The epithelial Na + channel (ENaC) in ovarian granulosa cells modulates Ca 2+ mobilization and gonadotrophin signaling for estrogen homeostasis and female fertility. Cell Commun Signal 2024; 22:398. [PMID: 39143495 PMCID: PMC11323461 DOI: 10.1186/s12964-024-01778-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/06/2024] [Indexed: 08/16/2024] Open
Abstract
Ovarian granulosa cells are essential to gonadotrophin-regulated estrogen production, female cycle maintenance and fertility. The epithelial Na+ channel (ENaC) is associated with female fertility; however, whether and how it plays a role in ovarian cell function(s) remained unexplored. Here, we report patch-clamp and Na+ imaging detection of ENaC expression and channel activity in both human and mouse ovarian granulosa cells, which are promoted by pituitary gonadotrophins, follicle stimulating hormone (FSH) or luteinizing hormone (LH). Cre-recombinase- and CRISPR-Cas9-based granulosa-specific knockout of ENaC α subunit (Scnn1a) in mice resulted in failed estrogen elevation at early estrus, reduced number of corpus luteum, abnormally extended estrus phase, reduced litter size and subfertility in adult female mice. Further analysis using technologies including RNA sequencing and Ca2+ imaging revealed that pharmacological inhibition, shRNA-based knockdown or the knockout of ENaC diminished spontaneous or stimulated Ca2+ oscillations, lowered the capacity of intracellular Ca2+ stores and impaired FSH/LH-stimulated transcriptome changes for estrogen production in mouse and/or human granulosa cells. Together, these results have revealed a previously undefined role of ENaC in modulating gonadotrophin signaling in granulosa cells for estrogen homeostasis and thus female fertility.
Collapse
Affiliation(s)
- Xiyang Ma
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Ruiyao Xu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Junjiang Chen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Jinan University, Guangzhou, China
| | - Shan Wang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Peijie Hu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Yong Wu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Yanting Que
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Wanting Du
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Xiaojun Cai
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Hui Chen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Jinghui Guo
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
| | - Tin Chiu Li
- Department of Obstetrics and Gynaecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ye Chun Ruan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China.
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, China.
| |
Collapse
|
3
|
Altmannova V, Spirek M, Orlic L, Jēkabsons A, Clarence T, Henggeler A, Mlcouskova J, Chaleil RA, Matos J, Krejci L. The role of bivalent ions in the regulation of D-loop extension mediated by DMC1 during meiotic recombination. iScience 2022; 25:105439. [PMID: 36388968 PMCID: PMC9641244 DOI: 10.1016/j.isci.2022.105439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/06/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
During meiosis, programmed DNA double-strand breaks (DSBs) are repaired by homologous recombination. DMC1, a conserved recombinase, plays a central role in this process. DMC1 promotes DNA strand exchange between homologous chromosomes, thus creating the physical linkage between them. Its function is regulated not only by several accessory proteins but also by bivalent ions. Here, we show that whereas calcium ions in the presence of ATP cause a conformational change within DMC1, stimulating its DNA binding and D-loop formation, they inhibit the extension of the invading strand within the D-loop. Based on structural studies, we have generated mutants of two highly conserved amino acids - E162 and D317 - in human DMC1, which are deficient in calcium regulation. In vivo studies of their yeast homologues further showed that they exhibit severe defects in meiosis, thus emphasizing the importance of calcium ions in the regulation of DMC1 function and meiotic recombination.
Collapse
Affiliation(s)
- Veronika Altmannova
- Department of Biology, Masaryk University, Brno 62500, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno 65691, Czech Republic
| | - Mario Spirek
- Department of Biology, Masaryk University, Brno 62500, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno 65691, Czech Republic
| | - Lucija Orlic
- Max Perutz Labs, University of Vienna, Dr. Bohr-Gasse 9 1030 Vienna, Austria
| | - Atis Jēkabsons
- Department of Biology, Masaryk University, Brno 62500, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno 65691, Czech Republic
| | - Tereza Clarence
- Biomolecular Modelling Laboratory, The Francis Crick Institute, London, UK
| | - Adrian Henggeler
- Max Perutz Labs, University of Vienna, Dr. Bohr-Gasse 9 1030 Vienna, Austria
| | - Jarmila Mlcouskova
- International Clinical Research Center, St. Anne’s University Hospital, Brno 65691, Czech Republic
| | | | - Joao Matos
- Max Perutz Labs, University of Vienna, Dr. Bohr-Gasse 9 1030 Vienna, Austria
| | - Lumir Krejci
- Department of Biology, Masaryk University, Brno 62500, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno 65691, Czech Republic
- National Center for Biomolecular Research, Masaryk University, Brno 62500, Czech Republic
| |
Collapse
|
4
|
Chiaratti MR. Uncovering the important role of mitochondrial dynamics in oogenesis: impact on fertility and metabolic disorder transmission. Biophys Rev 2021; 13:967-981. [PMID: 35059021 PMCID: PMC8724343 DOI: 10.1007/s12551-021-00891-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
Oocyte health is tightly tied to mitochondria given their role in energy production, metabolite supply, calcium (Ca2+) buffering, and cell death regulation, among others. In turn, mitochondrial function strongly relies on these organelle dynamics once cyclic events of fusion and fission (division) are required for mitochondrial turnover, positioning, content homogenization, metabolic flexibility, interaction with subcellular compartments, etc. Importantly, during oogenesis, mitochondria change their architecture from an "orthodox" elongated shape characterized by the presence of numerous transversely oriented cristae to a round-to-oval morphology containing arched and concentrically arranged cristae. This, along with evidence showing that mitochondrial function is kept quiescent during most part of oocyte development, suggests an important role of mitochondrial dynamics in oogenesis. To investigate this, recent works have downregulated/upregulated in oocytes the expression of key effectors of mitochondrial dynamics, including mitofusins 1 (MFN1) and 2 (MFN2) and the dynamin-related protein 1 (DRP1). As a result, both MFN1 and DRP1 were found to be essential to oogenesis and fertility, while MFN2 deletion led to offspring with increased weight gain and glucose intolerance. Curiously, neither MFN1/MFN2 deficiency nor DRP1 overexpression enhanced mitochondrial fragmentation, indicating that mitochondrial size is strictly regulated in oocytes. Therefore, the present work seeks to discuss the role of mitochondria in supporting oogenesis as well as recent findings connecting defective mitochondrial dynamics in oocytes with infertility and transmission of metabolic disorders.
Collapse
Affiliation(s)
- Marcos Roberto Chiaratti
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, 13565-905 Brazil
| |
Collapse
|
5
|
Daei-Farshbaf N, Aflatoonian R, Amjadi FS, Nikniyaz H, Taleahmad S, Bakhtiyari M. Identification of calcineurin as a predictor of oocyte quality and fertilization competence based on microarray data. Comput Biol Chem 2021; 94:107561. [PMID: 34461466 DOI: 10.1016/j.compbiolchem.2021.107561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/26/2021] [Accepted: 08/09/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The aim of our study was to detect a biomarker for selection of competent oocytes with acceptable fertilization potential. Calcium ion fluctuation play the most critical role of modulating intercellular signaling pathways in oocyte maturation, egg activation and the egg-to-embryo transition. Since, the stimulatory action of calcium ion is mediated by binding to certain proteins, the calcium/calmodulin-binding genes (CBGs), as the main calcium binding group, was analyzed in detail. METHODS In this work, bioinformatics analysis was conducted on the CBGs of human cumulus cells (CCs) to elucidate a reliable biomarker for fertile oocyte selection. Calcineurin (CaN) or protein phosphatase 3 (PPP3) was selected which consists of a catalytic subunit A with PPP3CA (Aα), PPP3CB (Aβ), and PPP3CC (Aγ) isoforms and a regulatory subunit B. Whereas CaN A regulates calcium ion function, our study gives insights to probable role of related isoforms within human oogenesis process. The presence of CaN A in CCs surrounding growing and mature oocytes was confirmed by western blotting and the expression patterns of related isoforms were examined by reverse transcription-quantitative PCR (RT-qPCR). RESULTS Our results indicated the increased expression of the catalytic subunit of CaN protein in the CCs of metaphase (M) II oocytes. The expression level of PPP3CB was significantly elevated in CCs of fertile MII compared with those in the germinal vesicle (GV), MI and unfertilized MII oocytes (P ≤ 0.05). CONCLUSION Elevated level of PPP3CB isoform in the CCs of fertile MII oocyte could be a reliable indication of oocyte fertilization potential. However, further researches are required to introduce CaN Aβ as an appropriate biomarker for oocyte selection in assisted reproduction technique (ART) programs.
Collapse
Affiliation(s)
- Neda Daei-Farshbaf
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, P.O. Box: 14155-5983, Tehran, Iran
| | - Reza Aflatoonian
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, Academic Center for Education, Culture and Research, P.O. Box: 16635-148, Tehran, Iran
| | - Fatemeh-Sadat Amjadi
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, P.O. Box: 14155-5983, Tehran, Iran; Cellular and Molecular Research Center, Faculty of Medicine, Iran University of Medical Sciences, P.O. Box:14155-5983, Tehran, Iran
| | - Hossein Nikniyaz
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, P.O. Box: 14155-5983, Tehran, Iran
| | - Sara Taleahmad
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology (RI-SCBT), Academic Center for Education, Culture and Research, P.O. Box: 16635-148, Tehran, Iran
| | - Mehrdad Bakhtiyari
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, P.O. Box: 14155-5983, Tehran, Iran; Cellular and Molecular Research Center, Faculty of Medicine, Iran University of Medical Sciences, P.O. Box:14155-5983, Tehran, Iran.
| |
Collapse
|
6
|
Wakai T, Mehregan A, Fissore RA. Ca 2+ Signaling and Homeostasis in Mammalian Oocytes and Eggs. Cold Spring Harb Perspect Biol 2019; 11:a035162. [PMID: 31427376 PMCID: PMC6886447 DOI: 10.1101/cshperspect.a035162] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Changes in the intracellular concentration of calcium ([Ca2+]i) represent a vital signaling mechanism enabling communication between and among cells as well as with the environment. Cells have developed a sophisticated set of molecules, "the Ca2+ toolkit," to adapt [Ca2+]i changes to specific cellular functions. Mammalian oocytes and eggs, the subject of this review, are not an exception, and in fact the initiation of embryo devolvement in all species is entirely dependent on distinct [Ca2+]i responses. Here, we review the components of the Ca2+ toolkit present in mammalian oocytes and eggs, the regulatory mechanisms that allow these cells to accumulate Ca2+ in the endoplasmic reticulum, release it, and maintain basal and stable cytoplasmic concentrations. We also discuss electrophysiological and genetic studies that have uncovered Ca2+ influx channels in oocytes and eggs, and we analyze evidence supporting the role of a sperm-specific phospholipase C isoform as the trigger of Ca2+ oscillations during mammalian fertilization including its implication in fertility.
Collapse
Affiliation(s)
- Takuya Wakai
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Aujan Mehregan
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Rafael A Fissore
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| |
Collapse
|
7
|
Fluks M, Szczepanska K, Ishikawa T, Ajduk A. Transcriptional status of mouse oocytes corresponds with their ability to generate Ca2+ release. Reproduction 2019; 157:465-474. [PMID: 30817322 DOI: 10.1530/rep-18-0625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/26/2019] [Indexed: 01/03/2023]
Abstract
In fully grown ovarian follicles both transcriptionally active (NSN) and inactive (SN) oocytes are present. NSN oocytes have been shown to display lower developmental potential. It is possible that oocytes that have not completed transcription before meiosis resumption accumulate less RNA and proteins required for their further development, including those responsible for regulation of Ca2+ homeostasis. Oscillations of the cytoplasmic concentration of free Ca2+ ions ([Ca2+]i) are triggered in oocytes by a fertilizing spermatozoon and are crucial for inducing and regulating further embryonic development. We showed that NSN-derived oocytes express less inositol 1,4,5-triphosphate receptor type 1 (IP3R1), store less Ca2+ ions and generate weaker spontaneous [Ca2+]i oscillations during maturation than SN oocytes. Consequently, NSN oocytes display aberrant [Ca2+]i oscillations at fertilization. We speculate that this defective regulation of Ca2+ homeostasis might be one of the factors responsible for the lower developmental potential of NSN oocytes.
Collapse
Affiliation(s)
- Monika Fluks
- Department of Embryology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Takao Ishikawa
- Department of Molecular Biology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Anna Ajduk
- Department of Embryology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
8
|
Wakai T, Fissore RA. Constitutive IP 3R1-mediated Ca 2+ release reduces Ca 2+ store content and stimulates mitochondrial metabolism in mouse GV oocytes. J Cell Sci 2019; 132:jcs.225441. [PMID: 30659110 DOI: 10.1242/jcs.225441] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 01/02/2019] [Indexed: 12/23/2022] Open
Abstract
In mammals, fertilization initiates Ca2+ oscillations in metaphase II oocytes, which are required for the activation of embryo development. Germinal vesicle (GV) oocytes also display Ca2+ oscillations, although these unfold spontaneously in the absence of any known agonist(s) and their function remains unclear. We found that the main intracellular store of Ca2+ in GV oocytes, the endoplasmic reticulum ([Ca2+]ER), constitutively 'leaks' Ca2+ through the type 1 inositol 1,4,5-trisphosphate receptor. The [Ca2+]ER leak ceases around the resumption of meiosis, the GV breakdown (GVBD) stage, which coincides with the first noticeable accumulation of Ca2+ in the stores. It also concurs with downregulation of the Ca2+ influx and termination of the oscillations, which seemed underpinned by the inactivation of the putative plasma membrane Ca2+ channels. Lastly, we demonstrate that mitochondria take up Ca2+ during the Ca2+ oscillations, mounting their own oscillations that stimulate the mitochondrial redox state and increase the ATP levels of GV oocytes. These distinct features of Ca2+ homeostasis in GV oocytes are likely to underpin the acquisition of both maturation and developmental competence, as well as fulfill stage-specific cellular functions during oocyte maturation.
Collapse
Affiliation(s)
- Takuya Wakai
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 North Pleasant Street, Amherst, MA 01003, USA
| | - Rafael A Fissore
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 North Pleasant Street, Amherst, MA 01003, USA
| |
Collapse
|
9
|
Anifandis G, Michopoulos A, Daponte A, Chatzimeletiou K, Simopoulou M, Messini CI, Polyzos NP, Vassiou K, Dafopoulos K, Goulis DG. Artificial oocyte activation: physiological, pathophysiological and ethical aspects. Syst Biol Reprod Med 2018; 65:3-11. [DOI: 10.1080/19396368.2018.1516000] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- George Anifandis
- Department of Obstetrics and Gynecology, ART Unit, University of Thessaly, School of Health Sciences, Faculty of Medicine, Larisa, Greece
| | - Alexandros Michopoulos
- Unit of Reproductive Endocrinology, 1st Department of Obstetrics and Gynecology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alexandros Daponte
- Department of Obstetrics and Gynecology, ART Unit, University of Thessaly, School of Health Sciences, Faculty of Medicine, Larisa, Greece
| | - Katerina Chatzimeletiou
- Unit of Human Reproduction, 1st Department of Obstetrics and Gynecology, Aristotle University Medical School, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Mara Simopoulou
- Department of Physiology, Kapodistrian University of Athens, School of Health Sciences, Faculty of Medicine, Athens, Greece
| | - Christina I. Messini
- Department of Obstetrics and Gynecology, ART Unit, University of Thessaly, School of Health Sciences, Faculty of Medicine, Larisa, Greece
| | - Nikolas P. Polyzos
- Vrije Universiteit Brussel, Brussels, Belgium
- Universitair Ziekenhuis Brussel, Brussels, Belgium
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Katerina Vassiou
- Department of Anatomy, University of Thessaly, School of Health Sciences, Faculty of Medicine, Larisa, Greece
| | - Konstantinos Dafopoulos
- Department of Obstetrics and Gynecology, ART Unit, University of Thessaly, School of Health Sciences, Faculty of Medicine, Larisa, Greece
| | - Dimitrios G. Goulis
- Unit of Reproductive Endocrinology, 1st Department of Obstetrics and Gynecology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
10
|
TMCO1 is essential for ovarian follicle development by regulating ER Ca 2+ store of granulosa cells. Cell Death Differ 2018; 25:1686-1701. [PMID: 29467381 PMCID: PMC6143536 DOI: 10.1038/s41418-018-0067-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 01/10/2023] Open
Abstract
TMCO1 (transmembrane and coiled-coil domains 1) is an endoplasmic reticulum (ER) transmembrane protein that actively prevents Ca2+ stores from overfilling. To characterize its physiological function(s), we generated Tmco1−/− knockout (KO) mice. In addition to the main clinical features of human cerebrofaciothoracic (CFT) dysplasia spectrum, Tmco1−/− females manifest gradual loss of ovarian follicles, impaired ovarian follicle development, and subfertility with a phenotype analogous to the premature ovarian failure (POF) in women. In line with the role of TMCO1 as a Ca2+ load-activated Ca2+ channel, we have detected a supernormal Ca2+ signaling in Tmco1−/− granulosa cells (GCs). Interestingly, although spontaneous Ca2+ oscillation pattern was altered, ER Ca2+ stores of germinal vesicle (GV) stage oocytes and metaphase II (MII) arrested eggs were normal upon Tmco1 ablation. Combined with RNA-sequencing analysis, we also detected increased ER stress-mediated apoptosis and enhanced reactive oxygen species (ROS) level in Tmco1−/− GCs, indicating the dysfunctions of GCs upon TMCO1 deficiency. Taken together, these results reveal that TMCO1 is essential for ovarian follicle development and female fertility by maintaining ER Ca2+ homeostasis of GCs, disruption of which causes ER stress-mediated apoptosis and increased cellular ROS level in GCs and thus leads to impaired ovarian follicle development.
Collapse
|
11
|
Hu H, Mo X, Li X, Fu X, Hou Y. BAPTA-AM dramatically improves maturation and development of bovine oocytes from grade-3 cumulus-oocyte complexes. Mol Reprod Dev 2017; 85:38-45. [PMID: 29205619 DOI: 10.1002/mrd.22936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 11/29/2017] [Indexed: 01/25/2023]
Abstract
Intracellular free calcium ([Ca2+ ]i ) is essential for oocyte maturation and early embryonic development. Here, we investigated the role of [Ca2+ ]i in oocytes from cumulus-oocyte complexes (COCs) with respect to maturation and early embryonic development, using the calcium-buffering agent BAPTA-AM (1,2-bis[2-aminophenoxy]ethane-N,N,N',N'-tetraacetic acid tetrakis [acetoxymethyl ester]). COCs were graded based on compactness of the cumulus mass and appearance of the cytoplasm, with Grade 1 indicating higher quality and developmental potential than Grade 3. Results showed that: (i) [Ca2+ ]i in metaphase-II (MII) oocytes from Grade-3 COCs was significantly higher than those from Grade-1 COCs, and was significantly reduced by BAPTA-AM; (ii) nuclear maturation of oocytes from Grade-3 COCs treated with BAPTA-AM was enhanced compared to untreated COCs; (iii) protein abundance of Cyclin B and oocyte-specific Histone 1 (H1FOO) was improved in MII oocytes from Grade-3 COCs treated with BAPTA-AM; (iv) Ca2+ transients were triggered in each group upon fertilization, and the amplitude of [Ca2+ ]i oscillations increased in the Grade-3 group upon treatment with BAPTA-AM, with the magnitude approaching that of the Grade-1 group; and (v) cleavage rates and blastocyst-formation rates were improved in the Grade-3 group treated with BAPTA-AM compared to untreated controls following in vitro fertilization and parthenogenetic activation. Therefore, BAPTA-AM dramatically improved oocyte maturation, oocyte quality, and embryonic development of oocytes from Grade-3 COCs.
Collapse
Affiliation(s)
- Hongmei Hu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Xianhong Mo
- College of Life Sciences, Chifeng University, Chifeng, P. R. China
| | - Xue Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Xiangwei Fu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Yunpeng Hou
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
12
|
The beneficial effect of repaglinide on in vitro maturation and development ability of immature mouse oocytes. In Vitro Cell Dev Biol Anim 2017; 53:626-631. [PMID: 28432599 DOI: 10.1007/s11626-017-0152-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/05/2017] [Indexed: 10/19/2022]
Abstract
Repaglinide is a hypoglycemic drug, causing depolarization of the cell membrane, opening the voltage-gated calcium channels, and then increasing intracellular calcium in the pancreatic B cells by inhibition of the K-ATP-sensitive channels. Oocyte in vitro maturation (IVM) is influenced by different factors such as calcium signaling. In this study, we examined the effects of repaglinide on in vitro maturation and fertilization ability of mouse oocyte. Immature oocytes were isolated from female Naval Medical Research Institute mice which are 6-8 wk old mechanically and then cultured in 30 μl droplets of T6 medium with different concentrations of repaglinide. The control group did not receive repaglinide (R0). Treatment groups received different concentrations (5, 10, and 100 nM and 1 and 10 μM) of repaglinide (R1, R2, R3, R4, and R5, respectively). Oocyte in vitro maturation rate was assessed after 24 h. In vitro fertilization was performed using metaphase II oocytes obtained from R0 and R4 treatments. Embryo cleavage rate was calculated at 48 h post-IVF. Chi-square test was used for evaluating difference between control and treatment groups (p < 0.05). Oocyte maturation rate after 24 h in treatment groups R2, R3, R4, and R5 was significantly higher than that in the control (p < 0.05). Supplementation of medium with 1 μM of repaglinide (R4) during IVM significantly improved outcome of embryo cleavage rate than control at 48 h post-IVF (p < 0.05). In conclusion, repaglinide can be considered as an effective agent for in vitro oocyte maturation and embryo cleavage.
Collapse
|
13
|
Molina I, Gómez J, Balasch S, Pellicer N, Novella-Maestre E. Osmotic-shock produced by vitrification solutions improves immature human oocytes in vitro maturation. Reprod Biol Endocrinol 2016; 14:27. [PMID: 27170005 PMCID: PMC4866294 DOI: 10.1186/s12958-016-0161-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/27/2016] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND During cytoplasmic oocyte maturation, Ca(2+) currents are vital for regulating a broad range of physiological processes. Recent studies have demonstrated that DMSO and EG cause large transient increases in intracellular Ca(2+) in mouse oocytes. The CP used in vitrifying protocols also increases the intracellular calcium transient. The aim of this study is to evaluate the effects of vitrifying time (before and after IVM) and exposure to the vitrification solutions and ionomycin on oocyte quality and embryonic development. METHODS 221 GV-oocytes unsuitable for IVF-ICSI cycles were randomly distributed into one of the following three groups. G1 (control group): 41 GV-oocytes IVM until MII; G2: 43 oocytes vitrified at GV stage and IVM until MII stage; and G3: 53 GV-oocytes IVM until MII and then vitrified. In order to clarify the effect of vitrification solutions (VS) on human oocyte IVM through the intracellular Ca(2+) oscillation, the following two groups were also included. G4: 43 GV-oocytes exposed to VS and IVM until MII; and G5: 41 GV-oocytes exposed to ionomycin and IVM until MII. All GV-oocytes that reached MII-stage were parthenogenetically activated to assess oocyte viability. IVM was performed in IVF-medium (24-48 h). Chemical treatment (ionomycin) and osmotic treatment (vitrification solutions) were performed without liquid-N2 immersion. The following rates were evaluated: survival (SR), in-vitro maturation (IVMR), activation (AR), development to 2-cell (DRC), development to morula (DRCM) and development to blastocyst (DRB). Ratios between the different treatment groups were compared using contingency tables analysis (chi-square test). RESULTS A high survival rate was obtained in G2 (95.5 %) and G4 (96.6 %). In-vitro maturation rate was significantly higher for G4 (86 %) and G2 (83.7 %) compared to G1 (63.4 %), G3 (56.6 %) and G5 (48.8 %). DRCM was significantly higher for G1 and G2 compared to G3 (G1: 15.8 %, G2: 20.7 % and G3: 0 %). DRB was only obtained for the oocytes vitrified before IVM (G2: 3.4 %). AR was also significantly higher for G2 and G4 compared to G5 (G2: 80.5 %, G4: 86.5 % and G5: 55 %). DRCM and DRB were only obtained in G2 and G4. DRCM was significantly higher for oocytes vitrified at GV stage (G2) and for oocytes exposed to the VS in G4 compared to the oocytes exposed to the ionomycin in G5 (G2: 20.7 %; G4: 37.5 % and G5: 0 %). CONCLUSIONS Vitrifying GV-oocytes improves their IVM. Further investigation could look to increase the oocyte pool and improve fertility preservation options.
Collapse
Affiliation(s)
- Inmaculada Molina
- Unidad de Reproducción Humana, Área de Salud de la Mujer, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Judith Gómez
- Unidad de Reproducción Humana, Área de Salud de la Mujer, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Sebastián Balasch
- Departamento de Estadística e Investigación Operativa Aplicadas y Calidad, Universidad Politécnica de Valencia, Valencia, Spain
| | - Nuria Pellicer
- Fundación Instituto Valenciano de Infertilidad, Instituto Universitario IVI, Valencia, Spain
| | - Edurne Novella-Maestre
- Unidad de Genética, Torre A planta 4º, Hospital Universitario y Politécnico La Fe, Avenida de Fernando Abril Martorell, nº 106, 46026, Valencia, Spain.
- Grupo de investigación de Medicina Reproductiva, Instituto de Investigación Sanitario La Fe, Valencia, Spain.
| |
Collapse
|
14
|
Nikiforaki D, Vanden Meerschaut F, de Roo C, Lu Y, Ferrer-Buitrago M, de Sutter P, Heindryckx B. Effect of two assisted oocyte activation protocols used to overcome fertilization failure on the activation potential and calcium releasing pattern. Fertil Steril 2016; 105:798-806.e2. [DOI: 10.1016/j.fertnstert.2015.11.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/21/2015] [Accepted: 11/02/2015] [Indexed: 12/22/2022]
|
15
|
Novel Ca2+ increases in the maturing oocytes of starfish during the germinal vesicle breakdown. Cell Calcium 2015; 58:500-10. [DOI: 10.1016/j.ceca.2015.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/04/2015] [Accepted: 08/04/2015] [Indexed: 11/20/2022]
|
16
|
Barakat IA, Khalil WK, Al-Himaidi AR. Moringa oleifera extract modulates the expression of fertility related genes and elevation of calcium ions in sheep oocytes. Small Rumin Res 2015. [DOI: 10.1016/j.smallrumres.2015.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Bernhardt ML, Lowther KM, Padilla-Banks E, McDonough CE, Lee KN, Evsikov AV, Uliasz TF, Chidiac P, Williams CJ, Mehlmann LM. Regulator of G-protein signaling 2 (RGS2) suppresses premature calcium release in mouse eggs. Development 2015; 142:2633-40. [PMID: 26160904 DOI: 10.1242/dev.121707] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 06/25/2015] [Indexed: 11/20/2022]
Abstract
During oocyte maturation, capacity and sensitivity of Ca(2+) signaling machinery increases dramatically, preparing the metaphase II (MII)-arrested egg for fertilization. Upon sperm-egg fusion, Ca(2+) release from IP3-sensitive endoplasmic reticulum stores results in cytoplasmic Ca(2+) oscillations that drive egg activation and initiate early embryo development. Premature Ca(2+) release can cause parthenogenetic activation prior to fertilization; thus, preventing inappropriate Ca(2+) signaling is crucial for ensuring robust MII arrest. Here, we show that regulator of G-protein signaling 2 (RGS2) suppresses Ca(2+) release in MII eggs. Rgs2 mRNA was recruited for translation during oocyte maturation, resulting in ∼ 20-fold more RGS2 protein in MII eggs than in fully grown immature oocytes. Rgs2-siRNA-injected oocytes matured to MII; however, they had increased sensitivity to low pH and acetylcholine (ACh), which caused inappropriate Ca(2+) release and premature egg activation. When matured in vitro, RGS2-depleted eggs underwent spontaneous Ca(2+) increases that were sufficient to cause premature zona pellucida conversion. Rgs2(-/-) females had reduced litter sizes, and their eggs had increased sensitivity to low pH and ACh. Rgs2(-/-) eggs also underwent premature zona pellucida conversion in vivo. These findings indicate that RGS2 functions as a brake to suppress premature Ca(2+) release in eggs that are poised on the brink of development.
Collapse
Affiliation(s)
- Miranda L Bernhardt
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Katie M Lowther
- Department of Cell Biology, UConn Health, Farmington, CT 06030, USA
| | - Elizabeth Padilla-Banks
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Caitlin E McDonough
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Katherine N Lee
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Alexei V Evsikov
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Tracy F Uliasz
- Department of Cell Biology, UConn Health, Farmington, CT 06030, USA
| | - Peter Chidiac
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Carmen J Williams
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Lisa M Mehlmann
- Department of Cell Biology, UConn Health, Farmington, CT 06030, USA
| |
Collapse
|
18
|
Udagawa O, Ishihara T, Maeda M, Matsunaga Y, Tsukamoto S, Kawano N, Miyado K, Shitara H, Yokota S, Nomura M, Mihara K, Mizushima N, Ishihara N. Mitochondrial fission factor Drp1 maintains oocyte quality via dynamic rearrangement of multiple organelles. Curr Biol 2014; 24:2451-8. [PMID: 25264261 DOI: 10.1016/j.cub.2014.08.060] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 07/25/2014] [Accepted: 08/26/2014] [Indexed: 12/12/2022]
Abstract
Mitochondria are dynamic organelles that change their morphology by active fusion and fission in response to cellular signaling and differentiation. The in vivo role of mitochondrial fission in mammals has been examined by using tissue-specific knockout (KO) mice of the mitochondria fission-regulating GTPase Drp1, as well as analyzing a human patient harboring a point mutation in Drp1, showing that Drp1 is essential for embryonic and neonatal development and neuronal function. During oocyte maturation and aging, structures of various membrane organelles including mitochondria and the endoplasmic reticulum (ER) are changed dynamically, and their organelle aggregation is related to germ cell formation and epigenetic regulation. However, the underlying molecular mechanisms of organelle dynamics during the development and aging of oocytes have not been well understood. Here, we analyzed oocyte-specific mitochondrial fission factor Drp1-deficient mice and found that mitochondrial fission is essential for follicular maturation and ovulation in an age-dependent manner. Mitochondria were highly aggregated with other organelles, such as the ER and secretory vesicles, in KO oocyte, which resulted in impaired Ca(2+) signaling, intercellular communication via secretion, and meiotic resumption. We further found that oocytes from aged mice displayed reduced Drp1-dependent mitochondrial fission and defective organelle morphogenesis, similar to Drp1 KO oocytes. On the basis of these findings, it appears that mitochondrial fission maintains the competency of oocytes via multiorganelle rearrangement.
Collapse
Affiliation(s)
- Osamu Udagawa
- Department of Protein Biochemistry, Institute of Life Science, Kurume University, Kurume 839-0864, Japan; National Institute for Environmental Studies, Center for Environmental Risk Research, Tsukuba 305-8506, Japan
| | - Takaya Ishihara
- Department of Protein Biochemistry, Institute of Life Science, Kurume University, Kurume 839-0864, Japan
| | - Maki Maeda
- Department of Protein Biochemistry, Institute of Life Science, Kurume University, Kurume 839-0864, Japan; Department of Physiology and Cell Biology, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Yui Matsunaga
- Department of Physiology and Cell Biology, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Satoshi Tsukamoto
- Department of Physiology and Cell Biology, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; Laboratory Animal Sciences Section, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Natsuko Kawano
- National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Kenji Miyado
- National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Hiroshi Shitara
- Laboratory for Transgenic Technology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Sadaki Yokota
- Pharmaceutical Sciences, Nagasaki International University, Sasebo 859-3298, Japan
| | - Masatoshi Nomura
- Department of Medicine and Bioregulatory Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Katsuyoshi Mihara
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Noboru Mizushima
- Department of Physiology and Cell Biology, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Naotada Ishihara
- Department of Protein Biochemistry, Institute of Life Science, Kurume University, Kurume 839-0864, Japan; Department of Physiology and Cell Biology, Tokyo Medical and Dental University, Tokyo 113-8519, Japan.
| |
Collapse
|
19
|
Nikiforaki D, Vanden Meerschaut F, De Gheselle S, Qian C, Van den Abbeel E, De Vos WH, Deroo T, De Sutter P, Heindryckx B. Sperm involved in recurrent partial hydatidiform moles cannot induce the normal pattern of calcium oscillations. Fertil Steril 2014; 102:581-588.e1. [DOI: 10.1016/j.fertnstert.2014.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/05/2014] [Accepted: 05/05/2014] [Indexed: 12/29/2022]
|
20
|
Chen Y, Kong S, Tang X, Fu Y, Wang B, Zhang S, Wang H. Preimplantation Mouse Embryo Is a Target for Opioid Ligand-Receptor Signaling1. Biol Reprod 2014; 91:4. [DOI: 10.1095/biolreprod.114.118083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
21
|
Chan YL, Brown MS, Qin D, Handa N, Bishop DK. The third exon of the budding yeast meiotic recombination gene HOP2 is required for calcium-dependent and recombinase Dmc1-specific stimulation of homologous strand assimilation. J Biol Chem 2014; 289:18076-86. [PMID: 24798326 DOI: 10.1074/jbc.m114.558601] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During meiosis in Saccharomyces cerevisiae, the HOP2 and MND1 genes are essential for recombination. A previous biochemical study has shown that budding yeast Hop2-Mnd1 stimulates the activity of the meiosis-specific strand exchange protein ScDmc1 only 3-fold, whereas analogous studies using mammalian homologs show >30-fold stimulation. The HOP2 gene was recently discovered to contain a second intron that lies near the 3'-end. We show that both HOP2 introns are efficiently spliced during meiosis, forming a predominant transcript that codes for a protein with a C-terminal sequence different from that of the previously studied version of the protein. Using the newly identified HOP2 open reading frame to direct synthesis of wild type Hop2 protein, we show that the Hop2-Mnd1 heterodimer stimulated Dmc1 D-loop activity up to 30-fold, similar to the activity of mammalian Hop2-Mnd1. ScHop2-Mnd1 stimulated ScDmc1 activity in the presence of physiological (micromolar) concentrations of Ca(2+) ions, as long as Mg(2+) was also present at physiological concentrations, leading us to hypothesize that ScDmc1 protomers bind both cations in the active Dmc1 filament. Co-factor requirements and order-of-addition experiments suggested that Hop2-Mnd1-mediated stimulation of Dmc1 involves a process that follows the formation of functional Dmc1-ssDNA filaments. In dramatic contrast to mammalian orthologs, the stimulatory activity of budding yeast Hop2-Mnd1 appeared to be specific to Dmc1; we observed no Hop2-Mnd1-mediated stimulation of the other budding yeast strand exchange protein Rad51. Together, these results support previous genetic experiments indicating that Hop2-Mnd1 specifically stimulates Dmc1 during meiotic recombination in budding yeast.
Collapse
Affiliation(s)
- Yuen-Ling Chan
- From the Departments of Radiation and Cellular Oncology and
| | - M Scott Brown
- From the Departments of Radiation and Cellular Oncology and
| | - Daoming Qin
- Molecular Genetics and Cell Biology, Cummings Life Science Center, University of Chicago, Chicago, Illinois 60637 and
| | - Naofumi Handa
- the Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616
| | - Douglas K Bishop
- From the Departments of Radiation and Cellular Oncology and Molecular Genetics and Cell Biology, Cummings Life Science Center, University of Chicago, Chicago, Illinois 60637 and
| |
Collapse
|
22
|
Alves BG, Alves KA, Lúcio AC, Martins MC, Silva TH, Alves BG, Braga LS, Silva TV, Viu MAO, Beletti ME, Jacomini JO, Santos RM, Gambarini ML. Ovarian activity and oocyte quality associated with the biochemical profile of serum and follicular fluid from Girolando dairy cows postpartum. Anim Reprod Sci 2014; 146:117-25. [PMID: 24674823 DOI: 10.1016/j.anireprosci.2014.02.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 02/26/2014] [Accepted: 02/28/2014] [Indexed: 12/01/2022]
Abstract
This study was designed to evaluate the influence of heat stress (HS) on the metabolic profile of serum and follicular fluid (FF), ovarian follicle development, and oocyte quality of Girolando dairy cows. Oocytes, blood, and FF (follicles ≥9mm) samples were obtained at 30, 45, 60, 75, and 90 days postpartum in the summer and winter seasons. During transvaginal follicular aspiration, rectal temperature (RT), body condition score (BCS), number of ovarian follicles, and quality of oocytes were recorded. The ambient air temperature (AT) and relative humidity (RH) were also recorded to calculate the temperature humidity index (THI). Glucose, total cholesterol (TC), triglycerides (TG), urea, sodium (Na), potassium (K), and calcium (Ca) concentrations were determined using serum and FF samples. The RT, THI, and BCS loss were greater (P<0.01) in the summer; however, glucose, Na, and K serum concentrations decreased in the same season (P<0.05). Degenerated oocytes were positively associated (P<0.05) with THI (r=0.14) and AT (r=0.13), and negatively associated with glucose (r=-0.12) and K (r=-0.11) serum concentrations. HS induces metabolic changes, which compromise the number of ovarian follicles and the follicular environment, thus resulting in morphologically damaged oocytes.
Collapse
Affiliation(s)
- Benner G Alves
- Center for Studies and Research in Animal Reproductive Biology, College of Veterinary and Animal Science, Federal University of Goiás, Goiânia, GO, 74001-970, Brazil.
| | - Kele A Alves
- Center for Studies and Research in Animal Reproductive Biology, College of Veterinary and Animal Science, Federal University of Goiás, Goiânia, GO, 74001-970, Brazil
| | - Aline C Lúcio
- Laboratory of Animal Reproduction, Faculty of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Muller C Martins
- Laboratory of Animal Reproduction, Faculty of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Thiago H Silva
- Laboratory of Animal Reproduction, Faculty of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Bruna G Alves
- Laboratory of Animal Reproduction, Faculty of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Lucas S Braga
- Laboratory of Animal Reproduction, Faculty of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Thiago V Silva
- Center for Studies and Research in Animal Reproductive Biology, College of Veterinary and Animal Science, Federal University of Goiás, Goiânia, GO, 74001-970, Brazil
| | - Marco A O Viu
- Center for Studies and Research in Animal Reproductive Biology, College of Veterinary and Animal Science, Federal University of Goiás, Goiânia, GO, 74001-970, Brazil
| | - Marcelo E Beletti
- Laboratory of Animal Reproduction, Faculty of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - José O Jacomini
- Laboratory of Animal Reproduction, Faculty of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Ricarda M Santos
- Laboratory of Animal Reproduction, Faculty of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Maria L Gambarini
- Center for Studies and Research in Animal Reproductive Biology, College of Veterinary and Animal Science, Federal University of Goiás, Goiânia, GO, 74001-970, Brazil
| |
Collapse
|
23
|
Nikiforaki D, Vanden Meerschaut F, Qian C, De Croo I, Lu Y, Deroo T, Van den Abbeel E, Heindryckx B, De Sutter P. Oocyte cryopreservation and in vitro culture affect calcium signalling during human fertilization. Hum Reprod 2013; 29:29-40. [DOI: 10.1093/humrep/det404] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
24
|
Zeng HT, Ren Z, Guzman L, Wang X, Sutton-McDowall ML, Ritter LJ, De Vos M, Smitz J, Thompson JG, Gilchrist RB. Heparin and cAMP modulators interact during pre-in vitro maturation to affect mouse and human oocyte meiosis and developmental competence. Hum Reprod 2013; 28:1536-45. [DOI: 10.1093/humrep/det086] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
25
|
Cheon B, Lee HC, Wakai T, Fissore RA. Ca2+ influx and the store-operated Ca2+ entry pathway undergo regulation during mouse oocyte maturation. Mol Biol Cell 2013; 24:1396-410. [PMID: 23468522 PMCID: PMC3639051 DOI: 10.1091/mbc.e13-01-0065] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Changes in Ca2+ homeostasis render oocytes competent to undergo [Ca2+]i oscillations and activation. During mouse oocyte maturation Ca2+ influx and SOCE are down-regulated, whereas [Ca2+]ER content increases. Bypassing the down-regulation of Ca2+ influx disturbs oocyte maturation. In preparation for fertilization, mammalian oocytes undergo optimization of the mechanisms that regulate calcium homeostasis. Among these changes is the increase in the content of the Ca2+ stores ([Ca2+]ER), a process that requires Ca2+ influx. Nevertheless, the mechanism(s) that mediates this influx remains obscure, although is known that [Ca2+]ER can regulate Ca2+ influx via store-operated Ca2+ entry (SOCE). We find that during maturation, as [Ca2+]ER increases, Ca2+ influx decreases. We demonstrate that mouse oocytes/eggs express the two molecular components of SOCE—stromal interaction molecule 1 (Stim1) and Orai1—and expression of human (h) Stim1 increases Ca2+ influx in a manner that recapitulates endogenous SOCE. We observe that the cellular distribution of hStim1 and hOrai1 during maturation undergoes sweeping changes that curtail their colocalization during the later stages of maturation. Coexpression of hStim1 and hOrai1 enhances influx throughout maturation but increases basal Ca2+ levels only in GV oocytes. Further, expression of a constitutive active form of hStim1 plus Orai1, which increases basal Ca2+ throughout maturation, disturbs resumption of meiosis. Taken together, our results demonstrate that Ca2+ influx and SOCE are regulated during maturation and that alteration of Ca2+ homeostasis undermines maturation in mouse oocytes.
Collapse
Affiliation(s)
- Banyoon Cheon
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, MA 01002, USA
| | | | | | | |
Collapse
|
26
|
Chen H, Ye H, Meng DQ, Cai PC, Chen F, Zhu LP, Tang Q, Long ZX, Zhou Q, Jin Y, Xin JB, Tao XN, Ma WL. Reactive oxygen species and x-ray disrupted spontaneous [Ca²⁺]I oscillation in alveolar macrophages. Radiat Res 2013; 179:485-92. [PMID: 23421826 DOI: 10.1667/rr3006.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Radiation leads to a rapid burst of reactive oxygen species (ROS), which is considered to be one of the major causes of radiation-induced injury. ROS have previously been shown to induce changes in cytosolic Ca²⁺ ([Ca²⁺]i) including [Ca²⁺]i oscillation. However, the role of radiation in [Ca²⁺]i oscillation is poorly understood. The purpose of this study was to identify the effect of ROS and X ray on [Ca²⁺]i oscillation, as well as their role in radiation-induced lung injury. Alveolar macrophages were cultured in the absence and presence of different doses of hydrogen peroxide (H₂O₂) or exposed to X-ray irradiation with or without pretreatment of diphenyleneiodonium chloride (DPI, an inhibitor of NADPH oxidases) or tetrandrine (TET, a calcium entry blocker) and cytosolic Ca²⁺ concentration was detected by fluorescent Ca²⁺ indicator Fura-2. Rat radiation lung injury was induced in vivo by using 40 Gy X ray and DPI or TET was used to prevent radiation-induced lung injury. The results showed that there was spontaneous [Ca²⁺]i oscillation in alveolar macrophages under normal conditions, and treatment of H₂O₂ (100-500 μM) or 2 Gy X ray inhibited the spontaneous [Ca²⁺]i oscillation and induced [Ca²⁺]i rise. TET abolished H₂O₂ or X ray induced [Ca²⁺]i rise in alveolar macrophages, and attenuated X ray- induced rat alveolitis in vivo. DPI prevented X-ray-induced inhibition of [Ca²⁺]i oscillation in alveolar macrophages and prevented X-ray-induced rat alveolitis. Taken together, the data suggest that the disruption of [Ca²⁺]i oscillation and induction of [Ca²⁺]i rise through ROS is involved in the mechanism of radiation-induced lung injury.
Collapse
Affiliation(s)
- Hao Chen
- Department of Respiratory Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Growing oocytes are arrested at the first prophase of meiosis which is morphologically identified by the presence of a large and vesicular nucleus, called the germinal vesicle. The dissolution of the germinal vesicle marks the resumption of meiosis during which the oocyte undergoes massive modifications up to the second meiotic block, which is removed at fertilization. The interval between the first and the second meiotic block is defined as maturation and the events occurring during this period are crucial for ovulation, fertilization, and embryo development. Oocytes are excitable cells that react to stimuli by modifying their electrical properties as a consequence of ion currents flowing through ion channels on the plasma membrane. These electrical changes have been largely described at fertilization whereas little information is available during oocyte maturation. The aim of this review is to give an overview on the involvement of ion channels and ion currents during oocyte maturation in species from invertebrates to mammals. The results summarized here point to the possible functional role of ion channels underlying oocyte growth and maturation.
Collapse
|
28
|
Abstract
At fertilization mammalian eggs are activated by a prolonged series of oscillations in the intracellular free Ca(2+) concentration. These oscillations can be monitored with any number of Ca(2+)-sensitive fluorescent dyes. The oscillations last for several hours at fertilization and so there are some considerations with mammalian eggs that make them distinct from somatic cells that are commonly used in Ca(2+) imaging experiments. I describe the use of two particular dyes that can be loaded into mouse eggs and that give the most valuable results. The first one is PE3 which can be loaded by incubation with the AM form of the dye which is membrane permeable. The other is rhod dextran which requires microinjection. Either one of these dyes offers advantages over the more commonly used fura2. I describe the way that the fluorescence from dye-loaded eggs is measured with a conventional epifluorescence microscope and a CCD camera.
Collapse
Affiliation(s)
- Karl Swann
- School of Medicine, Cardiff University, Heath Park, Cardiff, UK,
| |
Collapse
|
29
|
Sánchez-Cárdenas C, Guerrero A, Treviño CL, Hernández-Cruz A, Darszon A. Acute slices of mice testis seminiferous tubules unveil spontaneous and synchronous Ca2+ oscillations in germ cell clusters. Biol Reprod 2012; 87:92. [PMID: 22914313 DOI: 10.1095/biolreprod.112.100255] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Spermatogenic cell differentiation involves changes in the concentration of cytoplasmic Ca(2+) ([Ca(2+)]i); however, very few studies exist on [Ca(2+)]i dynamics in these cells. Other tissues display Ca(2+) oscillations involving multicellular functional arrangements. These phenomena have been studied in acute slice preparations that preserve tissue architecture and intercellular communications. Here we report the implementation of intracellular Ca(2+) imaging in a sliced seminiferous tubule (SST) preparation to visualize [Ca(2+)]i changes of living germ cells in situ within the SST preparation. Ca(2+) imaging revealed that a subpopulation of male germ cells display spontaneous [Ca(2+)]i fluctuations resulting from Ca(2+) entry possibly throughout Ca(V)3 channels. These [Ca(2+)]i fluctuation patterns are also present in single acutely dissociated germ cells, but they differ from those recorded from germ cells in the SST preparation. Often, spontaneous Ca(2+) fluctuations of spermatogenic cells in the SST occur synchronously, so that clusters of cells can display Ca(2+) oscillations for at least 10 min. Synchronous Ca(2+) oscillations could be mediated by intercellular communication via gap junctions, although intercellular bridges could also be involved. We also observed an increase in [Ca(2+)]i after testosterone application, suggesting the presence of functional Sertoli cells in the SST. In summary, we believe that the SST preparation is suitable to explore the physiology of spermatogenic cells in their natural environment, within the seminiferous tubules, in particular Ca(2+) signaling phenomena, functional cell-cell communication, and multicellular functional arrangements.
Collapse
Affiliation(s)
- Claudia Sánchez-Cárdenas
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | | | | | | | | |
Collapse
|
30
|
Participation of IP3R, RyR and L-type Ca2+ channel in the nuclear maturation of Rhinella arenarum oocytes. ZYGOTE 2012; 22:110-23. [DOI: 10.1017/s0967199412000287] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SummaryDuring meiosis resumption, oocytes undergo a series of nuclear and cytosolic changes that prepare them for fertilization and that are referred to as oocyte maturation. These events are characterized by germinal vesicle breakdown (GVBD), chromatin condensation and spindle formation and, among cytosolic changes, organelle redistribution and maturation of Ca2+-release mechanisms. The progression of the meiotic cell cycle is regulated by M phase/maturation-promoting factor (MPF) and mitogen-activated protein kinase (MAPK). Changes in the levels of intracellular free Ca2+ ion have also been implicated strongly in the triggering of the initiation of the M phase. Ca2+ signals can be generated by Ca2+ release from intracellular Ca2+ stores (endoplasmic reticulum; ER) or by Ca2+ influx from the extracellular space. In this sense, the L-type Ca2+ channel plays an important role in the incorporation of Ca2+ from the extracellular space. Two types of intracellular Ca2+ receptor/channels are known to mediate the intracellular Ca2+ release from the ER lumen. The most abundant, the inositol 1,4,5-trisphosphate receptor (IP3R), and the other Ca2+ channel, the ryanodine receptor (RyR), have also been reported to mediate Ca2+ release in several oocytes. In amphibians, MPF and MAPK play a central role during oocyte maturation, controlling several events. However, no definitive relationships have been identified between Ca2+ and MPF or MAPK. We investigated the participation of Ca2+ in the spontaneous and progesterone-induced nuclear maturation in Rhinella arenarum oocytes and the effect of different pharmacological agents known to produce modifications in the Ca2+ channels. We demonstrated that loading competent and incompetent oocytes with the intracellular calcium chelator BAPTA/AM produced suppression of spontaneous and progesterone-induced GVBD. In our results, the capacity of progesterone to trigger meiosis reinitiation in Rhinella in the presence of L-type Ca2+ channel blockers (nifedipine and lanthane) indicated that spontaneous and progesterone-induced maturation would be independent of extracellular calcium influx, but would be sensitive to intracellular Ca2+ deprivation. As demonstrated by the effect of thimerosal and heparin in Rhinella arenarum, the intracellular increase in Ca2+ during maturation is also mediated mainly by IP3R. In addition, our results using caffeine, an agonist of the RyR, could suggest that Ca2+ release from ryanodine-sensitive stores is not essential for oocyte maturation in Rhinella. The decrease in MPF activity with NaVO3 negatively affected the percentage of thimerosal-induced GVBD. This finding suggests that Ca2+ release through the IP3R could be involved in the signalling pathway that induces MPF activation. However, the inhibition of MAP/ERK kinase (MEK) by PD98128 or P90 by geldanamycin produced a significant decrease in the percentages of GVBD induced by thimerosal. This finding suggests that Ca2+ release per se cannot bypass the inhibition of the MAPK activity.
Collapse
|
31
|
Silvestre F, Fissore RA, Tosti E, Boni R. [Ca2+
]i
rise at in vitro maturation in bovine cumulus-oocyte complexes. Mol Reprod Dev 2012; 79:369-79. [DOI: 10.1002/mrd.22038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 03/07/2012] [Indexed: 01/31/2023]
|
32
|
Fornander LH, Frykholm K, Reymer A, Renodon-Cornière A, Takahashi M, Nordén B. Ca2+ improves organization of single-stranded DNA bases in human Rad51 filament, explaining stimulatory effect on gene recombination. Nucleic Acids Res 2012; 40:4904-13. [PMID: 22362735 PMCID: PMC3367181 DOI: 10.1093/nar/gks140] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Human RAD51 protein (HsRad51) catalyses the DNA strand exchange reaction for homologous recombination. To clarify the molecular mechanism of the reaction in vitro being more effective in the presence of Ca2+ than of Mg2+, we have investigated the effect of these ions on the structure of HsRad51 filament complexes with single- and double-stranded DNA, the reaction intermediates. Flow linear dichroism spectroscopy shows that the two ionic conditions induce significantly different structures in the HsRad51/single-stranded DNA complex, while the HsRad51/double-stranded DNA complex does not demonstrate this ionic dependence. In the HsRad51/single-stranded DNA filament, the primary intermediate of the strand exchange reaction, ATP/Ca2+ induces an ordered conformation of DNA, with preferentially perpendicular orientation of nucleobases relative to the filament axis, while the presence of ATP/Mg2+, ADP/Mg2+ or ADP/Ca2+ does not. A high strand exchange activity is observed for the filament formed with ATP/Ca2+, whereas the other filaments exhibit lower activity. Molecular modelling suggests that the structural variation is caused by the divalent cation interfering with the L2 loop close to the DNA-binding site. It is proposed that the larger Ca2+ stabilizes the loop conformation and thereby the protein–DNA interaction. A tight binding of DNA, with bases perpendicularly oriented, could facilitate strand exchange.
Collapse
Affiliation(s)
- Louise H Fornander
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | | | | | | | | | | |
Collapse
|
33
|
Wakai T, Vanderheyden V, Yoon SY, Cheon B, Zhang N, Parys JB, Fissore RA. Regulation of inositol 1,4,5-trisphosphate receptor function during mouse oocyte maturation. J Cell Physiol 2012; 227:705-17. [PMID: 21465476 DOI: 10.1002/jcp.22778] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
At the time of fertilization, an increase in the intracellular Ca(2+) concentration ([Ca(2+)](i)) underlies egg activation and initiation of development in all species studied to date. The inositol 1,4,5-trisphosphate receptor (IP(3)R1), which is mostly located in the endoplasmic reticulum (ER) mediates the majority of this Ca(2+) release. The sensitivity of IP(3)R1, that is, its Ca(2+) releasing capability, is increased during oocyte maturation so that the optimum [Ca(2+)](i) response concurs with fertilization, which in mammals occurs at metaphase of second meiosis. Multiple IP(3)R1 modifications affect its sensitivity, including phosphorylation, sub-cellular localization, and ER Ca(2+) concentration ([Ca(2+)](ER)). Here, we evaluated using mouse oocytes how each of these factors affected IP(3)R1 sensitivity. The capacity for IP(3)-induced Ca(2+) release markedly increased at the germinal vesicle breakdown stage, although oocytes only acquire the ability to initiate fertilization-like oscillations at later stages of maturation. The increase in IP(3)R1 sensitivity was underpinned by an increase in [Ca(2+)](ER) and receptor phosphorylation(s) but not by changes in IP(3)R1 cellular distribution, as inhibition of the former factors reduced Ca(2+) release, whereas inhibition of the latter had no impact. Therefore, the results suggest that the regulation of [Ca(2+)](ER) and IP(3)R1 phosphorylation during maturation enhance IP(3)R1 sensitivity rendering oocytes competent to initiate oscillations at the expected time of fertilization. The temporal discrepancy between the initiation of changes in IP(3)R1 sensitivity and acquisition of mature oscillatory capacity suggest that other mechanisms that regulate Ca(2+) homeostasis also shape the pattern of oscillations in mammalian eggs.
Collapse
Affiliation(s)
- Takuya Wakai
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Martín-Romero FJ, López-Guerrero AM, Álvarez IS, Pozo-Guisado E. Role of Store-Operated Calcium Entry During Meiotic Progression and Fertilization of Mammalian Oocytes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 295:291-328. [DOI: 10.1016/b978-0-12-394306-4.00014-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
35
|
Liang SL, Zhao QJ, Li XC, Jin YP, Wang YP, Su XH, Guan WJ, Ma YH. Dynamic analysis of Ca²+ level during bovine oocytes maturation and early embryonic development. J Vet Sci 2011; 12:133-42. [PMID: 21586872 PMCID: PMC3104167 DOI: 10.4142/jvs.2011.12.2.133] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Mammalian oocyte maturation and early embryo development processes are Ca2+-dependent. In this study, we used confocal microscopy to investigate the distribution pattern of Ca2+ and its dynamic changes in the processes of bovine oocytes maturation, in vitro fertilization (IVF), parthenogenetic activation (PA) and somatic cell nuclear transfer (SCNT) embryo development. During the germinal vesicle (GV) and GV breakdown stage, Ca2+ was distributed in the cortical ooplasm and throughout the oocytes from the MI to MII stage. In IVF embryos, Ca2+ was distributed in the cortical ooplasm before the formation of the pronucleus. In 4-8 cell embryos and morulas, Ca2+ was present throughout the blastomere. In PA embryos, Ca2+ was distributed throughout the blastomere at 48 h, similar to in the 4-cell and 8-cell phase and the morula. At 6 h after activation, there was almost no distribution of Ca2+ in the SCNT embryos. However, Ca2+ was distributed in the donor nucleus at 10 h and it was distributed throughout the blastomere in the 2-8 cell embryos. In this study, Ca2+ showed significant fluctuations with regularity of IVF and SCNT groups, but PA did not. Systematic investigation of the Ca2+ location and distribution changes during oocyte maturation and early embryo development processes should facilitate a better understanding of the mechanisms involved in oocyte maturation, reconstructed embryo activation and development, ultimately improving the reconstructed embryo development rate.
Collapse
Affiliation(s)
- Su Li Liang
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Silvestre F, Boni R, Fissore RA, Tosti E. Ca2+ signaling during maturation of cumulus-oocyte complex in mammals. Mol Reprod Dev 2011; 78:744-56. [PMID: 21656870 DOI: 10.1002/mrd.21332] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 05/11/2011] [Indexed: 11/06/2022]
Abstract
Under the influence of gonadotropins or growth factors, a close cooperation develops between cumulus cells and the oocyte that is implicated in transmitting signals involved in maintaining or releasing the meiotic arrest in the oocyte. While cyclic adenosine 5'-monophosphate (cAMP) is a key molecule in maintaining the meiotic arrest, calcium (Ca(2+)) may play a role in controlling either spontaneous or gonadotropin-induced oocyte maturation, possibly by modulating intracytoplasmic cAMP concentrations via Ca(2+)-sensitive adenylate cyclases. This review focuses on the mechanisms related to the origin of the Ca(2+) wave that travels from the cumulus cells to the oocyte, and discusses the source of variations affecting the dynamics of this wave.
Collapse
Affiliation(s)
- F Silvestre
- Animal Physiology and Evolution Laboratory, Stazione Zoologica Anton Dohrn, Naples, Italy.
| | | | | | | |
Collapse
|
37
|
Structural and functional changes linked to, and factors promoting, cytoplasmic maturation in mammalian oocytes. Reprod Med Biol 2011; 10:69-79. [PMID: 29699083 DOI: 10.1007/s12522-011-0079-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 02/21/2011] [Indexed: 02/04/2023] Open
Abstract
In most mammals, oocyte maturation is the final process of oogenesis, from the prophase of the first meiosis (germinal vesicle stage) to the metaphase of the second meiosis (MII), during which the oocyte acquires fertilizable competence as well as post-fertilization development competence. The nuclear and cytoplasmic maturation processes occur in synchrony but independently. Cytoplasmic maturation entails biochemical and structural changes in the cytoplasm, which give rise to oocytes capable of being fertilized and developing into embryos. Herein we review the literature and results from our own experiments on the structural and molecular events regulating cytoplasmic maturation in oocytes, concentrating on (1) the appropriate reorganization of active mitochondria and the endoplasmic reticulum, a structural and functional feature of cytoplasmic maturation, and (2) factors involved in regulatory mechanisms such as cumulus cell-oocyte gap junctional signaling, cumulus cell-oocyte bidirectional paracrine signaling, and the complex interactions of these signaling processes and follicular fluid constituents in the follicle environment.
Collapse
|
38
|
Mann JS, Lowther KM, Mehlmann LM. Reorganization of the endoplasmic reticulum and development of Ca2+ release mechanisms during meiotic maturation of human oocytes. Biol Reprod 2010; 83:578-83. [PMID: 20610804 DOI: 10.1095/biolreprod.110.085985] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Oocyte maturation in rodents is characterized by a dramatic reorganization of the endoplasmic reticulum (ER) and an increase in the ability of an oocyte to release Ca(2+) in response to fertilization or inositol 1,4,5-trisphosphate (IP(3)). We examined if human oocytes undergo similar changes during cytoplasmic meiotic maturation both in vivo and in vitro. Immature, germinal vesicle (GV)-stage oocytes had a fine network of ER throughout the cortex and interior, whereas the ER in the in vivo-matured, metaphase II oocytes was organized in large (diameter, ∼2-3 μm) accumulations throughout the cortex and interior. Likewise, oocytes matured in vitro exhibited cortical and interior clusters with no apparent polarity in regard to the meiotic spindle. In vivo-matured oocytes contained approximately 1.5-fold the amount of IP(3) receptor protein and released significantly more Ca(2+) in response to IP(3) compared with GV-stage oocytes; however, oocytes matured in vitro did not contain more IP(3) receptor protein or release more Ca(2+) in response to IP(3) compared with GV-stage oocytes. These results show that at least one cytoplasmic change occurs during in vitro maturation of human oocytes that might be important for fertilization and subsequent embryonic development, but they suggest that a low developmental competence of in vitro-matured oocytes could be the result of deficiencies in the ability to release Ca(2+) at fertilization.
Collapse
Affiliation(s)
- Jessica S Mann
- Department of Cell Biology and Center for Advanced Reproductive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | | | | |
Collapse
|
39
|
Zhang DX, Li XP, Sun SC, Shen XH, Cui XS, Kim NH. Involvement of ER-calreticulin-Ca2+
signaling in the regulation of porcine oocyte meiotic maturation and maternal gene expression. Mol Reprod Dev 2010; 77:462-71. [DOI: 10.1002/mrd.21166] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Silvestre F, Tosti E. Impact of marine drugs on animal reproductive processes. Mar Drugs 2009; 7:539-64. [PMID: 20098597 PMCID: PMC2810222 DOI: 10.3390/md7040539] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 11/03/2009] [Accepted: 11/06/2009] [Indexed: 01/09/2023] Open
Abstract
The discovery and description of bioactive substances from natural sources has been a research topic for the last 50 years. In this respect, marine animals have been used to extract many new compounds exerting different actions. Reproduction is a complex process whose main steps are the production and maturation of gametes, their activation, the fertilisation and the beginning of development. In the literature it has been shown that many substances extracted from marine organisms may have profound influence on the reproductive behaviour, function and reproductive strategies and survival of species. However, despite the central importance of reproduction and thus the maintenance of species, there are still few studies on how reproductive mechanisms are impacted by marine bioactive drugs. At present, studies in either marine and terrestrial animals have been particularly important in identifying what specific fine reproductive mechanisms are affected by marine-derived substances. In this review we describe the main steps of the biology of reproduction and the impact of substances from marine environment and organisms on the reproductive processes.
Collapse
Affiliation(s)
| | - Elisabetta Tosti
- Author to whom correspondence should be addressed; E-Mail:
; Tel.: +39 081 5833288; Fax: +39 081 7641355
| |
Collapse
|
41
|
Swann K, Campbell K, Yu Y, Saunders C, Lai FA. Use of luciferase chimaera to monitor PLCzeta expression in mouse eggs. Methods Mol Biol 2009; 518:17-29. [PMID: 19085135 DOI: 10.1007/978-1-59745-202-1_2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The microinjection of cRNA encoding phospholipase Czeta (PLC zeta) causes Ca2+ oscillations and the activation of development in mouse eggs. The PLCzeta protein that is expressed in eggs after injection of cRNA is effective in causing Ca2+ oscillations at very low concentrations. In order to measure the amount and timecourse of protein expression we have tagged PLCzeta with firefly luciferase. The expression of the luciferase protein tag in eggs is then measured by incubation in luciferin combined with luminescence imaging, or by the lysis of eggs in the presence of Mg-ATP and luciferin in a luminometer. The use of luciferase to monitor protein expression after injection of cRNA is a sensitive and effective method that efficiently allows for sets of eggs to be used for PLCzeta quantitation, Ca2+ imaging, and studies of embryo development.
Collapse
Affiliation(s)
- Karl Swann
- Department of Obstetrics and Gynaecology, School of Medicine, Cardiff University, Cardiff, UK
| | | | | | | | | |
Collapse
|
42
|
Ajduk A, Ciemerych MA, Nixon V, Swann K, Maleszewski M. Fertilization differently affects the levels of cyclin B1 and M-phase promoting factor activity in maturing and metaphase II mouse oocytes. Reproduction 2008; 136:741-52. [DOI: 10.1530/rep-08-0271] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Fertilization affects levels of cyclin B1 and M-phase promoting factor (MPF) activity in maturing and metaphase II mouse oocytes in two distinct ways. In metaphase II oocytes, it leads to a Ca2+-dependent, continuous degradation of cyclin B1 and inactivation of cyclin dependent kinase (CDC2A)–cyclin B1 complex (MPF). In this paper, we show that neither mono- nor polyspermic fertilization of prometaphase I and metaphase I oocytes triggered degradation of cyclin B1. However, polyspermic fertilization of prometaphase I oocytes led to a transient decrease in MPF activity that lasted for 2 h. The inactivation of MPF in polyspermic prometaphase I oocytes did not depend on the fertilization-induced increase in the cytoplasmic concentration of free Ca2+ions, but was caused, at least in part, by dephosphorylation of CDC2A at threonine 161 (Thr161). We found that polyspermic fertilization did not affect glutathione levels in prometaphase I oocytes, and concluded that the decrease in MPF activity and dephosphorylation of CDC2A at Thr161 in polyspermic prometaphase I oocytes were not caused by a change in the redox status of the cell induced by an introduction of excessive amount of sperm protamines. Instead, we propose that inactivation of MPF activity in polyspermic maturing oocytes is caused by a change in nucleo-cytoplasmic ratio that leads to a ‘titration’ of kinases and phosphatases responsible for keeping MPF in an active state. This idea is supported by the finding that oocytes fused with thymocytes rather than spermatozoa also showed a transient decrease in MPF activity.
Collapse
|
43
|
Feugier A, Frelon S, Gourmelon P, Claraz M. Alteration of mouse oocyte quality after a subchronic exposure to depleted Uranium. Reprod Toxicol 2008; 26:273-7. [DOI: 10.1016/j.reprotox.2008.09.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 09/12/2008] [Accepted: 09/24/2008] [Indexed: 01/04/2023]
|
44
|
Swain JE, Pool TB. ART failure: oocyte contributions to unsuccessful fertilization. Hum Reprod Update 2008; 14:431-46. [DOI: 10.1093/humupd/dmn025] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
45
|
Abstract
The onset of development in most species studied is triggered by one of the largest and longest calcium transients known to us. It is the most studied and best understood aspect of the calcium signals that accompany and control development. Its properties and mechanisms demonstrate what embryos are capable of and thus how the less-understood calcium signals later in development may be generated. The downstream targets of the fertilization calcium signal have also been identified, providing some pointers to the probable targets of calcium signals further on in the process of development. In one species or another, the fertilization calcium signal involves all the known calcium-releasing second messengers and many of the known calcium-signalling mechanisms. These calcium signals also usually take the form of a propagating calcium wave or waves. Fertilization causes the cell cycle to resume, and therefore fertilization signals are cell-cycle signals. In some early embryonic cell cycles, calcium signals also control the progress through each cell cycle, controlling mitosis. Studies of these early embryonic calcium-signalling mechanisms provide a background to the calcium-signalling events discussed in the articles in this issue.
Collapse
Affiliation(s)
- Michael Whitaker
- Institute of Cell and Molecular Biology, Newcastle University Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
46
|
Ajduk A, Małagocki A, Maleszewski M. Cytoplasmic maturation of mammalian oocytes: development of a mechanism responsible for sperm-induced Ca2+ oscillations. Reprod Biol 2008; 8:3-22. [DOI: 10.1016/s1642-431x(12)60001-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
47
|
Thul R, Bellamy TC, Roderick HL, Bootman MD, Coombes S. Calcium oscillations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 641:1-27. [PMID: 18783168 DOI: 10.1007/978-0-387-09794-7_1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Changes in cellular Ca2+ concentration control a wide range of physiological processes, from the subsecond release of synaptic neurotransmitters, to the regulation of gene expression over months or years. Ca2+ can also trigger cell death through both apoptosis and necrosis, and so the regulation of cellular Ca2+ concentration must be tightly controlled through the concerted action of pumps, channels and buffers that transport Ca2+ into and out of the cell cytoplasm. A hallmark of cellular Ca2+ signalling is its spatiotemporal complexity: stimulation of cells by a hormone or neurotransmitter leads to oscillations in cytoplasmic Ca2+ concentration that can vary markedly in time course, amplitude, frequency, and spatial range. In this chapter we review some of the biological roles of Ca2+, the experimental characterisation of complex dynamic changes in Ca2+ concentration, and attempts to explain this complexity using computational models. We consider the 'toolkit' of cellular proteins which influence Ca2+ concentrarion, describe mechanistic models of key elements of the toolkit, and fit these into the framework of whole cell models of Ca2+ oscillations and waves. Finally, we will touch on recent efforts to use stochastic modelling to elucidate elementary Ca2+ signal events, and how these may evolve into global signals.
Collapse
Affiliation(s)
- Ruediger Thul
- School of Mathematical Sciences, University of Nottingham, Nottingham, UK
| | | | | | | | | |
Collapse
|
48
|
Boni R, Gualtieri R, Talevi R, Tosti E. Calcium and other ion dynamics during gamete maturation and fertilization. Theriogenology 2007; 68 Suppl 1:S156-64. [PMID: 17572483 DOI: 10.1016/j.theriogenology.2007.05.048] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ion currents and cytosolic free calcium ([Ca(2+)](i)) elevations are crucial events in triggering the complex machinery involved in both gamete maturation and fertilization. Oocyte maturation is triggered by hormone signaling which causes ion currents and [Ca(2+)](i) increase. Extracellular calcium seems to be required for meiosis progression since: (i) calcium depletion in the maturation medium severely affects oocyte developmental competence; (ii) the activity of plasma membrane L-type Ca(2+) currents decreases during maturation; (iii) the exposure to verapamil, a specific Ca(2+) channel blocker, decreases in vitro maturation efficiency. In spermatozoa, maturation initiates inside the epididymis and ends in the female genital tract. During their journey through the female reproductive tract, sperm undergo a dramatic selection and capacitation achieving fertilization competence. Adhesion to the tubal epithelium extends sperm life through depression of [Ca(2+)](i) until capacitation signals trigger an [Ca(2+)](i) elevation followed by sperm release. At fertilization, egg-sperm interaction evokes well-described transient and almost simultaneous events: i.e., fertilization current, a change in resting potential, and an increase in free [Ca(2+)](i) concentration. These events, termed oocyte activation, are the direct consequence of sperm interaction via either activation of a receptor or entry of a sperm factor. The latter hypothesis has been recently supported by the discovery of PCLzeta, a sperm-specific isozyme triggering a dramatic [Ca(2+)](i) increase via inositol 1,4,5-trisphosphate (IP(3)) production. The course of ion currents and [Ca(2+)](i) transients during maturation and fertilization plays a pivotal role in correct embryo development.
Collapse
Affiliation(s)
- Raffaele Boni
- Dip Scienze delle Produzioni Animali, Università della, Basilicata, 85100 Potenza, Italy.
| | | | | | | |
Collapse
|
49
|
Miyara F, Pesty A, Migne C, Djediat C, Huang XB, Dumont-Hassan M, Debey P, Lefèvre B. Spontaneous calcium oscillations and nuclear PLC-β1 in human GV oocytes. Mol Reprod Dev 2007; 75:392-402. [PMID: 17620288 DOI: 10.1002/mrd.20749] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Our aim was to investigate if human oocytes, like mouse oocytes, exhibit spontaneous Ca(2+) oscillations and nuclear translocation of PLC-beta1 prior to germinal vesicle breakdown (GVBD), and to correlate these events with the evolution of chromatin configuration as a landmark for the meiosis resumption kinetics. Human germinal vesicle (GV) oocytes were either loaded with Fluo-3 probe to record Ca(2+) signals or fixed for subsequent fluorescent labeling of both chromatin and PLC-beta1, and immunogold labeling of PLC-beta1. Here for the first time, we show that human oocytes at the GV-stage exhibit spontaneous Ca(2+) oscillations. Interestingly, only oocytes with a large diameter and characterized by a compact chromatin surrounding the nucleolus of the GV could reveal these kind of oscillations. We also observed a translocation of PLC-beta1 from the cytoplasm towards the nucleus during in vitro maturation of human oocytes. Spontaneous calcium oscillations and nuclear translocation of PLC-beta1 may reflect some degree of oocyte maturity. The impact of our results may be very helpful to understand and resolve many enigmatic problems usually encountered during the in vitro meiotic maturation of human GV oocytes.
Collapse
Affiliation(s)
- F Miyara
- INRA, UMR 1198, INRA Domaine de Vilvert, Jouy en Josas Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Mehlmann LM, Kalinowski RR, Ross LF, Parlow AF, Hewlett EL, Jaffe LA. Meiotic resumption in response to luteinizing hormone is independent of a Gi family G protein or calcium in the mouse oocyte. Dev Biol 2006; 299:345-55. [PMID: 16949564 PMCID: PMC1864934 DOI: 10.1016/j.ydbio.2006.07.039] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Revised: 07/17/2006] [Accepted: 07/28/2006] [Indexed: 11/29/2022]
Abstract
The signaling pathway by which luteinizing hormone (LH) acts on the somatic cells of vertebrate ovarian follicles to stimulate meiotic resumption in the oocyte requires a decrease in cAMP in the oocyte, but how cAMP is decreased is unknown. Activation of Gi family G proteins can lower cAMP by inhibiting adenylate cyclase or stimulating a cyclic nucleotide phosphodiesterase, but we show here that inhibition of this class of G proteins by injection of pertussis toxin into follicle-enclosed mouse oocytes does not prevent meiotic resumption in response to LH. Likewise, elevation of Ca2+ can lower cAMP through its action on Ca2+-sensitive adenylate cyclases or phosphodiesterases, but inhibition of a Ca2+ rise by injection of EGTA into follicle-enclosed mouse oocytes does not inhibit the LH response. Thus, neither of these well-known mechanisms of cAMP regulation can account for LH signaling to the oocyte in the mouse ovary.
Collapse
Affiliation(s)
- Lisa M. Mehlmann
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06032
| | - Rebecca R. Kalinowski
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06032
| | - Lavinia F. Ross
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06032
| | - Albert F. Parlow
- National Hormone and Peptide Program, Harbor-UCLA Medical Center, Torrance, CA 90509
| | - Erik L. Hewlett
- Division of Infectious Diseases and International Health, and Departments of Medicine and Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Laurinda A. Jaffe
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06032
| |
Collapse
|