1
|
Benner L, Muron S, Wingfield CL, Oliver B. Female germline expression of OVO transcription factor bridges Drosophila generations. G3 (BETHESDA, MD.) 2025; 15:jkae252. [PMID: 39489490 PMCID: PMC11797041 DOI: 10.1093/g3journal/jkae252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
OVO is required for female germ cell viability but has no known function in the male germline in Drosophila. ovo is autoregulated by 2 antagonistic isoforms, OVO-A and OVO-B. All ovo- alleles were created as partial revertants of the antimorphic ovoD1 allele. Creation of new targeted alleles in an ovo+ background indicated that disrupting the germline-specific exon extension of ovo-B leads to an arrested egg chamber phenotype, rather than germ cell death. RNA sequencing analysis, including >1 K full-length cDNAs, indicates that ovo has several unannotated splice variations in the extended exon and a minor population of ovo-B transcripts has an alternative splice. This indicates that classical ovo alleles, such as ovoD1rv23, are not truly null for ovo and are likely to be weak antimorphs. To generate bonafide nulls, we deleted the ovo-A and ovo-B promoters showing that only ovo-B is required for female germ cell viability, and there is an early and continual developmental requirement for ovo-B in the female germline. To visualize OVO expression and localization, we endogenously tagged ovo and found nuclear OVO in all differentiating female germ cells throughout oogenesis in adults. We also found that OVO is maternally deposited into the embryo, where it showed nuclear localization in newly formed pole cells. Maternal OVO persisted in embryonic germ cells until zygotic OVO expression was detectable, suggesting that there is continuous nuclear OVO expression in the female germline in the transition from one generation to the next.
Collapse
Affiliation(s)
- Leif Benner
- Section of Developmental Genomics, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Savannah Muron
- Section of Developmental Genomics, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Charli L Wingfield
- Section of Developmental Genomics, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brian Oliver
- Section of Developmental Genomics, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Benner L, Muron S, Oliver B. Female germline expression of OVO transcription factor bridges Drosophila generations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.25.554887. [PMID: 37662231 PMCID: PMC10473757 DOI: 10.1101/2023.08.25.554887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
OVO is required for karyotypically female germ cell viability but has no known function in the male germline in Drosophila. ovo is autoregulated by two antagonistic isoforms, OVO-A and OVO-B. All ovo- alleles were created as partial revertants of the antimorphic ovoD1 allele. Creation of new targeted alleles in an ovo+ background indicated that disrupting the germline-specific exon extension of ovo-B leads to an arrested egg chamber phenotype, rather than germ cell death. RNA-seq analysis, including >1K full length cDNAs, indicates that ovo utilizes a number of unannotated splice variations in the extended exon and a minor population of ovo-B transcripts utilizes an alternative splice. This indicates that classical ovo alleles such as ovoD1rv23, are not truly null for ovo, and are likely to be weak antimorphs. To generate bonafide nulls, we deleted the ovo-A and ovo-B promoters showing that only ovo-B is required for female germ cell viability and there is an early and polyphasic developmental requirement for ovo-B in the female germline. To visualize OVO expression and localization, we endogenously tagged ovo and found nuclear OVO in all differentiating female germ cells throughout oogenesis in adults. We also found that OVO is maternally deposited into the embryo, where it showed nuclear localization in newly formed pole cells. Maternal OVO persisted in embryonic germ cells until zygotic OVO expression was detectable, suggesting that there is continuous nuclear OVO expression in the female germline in the transition from one generation to the next.
Collapse
Affiliation(s)
- Leif Benner
- Section of Developmental Genomics, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Savannah Muron
- Section of Developmental Genomics, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Brian Oliver
- Section of Developmental Genomics, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Laturney M, Sterne GR, Scott K. Mating activates neuroendocrine pathways signaling hunger in Drosophila females. eLife 2023; 12:e85117. [PMID: 37184218 PMCID: PMC10229122 DOI: 10.7554/elife.85117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/13/2023] [Indexed: 05/16/2023] Open
Abstract
Mated females reallocate resources to offspring production, causing changes to nutritional requirements and challenges to energy homeostasis. Although observed across species, the neural and endocrine mechanisms that regulate the nutritional needs of mated females are not well understood. Here, we find that mated Drosophila melanogaster females increase sugar intake, which is regulated by the activity of sexually dimorphic insulin receptor (Lgr3) neurons. In virgins, Lgr3+ cells have reduced activity as they receive inhibitory input from active, female-specific pCd-2 cells, restricting sugar intake. During copulation, males deposit sex peptide into the female reproductive tract, which silences a three-tier mating status circuit and initiates the female postmating response. We show that pCd-2 neurons also become silenced after mating due to the direct synaptic input from the mating status circuit. Thus, in mated females pCd-2 inhibition is attenuated, activating downstream Lgr3+ neurons and promoting sugar intake. Together, this circuit transforms the mated signal into a long-term hunger signal. Our results demonstrate that the mating circuit alters nutrient sensing centers to increase feeding in mated females, providing a mechanism to increase intake in anticipation of the energetic costs associated with reproduction.
Collapse
Affiliation(s)
| | | | - Kristin Scott
- University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
4
|
Baron A, Denis B, Wicker-Thomas C. Control of pheromone production by ovaries in Drosophila. JOURNAL OF INSECT PHYSIOLOGY 2018; 109:138-143. [PMID: 30003888 DOI: 10.1016/j.jinsphys.2018.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/03/2018] [Accepted: 07/09/2018] [Indexed: 06/08/2023]
Abstract
Drosophila pheromones are long chain hydrocarbons (CHCs) produced by specialized epidermal cells, the oenocytes. Here we were explored the role of ovaries in CHC regulation. We studied tudor, a grandchildless-like mutation, resulting in progeny without ovaries and three alleles of ovoD, resulting in ovarian defects depending on the strength of the allele. We show here that these mutant flies with no or abnormal ovaries have a decrease in C29 length CHC ratio, balanced by an increase in C23 and C25 length ratio; this effect is dependent on the strength of the mutation. An increase in the amount of CHCs also occurred but was not related to the strength of ovoD alleles. As ovaries are the main site of ecdysone production in females, we knocked down the receptor to ecdysone EcR in the oenocytes and obtained increased amounts of CHCs and inhibition of long chain CHC synthesis, showing that the lack of an ecdysone signal arriving into the oenocytes is responsible for these defects. We then investigated the role of follicular cells and oocyte on CHC regulation: we RNAi-knocked down the LPR receptors in the oocyte to hinder vitellogenesis without significantly modifying CHC profile. We then expressed apoptosis genes within the follicle cells or within the ovocytes and obtained less long chain and more short chain CHC levels in the former case and an enhanced CHC production in the latter case. Together, these results support the notion of an interaction between oocyte and follicular cells, which send an ecdysone signal to the oenocytes to regulate CHC synthesis.
Collapse
Affiliation(s)
- Alexandra Baron
- Laboratoire Evolution, Génomes, Comportements, Ecologie, UMR 9191, CNRS, IRD, Université Paris-Sud and Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | - Béatrice Denis
- Laboratoire Evolution, Génomes, Comportements, Ecologie, UMR 9191, CNRS, IRD, Université Paris-Sud and Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | - Claude Wicker-Thomas
- Laboratoire Evolution, Génomes, Comportements, Ecologie, UMR 9191, CNRS, IRD, Université Paris-Sud and Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France.
| |
Collapse
|
5
|
ovoD Co-selection: A Method for Enriching CRISPR/Cas9-Edited Alleles in Drosophila. G3-GENES GENOMES GENETICS 2018; 8:2749-2756. [PMID: 29934375 PMCID: PMC6071590 DOI: 10.1534/g3.118.200498] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Screening for successful CRISPR/Cas9 editing events remains a time consuming technical bottleneck in the field of Drosophila genome editing. This step can be particularly laborious for events that do not cause a visible phenotype, or those which occur at relatively low frequency. A promising strategy to enrich for desired CRISPR events is to co-select for an independent CRISPR event that produces an easily detectable phenotype. Here, we describe a simple negative co-selection strategy involving CRISPR-editing of a dominant female sterile allele, ovoD1 In this system ("ovoD co-selection"), the only functional germ cells in injected females are those that have been edited at the ovoD1 locus, and thus all offspring of these flies have undergone editing of at least one locus. We demonstrate that ovoD co-selection can be used to enrich for knock-out mutagenesis via nonhomologous end-joining (NHEJ), and for knock-in alleles via homology-directed repair (HDR). Altogether, our results demonstrate that ovoD co-selection reduces the amount of screening necessary to isolate desired CRISPR events in Drosophila.
Collapse
|
6
|
Carvalho-Santos Z, Ribeiro C. Gonadal ecdysone titers are modulated by protein availability but do not impact protein appetite. JOURNAL OF INSECT PHYSIOLOGY 2018; 106:30-35. [PMID: 28842196 DOI: 10.1016/j.jinsphys.2017.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 08/17/2017] [Accepted: 08/17/2017] [Indexed: 06/07/2023]
Abstract
How animals survey internal nutrient availability to modulate specific appetites is currently largely unknown. Dietary proteins have a profound impact on the reproductive capacity and the selection of food sources in insects. When deprived of dietary proteins, insects stop producing eggs and develop strong protein appetites. In many adult insects, the ovaries are the site of synthesis of the ecdysone hormone. Therefore, an attractive hypothesis is that protein availability changes the gonadal production of ecdysone, which instructs the brain to increase its preference for yeast. We combine quantitative feeding assays, dietary manipulations, hormonal measurements, and genetic germline manipulations to test this hypothesis in Drosophila melanogaster. Our results show that upon yeast deprivation mated adult female Drosophila develop a strong yeast appetite and strongly reduce their egg production. This dietary manipulation also leads to a drastic reduction in ecdysone titers. However, the drop in ecdysone is not linked to the increase in yeast appetite as mutants with impaired oogenesis are able to adapt yeast intake to their nutrient state while displaying a constitutive low ecdysone titer. Interestingly, a low ecdysone titer is correlated with a lower level of overall food intake. Our data therefore show that in mated females the level of ecdysone reflects the level of protein in the diet and the physiological state of the ovaries. While the ovaries and ecdysone are unlikely to instruct the brain to develop a yeast appetite upon protein deprivation, they seem to be able to control overall food intake.
Collapse
Affiliation(s)
- Zita Carvalho-Santos
- Behavior and Metabolism Laboratory, Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon 1400-038, Portugal
| | - Carlos Ribeiro
- Behavior and Metabolism Laboratory, Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon 1400-038, Portugal.
| |
Collapse
|
7
|
Pleiotropic Functions of the Chromodomain-Containing Protein Hat-trick During Oogenesis in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2018; 8:1067-1077. [PMID: 29367451 PMCID: PMC5844294 DOI: 10.1534/g3.117.300526] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chromatin-remodeling proteins have a profound role in the transcriptional regulation of gene expression during development. Here, we have shown that the chromodomain-containing protein Hat-trick is predominantly expressed within the oocyte nucleus, specifically within the heterochromatinized karyosome, and that a mild expression is observed in follicle cells. Colocalization of Hat-trick with Heterochromatin Protein 1 and synaptonemal complex component C(3)G along with the diffused karyosome after hat-trick downregulation shows the role of this protein in heterochromatin clustering and karyosome maintenance. Germline mosaic analysis reveals that hat-trick is required for maintaining the dorso-ventral patterning of eggs by regulating the expression of Gurken. The increased incidence of double-strand breaks (DSBs), delayed DSB repair, defects in karyosome formation, altered Vasa mobility, and, consequently, misexpression and altered localization of Gurken in hat-trick mutant egg chambers clearly suggest a putative involvement of Hat-trick in the early stages of oogenesis. In addition, based on phenotypic observations in hat-trick mutant egg chambers, we speculate a substantial role of hat-trick in cystoblast proliferation, oocyte determination, nurse cell endoreplication, germ cell positioning, cyst encapsulation, and nurse cell migration. Our results demonstrate that hat-trick has profound pleiotropic functions during oogenesis in Drosophila melanogaster.
Collapse
|
8
|
Xue R, Hu X, Zhu L, Cao G, Huang M, Xue G, Song Z, Lu J, Chen X, Gong C. Comparative transcriptomic analysis of silkworm Bmovo-1 and wild type silkworm ovary. Sci Rep 2015; 5:17867. [PMID: 26643037 PMCID: PMC4672304 DOI: 10.1038/srep17867] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 11/03/2015] [Indexed: 12/27/2022] Open
Abstract
The detailed molecular mechanism of Bmovo-1 regulation of ovary size is unclear. To uncover the mechanism of Bmovo-1 regulation of ovarian development and oogenesis using RNA-Seq, we compared the transcriptomes of wild type (WT) and Bmovo-1-overexpressing silkworm (silkworm(+Bmovo-1)) ovaries. Using a pair-end Illumina Solexa sequencing strategy, 5,296,942 total reads were obtained from silkworm(+Bmovo-1) ovaries and 6,306,078 from WT ovaries. The average read length was about 100 bp. Clean read ratios were 98.79% for silkworm(+Bmovo-1) and 98.87% for WT silkworm ovaries. Comparative transcriptome analysis showed 123 upregulated and 111 downregulated genes in silkworm(+Bmovo-1) ovaries. These differentially expressed genes were enriched in the extracellular and extracellular spaces and involved in metabolism, genetic information processing, environmental information processing, cellular processes and organismal systems. Bmovo-1 overexpression in silkworm ovaries might promote anabolism for ovarian development and oogenesis and oocyte proliferation and transport of nutrients to ovaries by altering nutrient partitioning, which would support ovary development. Excessive consumption of nutrients for ovary development alters nutrient partitioning and deters silk protein synthesis.
Collapse
Affiliation(s)
- Renyu Xue
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, PR China
| | - Xiaolong Hu
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, PR China
| | - Liyuan Zhu
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Guangli Cao
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, PR China
| | - Moli Huang
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Gaoxu Xue
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Zuowei Song
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Jiayu Lu
- Suzhou Zhenhua Middle School, Suzhou 215006, China
| | - Xueying Chen
- Suzhou Zhenhua Middle School, Suzhou 215006, China
| | - Chengliang Gong
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, PR China
| |
Collapse
|
9
|
Xue R, Hu X, Cao G, Huang M, Xue G, Qian Y, Song Z, Gong C. Bmovo-1 regulates ovary size in the silkworm, Bombyx mori. PLoS One 2014; 9:e104928. [PMID: 25119438 PMCID: PMC4132112 DOI: 10.1371/journal.pone.0104928] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 07/14/2014] [Indexed: 11/19/2022] Open
Abstract
The regulation of antagonistic OVO isoforms is critical for germline formation and differentiation in Drosophila. However, little is known about genes related to ovary development. In this study, we cloned the Bombyx mori ovo gene and investigated its four alternatively spliced isoforms. BmOVO-1, BmOVO-2 and BmOVO-3 all had four C2H2 type zinc fingers, but differed at the N-terminal ends, while BmOVO-4 had a single zinc finger. Bmovo-1, Bmovo-2 and Bmovo-4 showed the highest levels of mRNA in ovaries, while Bmovo-3 was primarily expressed in testes. The mRNA expression pattern suggested that Bmovo expression was related to ovary development. RNAi and transgenic techniques were used to analyze the biological function of Bmovo. The results showed that when the Bmovo gene was downregulated, oviposition number decreased. Upregulation of Bmovo-1 in the gonads of transgenic silkworms increased oviposition number and elevated the trehalose contents of hemolymph and ovaries. We concluded that Bmovo-1 was involved in protein synthesis, contributing to the development of ovaries and oviposition number in silkworms.
Collapse
Affiliation(s)
- Renyu Xue
- School of Biology & Basic Medical Science, Soochow University, Suzhou, China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, PR China
| | - Xiaolong Hu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, PR China
| | - Guangli Cao
- School of Biology & Basic Medical Science, Soochow University, Suzhou, China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, PR China
| | - Moli Huang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, China
| | - Gaoxu Xue
- School of Biology & Basic Medical Science, Soochow University, Suzhou, China
| | - Ying Qian
- School of Biology & Basic Medical Science, Soochow University, Suzhou, China
| | - Zuowei Song
- School of Biology & Basic Medical Science, Soochow University, Suzhou, China
| | - Chengliang Gong
- School of Biology & Basic Medical Science, Soochow University, Suzhou, China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, PR China
| |
Collapse
|
10
|
Goriaux C, Théron E, Brasset E, Vaury C. History of the discovery of a master locus producing piRNAs: the flamenco/COM locus in Drosophila melanogaster. Front Genet 2014; 5:257. [PMID: 25136352 PMCID: PMC4120762 DOI: 10.3389/fgene.2014.00257] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/12/2014] [Indexed: 11/14/2022] Open
Abstract
The discovery of transposable elements (TEs) in the 1950s by B. McClintock implied the existence of cellular regulatory systems controlling TE activity. The discovery of flamenco (flam) an heterochromatic locus from Drosophila melanogaster and its ability to survey several TEs such as gypsy, ZAM, and Idefix contributed to peer deeply into the mechanisms of the genetic and epigenetic regulation of TEs. flam was the first cluster producing small RNAs to be discovered long before RNAi pathways were identified in 1998. As a result of the detailed genetic analyses performed by certain laboratories and of the sophisticated genetic tools they developed, this locus has played a major role in our understanding of piRNA mediated TE repression in animals. Here we review the first discovery of this locus and retrace decades of studies that led to our current understanding of the relationship between genomes and their TE targets.
Collapse
Affiliation(s)
- Coline Goriaux
- Laboratoire GReD, Faculté de Médecine, Clermont Université - Université d'Auvergne, Clermont-Ferrand France ; INSERM, U 1103, Clermont-Ferrand France ; CNRS, UMR 6293, Clermont-Ferrand France
| | - Emmanuelle Théron
- Laboratoire GReD, Faculté de Médecine, Clermont Université - Université d'Auvergne, Clermont-Ferrand France ; INSERM, U 1103, Clermont-Ferrand France ; CNRS, UMR 6293, Clermont-Ferrand France
| | - Emilie Brasset
- Laboratoire GReD, Faculté de Médecine, Clermont Université - Université d'Auvergne, Clermont-Ferrand France ; INSERM, U 1103, Clermont-Ferrand France ; CNRS, UMR 6293, Clermont-Ferrand France
| | - Chantal Vaury
- Laboratoire GReD, Faculté de Médecine, Clermont Université - Université d'Auvergne, Clermont-Ferrand France ; INSERM, U 1103, Clermont-Ferrand France ; CNRS, UMR 6293, Clermont-Ferrand France
| |
Collapse
|
11
|
Kumar A, Bhandari A, Sinha R, Sardar P, Sushma M, Goyal P, Goswami C, Grapputo A. Molecular phylogeny of OVOL genes illustrates a conserved C2H2 zinc finger domain coupled by hypervariable unstructured regions. PLoS One 2012; 7:e39399. [PMID: 22737237 PMCID: PMC3380836 DOI: 10.1371/journal.pone.0039399] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Accepted: 05/23/2012] [Indexed: 11/19/2022] Open
Abstract
OVO-like proteins (OVOL) are members of the zinc finger protein family and serve as transcription factors to regulate gene expression in various differentiation processes. Recent studies have shown that OVOL genes are involved in epithelial development and differentiation in a wide variety of organisms; yet there is a lack of comprehensive studies that describe OVOL proteins from an evolutionary perspective. Using comparative genomic analysis, we traced three different OVOL genes (OVOL1-3) in vertebrates. One gene, OVOL3, was duplicated during a whole-genome-duplication event in fish, but only the copy (OVOL3b) was retained. From early-branching metazoa to humans, we found that a core domain, comprising a tetrad of C2H2 zinc fingers, is conserved. By domain comparison of the OVOL proteins, we found that they evolved in different metazoan lineages by attaching intrinsically-disordered (ID) segments of N/C-terminal extensions of 100 to 1000 amino acids to this conserved core. These ID regions originated independently across different animal lineages giving rise to different types of OVOL genes over the course of metazoan evolution. We illustrated the molecular evolution of metazoan OVOL genes over a period of 700 million years (MY). This study both extends our current understanding of the structure/function relationship of metazoan OVOL genes, and assembles a good platform for further characterization of OVOL genes from diverged organisms.
Collapse
Affiliation(s)
- Abhishek Kumar
- Department of Biology, University of Padua, Padova, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Ribeiro C, Dickson BJ. Sex peptide receptor and neuronal TOR/S6K signaling modulate nutrient balancing in Drosophila. Curr Biol 2010; 20:1000-5. [PMID: 20471268 DOI: 10.1016/j.cub.2010.03.061] [Citation(s) in RCA: 244] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 02/28/2010] [Accepted: 03/15/2010] [Indexed: 11/25/2022]
Abstract
Animals often decide between alternative actions according to their current needs, and hence the value they assign to each of the competing options. This process is of special relevance during nutrient balancing, in which animals choose between different food sources according to their current nutritional state. How such value-based decision making is implemented at the molecular and neuronal level in the brain is not well understood. Here we describe Drosophila melanogaster food choice as a genetically tractable model to study value-based decision making in the context of nutrient balancing. When faced with a choice between yeast and an alternative food source, flies deprived of protein prefer the yeast. We show here that mating status is a critical modulator of this decision-making process in females and that it relies on the action of the sex peptide receptor in internal ppk(+) sensory neurons. Neuronal TOR/S6K function is another critical input to this decision, possibly signaling the fly's current nutritional status. We propose that the brain uses these internal states to assign value to external sensory information from potential food sources, thereby guiding food choice and ensuring nutrient homeostasis.
Collapse
Affiliation(s)
- Carlos Ribeiro
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030 Vienna, Austria.
| | | |
Collapse
|
13
|
Zempleni J, Chew YC, Bao B, Pestinger V, Wijeratne SSK. Repression of transposable elements by histone biotinylation. J Nutr 2009; 139:2389-92. [PMID: 19812216 PMCID: PMC2777482 DOI: 10.3945/jn.109.111856] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Transposable elements constitute >40% of the human genome; transposition of these elements increases genome instability and cancer risk. Epigenetic mechanisms are important for transcriptional repression of retrotransposons, thereby preventing transposition events. Binding of biotin to histones, mediated by holocarboxylase synthetase (HCS), is a novel histone mark that plays a role in gene regulation. Here, we review recent findings that biotinylation of lysine-12 in histone H4 (H4K12bio) is an epigenetic mechanism to repress long terminal repeat (LTR) retrotransposons in human and mouse cell lines, primary cells from human adults, and in Drosophila melanogaster. Further, evidence is summarized that supports a causal relationship between the repression of LTR in H4K12bio-depleted cells and increased production of viral particles, increased frequency of retrotransposition events, and increased frequency of chromosomal abnormalities in mammals and Drosophila. Although HCS interacts physically with histones H3 and H4, the mechanism responsible for targeting HCS to retrotransposons to mediate histone biotinylation is uncertain. We hypothesize that HCS binds specifically to genomic regions rich in methylated cytosines and catalyzes increased biotinylation of histone H4 at lysine-12. Further, we hypothesize that this biotinylation promotes the subsequent dimethylation of lysine-9 in histone H3, resulting in an overall synergistic effect of 3 diet-dependent covalent modifications of histones in the repression of LTR.
Collapse
Affiliation(s)
- Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska at Lincoln, Lincoln, NE 68583, USA.
| | | | | | | | | |
Collapse
|
14
|
Chew YC, West JT, Kratzer SJ, Ilvarsonn AM, Eissenberg JC, Dave BJ, Klinkebiel D, Christman JK, Zempleni J. Biotinylation of histones represses transposable elements in human and mouse cells and cell lines and in Drosophila melanogaster. J Nutr 2008; 138:2316-22. [PMID: 19022951 PMCID: PMC2678950 DOI: 10.3945/jn.108.098673] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 09/16/2008] [Accepted: 09/22/2008] [Indexed: 11/14/2022] Open
Abstract
Transposable elements such as long terminal repeats (LTR) constitute approximately 45% of the human genome; transposition events impair genome stability. Fifty-four promoter-active retrotransposons have been identified in humans. Epigenetic mechanisms are important for transcriptional repression of retrotransposons, preventing transposition events, and abnormal regulation of genes. Here, we demonstrate that the covalent binding of the vitamin biotin to lysine-12 in histone H4 (H4K12bio) and lysine-9 in histone H2A (H2AK9bio), mediated by holocarboxylase synthetase (HCS), is an epigenetic mechanism to repress retrotransposon transcription in human and mouse cell lines and in primary cells from a human supplementation study. Abundance of H4K12bio and H2AK9bio at intact retrotransposons and a solitary LTR depended on biotin supply and HCS activity and was inversely linked with the abundance of LTR transcripts. Knockdown of HCS in Drosophila melanogaster enhances retrotransposition in the germline. Importantly, we demonstrated that depletion of H4K12bio and H2AK9bio in biotin-deficient cells correlates with increased production of viral particles and transposition events and ultimately decreases chromosomal stability. Collectively, this study reveals a novel diet-dependent epigenetic mechanism that could affect cancer risk.
Collapse
Affiliation(s)
- Yap Ching Chew
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE 68583; Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104; and Department of Pediatrics and Human Genetics Laboratory, Munroe Meyer Institute for Genetics and Rehabilitation and Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198
| | - John T. West
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE 68583; Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104; and Department of Pediatrics and Human Genetics Laboratory, Munroe Meyer Institute for Genetics and Rehabilitation and Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Stephanie J. Kratzer
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE 68583; Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104; and Department of Pediatrics and Human Genetics Laboratory, Munroe Meyer Institute for Genetics and Rehabilitation and Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Anne M. Ilvarsonn
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE 68583; Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104; and Department of Pediatrics and Human Genetics Laboratory, Munroe Meyer Institute for Genetics and Rehabilitation and Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Joel C. Eissenberg
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE 68583; Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104; and Department of Pediatrics and Human Genetics Laboratory, Munroe Meyer Institute for Genetics and Rehabilitation and Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Bhavana J. Dave
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE 68583; Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104; and Department of Pediatrics and Human Genetics Laboratory, Munroe Meyer Institute for Genetics and Rehabilitation and Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198
| | - David Klinkebiel
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE 68583; Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104; and Department of Pediatrics and Human Genetics Laboratory, Munroe Meyer Institute for Genetics and Rehabilitation and Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Judith K. Christman
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE 68583; Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104; and Department of Pediatrics and Human Genetics Laboratory, Munroe Meyer Institute for Genetics and Rehabilitation and Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE 68583; Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104; and Department of Pediatrics and Human Genetics Laboratory, Munroe Meyer Institute for Genetics and Rehabilitation and Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198
| |
Collapse
|
15
|
Insulator and Ovo proteins determine the frequency and specificity of insertion of the gypsy retrotransposon in Drosophila melanogaster. Genetics 2008; 180:1367-78. [PMID: 18791225 DOI: 10.1534/genetics.108.094318] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The gypsy retrovirus of Drosophila is quite unique among retroviruses in that it shows a strong preference for integration into specific sites in the genome. In particular, gypsy integrates with a frequency of > 10% into the regulatory region of the ovo gene. We have used in vivo transgenic assays to dissect the role of Ovo proteins and the gypsy insulator during the process of gypsy site-specific integration. Here we show that DNA containing binding sites for the Ovo protein is required to promote site-specific gypsy integration into the regulatory region of the ovo gene. Using a synthetic sequence, we find that Ovo binding sites alone are also sufficient to promote gypsy site-specific integration into transgenes. These results indicate that Ovo proteins can determine the specificity of gypsy insertion. In addition, we find that interactions between a gypsy provirus and the gypsy preintegration complex may also participate in the process leading to the selection of gypsy integration sites. Finally, the results suggest that the relative orientation of two integrated gypsy sequences has an important role in the enhancer-blocking activity of the gypsy insulator.
Collapse
|
16
|
Motriuk-Smith D, Smith A, Hayashi CY, Lewis RV. Analysis of the Conserved N-Terminal Domains in Major Ampullate Spider Silk Proteins. Biomacromolecules 2005; 6:3152-9. [PMID: 16283740 DOI: 10.1021/bm050472b] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Major ampullate silk, also known as dragline silk, is one of the strongest biomaterials known. This silk is composed of two proteins, major ampullate spidroin 1 (MaSp1) and major ampullate spidroin 2 (MaSp2). Only partial cDNA sequences have been obtained for these proteins, and these sequences are toward the C-terminus. Thus, the N-terminal domains have never been characterized for either protein. Here we report the sequence of the N-terminal region of major ampullate silk proteins from three spider species: Argiope trifasciata, Latrodectus geometricus, and Nephila inaurata madagascariensis. The amino acid sequences are inferred from genomic DNA clones. Northern blotting experiments suggest that the predicted 5' end of the transcripts are present in fibroin mRNA. The presence of more than one Met codon in the N-terminal region indicates the possibility of translation of both a long and a short isoform. The size of the short isoform is consistent with the published, cDNA based, N-terminal sequence found in flagelliform silk. Analyses comparing the level of identity of all known spider silk N-termini show that the N-terminus is the most conserved part of silk proteins. Two DNA sequence motifs identified upstream of the putative transcription start site are potential silk fibroin promoter elements.
Collapse
Affiliation(s)
- Dagmara Motriuk-Smith
- University of Wyoming, Department of Molecular Biology, Laramie, Wyoming 82071, USA.
| | | | | | | |
Collapse
|
17
|
Kozak M. Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene 2005; 361:13-37. [PMID: 16213112 DOI: 10.1016/j.gene.2005.06.037] [Citation(s) in RCA: 555] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 05/31/2005] [Accepted: 06/27/2005] [Indexed: 01/19/2023]
Abstract
The mechanism of initiation of translation differs between prokaryotes and eukaryotes, and the strategies used for regulation differ accordingly. Translation in prokaryotes is usually regulated by blocking access to the initiation site. This is accomplished via base-paired structures (within the mRNA itself, or between the mRNA and a small trans-acting RNA) or via mRNA-binding proteins. Classic examples of each mechanism are described. The polycistronic structure of mRNAs is an important aspect of translational control in prokaryotes, but polycistronic mRNAs are not usable (and usually not produced) in eukaryotes. Four structural elements in eukaryotic mRNAs are important for regulating translation: (i) the m7G cap; (ii) sequences flanking the AUG start codon; (iii) the position of the AUG codon relative to the 5' end of the mRNA; and (iv) secondary structure within the mRNA leader sequence. The scanning model provides a framework for understanding these effects. The scanning mechanism also explains how small open reading frames near the 5' end of the mRNA can down-regulate translation. This constraint is sometimes abrogated by changing the structure of the mRNA, sometimes with clinical consequences. Examples are described. Some mistaken ideas about regulation of translation that have found their way into textbooks are pointed out and corrected.
Collapse
Affiliation(s)
- Marilyn Kozak
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| |
Collapse
|
18
|
Luschnig S, Moussian B, Krauss J, Desjeux I, Perkovic J, Nüsslein-Volhard C. An F1 genetic screen for maternal-effect mutations affecting embryonic pattern formation in Drosophila melanogaster. Genetics 2005; 167:325-42. [PMID: 15166158 PMCID: PMC1470860 DOI: 10.1534/genetics.167.1.325] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Large-scale screens for female-sterile mutations have revealed genes required maternally for establishment of the body axes in the Drosophila embryo. Although it is likely that the majority of components involved in axis formation have been identified by this approach, certain genes have escaped detection. This may be due to (1) incomplete saturation of the screens for female-sterile mutations and (2) genes with essential functions in zygotic development that mutate to lethality, precluding their identification as female-sterile mutations. To overcome these limitations, we performed a genetic mosaic screen aimed at identifying new maternal genes required for early embryonic patterning, including zygotically required ones. Using the Flp-FRT technique and a visible germline clone marker, we developed a system that allows efficient screening for maternal-effect phenotypes after only one generation of breeding, rather than after the three generations required for classic female-sterile screens. We identified 232 mutants showing various defects in embryonic pattern or morphogenesis. The mutants were ordered into 10 different phenotypic classes. A total of 174 mutants were assigned to 86 complementation groups with two alleles on average. Mutations in 45 complementation groups represent most previously known maternal genes, while 41 complementation groups represent new loci, including several involved in dorsoventral, anterior-posterior, and terminal patterning.
Collapse
Affiliation(s)
- Stefan Luschnig
- Max-Planck-Institut für Entwicklungsbiologie, Abteilung Genetik, D-72076 Tübingen, Germany.
| | | | | | | | | | | |
Collapse
|
19
|
Bielinska B, Lü J, Sturgill D, Oliver B. Core promoter sequences contribute to ovo-B regulation in the Drosophila melanogaster germline. Genetics 2004; 169:161-72. [PMID: 15371353 PMCID: PMC1350745 DOI: 10.1534/genetics.104.033118] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Utilization of tightly linked ovo-A vs. ovo-B germline promoters results in the expression of OVO-A and OVO-B, C(2)H(2) transcription factors with different N -termini, and different effects on target gene transcription and on female germline development. We show that two sex-determination signals, the X chromosome number within the germ cells and a female soma, differentially regulate ovo-B and ovo-A. We have previously shown that OVO regulates ovarian tumor transcription by binding the transcription start site. We have explored the regulation of the ovo-B promoter using an extensive series of transgenic reporter gene constructs to delimit cis-regulatory sequences as assayed in wild-type and sex-transformed flies and flies with altered ovo dose. Minimum regulated expression of ovo-B requires a short region flanking the transcription start site, suggesting that the ovo-B core promoter bears regulatory information in addition to a "basal" activity. In support of this idea, the core promoter region binds distinct factors in ovary and testis extracts, but not in soma extracts, suggesting that regulatory complexes form at the start site. This idea is further supported by the evolutionarily conserved organization of OVO binding sites at or near the start sites of ovo loci in other flies.
Collapse
Affiliation(s)
- Beata Bielinska
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
20
|
Khila A, El Haidani A, Vincent A, Payre F, Souda SI. The dual function of ovo/shavenbaby in germline and epidermis differentiation is conserved between Drosophila melanogaster and the olive fruit fly Bactrocera oleae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 33:691-699. [PMID: 12826096 DOI: 10.1016/s0965-1748(03)00063-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The olive fruit fly Bactrocera oleae (B. oleae) is a major olive damaging pest in the Mediterranean area. As a first molecular analysis of a developmental gene in this insect, we characterised the ovo/shavenbaby (ovo/svb) gene. In Drosophila, ovo/svb encodes a family of transcription regulators with two distinct functions: ovo is required for female germline differentiation and svb controls morphogenesis of epidermal cells. Here, we report the cloning and characterisation of ovo/svb in B. oleae, showing that the ovo genomic organisation and complex pattern of germline transcription have been conserved between distantly related Dipterae. We further show that B. oleae svb embryonic expression precisely prefigures the pattern of larval trichomes, supporting the conclusion that regulatory changes in svb transcription underlie evolutionary diversification of trichome patterns seen among Dipterae.
Collapse
Affiliation(s)
- Abderrahman Khila
- Laboratoire de Biotechnologie Végétale et Agro-Alimentaire, Faculté des Sciences et Techniques de Fès-Saïss, Université Sidi Mohammed Ben Abdellah, route de Imouzer, BP2202 Fès, Morocco
| | | | | | | | | |
Collapse
|
21
|
Delon I, Chanut-Delalande H, Payre F. The Ovo/Shavenbaby transcription factor specifies actin remodelling during epidermal differentiation in Drosophila. Mech Dev 2003; 120:747-58. [PMID: 12915226 DOI: 10.1016/s0925-4773(03)00081-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In Drosophila, differentiation of the epidermis results in a stereotyped array of cells with F-actin-based extensions at their apical face. We identified Ovo/Shavenbaby (Svb) as a transcription factor that governs changes in epidermal cell shape. Svb is required for the formation of apical extensions and cells deficient in svb differentiate a smooth surface. In both the embryo and the adult, we show that Svb is necessary and sufficient for the cells to grow extensions and that the tight regulation of ovo/svb activity is critical for morphogenesis to occur correctly. We establish that Svb triggers early F-actin redistribution and is able to initiate the entire process of cytoskeletal remodelling, thereby defining it as a major regulator of epidermal differentiation.
Collapse
Affiliation(s)
- Isabelle Delon
- Centre de Biologie du Développement, Bat 4R3, 118 Rte de Narbonne, 31062 cedex 4, Toulouse, France
| | | | | |
Collapse
|
22
|
Oliver B. Genetic control of germline sexual dimorphism in Drosophila. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 219:1-60. [PMID: 12211627 DOI: 10.1016/s0074-7696(02)19010-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Females produce eggs and males produce sperm. Work in Drosophila is helping to elucidate how this sex-specific germline differentiation is genetically encoded. While important details remain somewhat controversial, it is clear that signals generated by somatic cells, probably in the embryonic gonads, are required as extrinsic factors for germline sex determination. It is equally clear that the sex chromosome karyotype of the germ cell is an intrinsic factor for germline sex determination. There is also extensive somatic signaling required for differentiation of germline cells in the adult gonads. Mismatched germline and somatic line sexual identities place germ cells in an inappropriate signaling milieu, which results in either failed maintenance of germline stems cells when female germ cells are in a male soma or overproliferation of germline cells when male germ cells are in a female soma. The well-studied somatic sex determination genes including transformer, transformer-2, and doublesex are clearly involved in the nonautonomous signaling from somatic cells, while the autonomous functions of genes including ovo, ovarian tumor, and Sex-lethal are involved in the germline. The integration of these two pathways is not yet clear.
Collapse
Affiliation(s)
- Brian Oliver
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
23
|
Abstract
Selection of the translational initiation site in most eukaryotic mRNAs appears to occur via a scanning mechanism which predicts that proximity to the 5' end plays a dominant role in identifying the start codon. This "position effect" is seen in cases where a mutation creates an AUG codon upstream from the normal start site and translation shifts to the upstream site. The position effect is evident also in cases where a silent internal AUG codon is activated upon being relocated closer to the 5' end. Two mechanisms for escaping the first-AUG rule--reinitiation and context-dependent leaky scanning--enable downstream AUG codons to be accessed in some mRNAs. Although these mechanisms are not new, many new examples of their use have emerged. Via these escape pathways, the scanning mechanism operates even in extreme cases, such as a plant virus mRNA in which translation initiates from three start sites over a distance of 900 nt. This depends on careful structural arrangements, however, which are rarely present in cellular mRNAs. Understanding the rules for initiation of translation enables understanding of human diseases in which the expression of a critical gene is reduced by mutations that add upstream AUG codons or change the context around the AUG(START) codon. The opposite problem occurs in the case of hereditary thrombocythemia: translational efficiency is increased by mutations that remove or restructure a small upstream open reading frame in thrombopoietin mRNA, and the resulting overproduction of the cytokine causes the disease. This and other examples support the idea that 5' leader sequences are sometimes structured deliberately in a way that constrains scanning in order to prevent harmful overproduction of potent regulatory proteins. The accumulated evidence reveals how the scanning mechanism dictates the pattern of transcription--forcing production of monocistronic mRNAs--and the pattern of translation of eukaryotic cellular and viral genes.
Collapse
Key Words
- translational control
- aug context
- 5′ untranslated region
- reinitiation
- leaky scanning
- dicistronic mrna
- internal ribosome entry site
- adometdc, s-adenosylmethionine decarboxylase
- a2ar, a2a adenosine receptor
- c/ebp, ccaat/enhancer binding protein
- ctl, cytotoxic t-lymphocyte
- egfp, enhanced green fluorescent protein
- eif, eukaryotic initiation factor
- hiv-1, human immunodeficiency virus 1
- ires, internal ribosome entry site
- lef1, lymphoid enhancer factor-1
- ogp, osteogenic growth peptide
- orf, open reading frame
- r, purine
- tpo, thrombopoietin
- uporf, upstream open reading frame
- utr, untranslated region
Collapse
Affiliation(s)
- Marilyn Kozak
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA.
| |
Collapse
|
24
|
Li B, Dai Q, Li L, Nair M, Mackay DR, Dai X. Ovol2, a mammalian homolog of Drosophila ovo: gene structure, chromosomal mapping, and aberrant expression in blind-sterile mice. Genomics 2002; 80:319-25. [PMID: 12213202 PMCID: PMC2893385 DOI: 10.1006/geno.2002.6831] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The ovo gene family consists of evolutionarily conserved genes including those cloned from Caenorhabditis elegans, Drosophila melanogaster, mouse, and human. Here we report the isolation and characterization of mouse Ovol2 (also known as movol2 or movo2) and provide evidence supporting the existence of multiple Ovol2 transcripts. These transcripts are produced by alternative promoter usage and alternative splicing and encode long and short OVOL2 protein isoforms, whose sequences differ from those previously reported. Mouse and human OVOL2 genes are expressed in overlapping tissues including testis, where Ovol2 expression is developmentally regulated and correlates with the meiotic/postmeiotic stages of spermatogenesis. Mouse Ovol2 maps to chromosome 2 in a region containing blind-sterile (bs), a spontaneous mutation that causes spermatogenic defects and germ cell loss. No mutation has been detected in the coding region of Ovol2 from bs mice, but Ovol2 transcription was dramatically reduced in testes from these mice, suggesting that Ovol2 is expressed in male germ cells.
Collapse
Affiliation(s)
- Baoan Li
- Department of Biological Chemistry, University of California, Irvine, California 92697, USA
| | - Qian Dai
- Department of Biological Chemistry, University of California, Irvine, California 92697, USA
| | - Ling Li
- Department of Biological Chemistry, University of California, Irvine, California 92697, USA
| | - Mahalakshmi Nair
- Department of Biological Chemistry, University of California, Irvine, California 92697, USA
| | - Douglas R. Mackay
- Department of Biological Chemistry, University of California, Irvine, California 92697, USA
| | - Xing Dai
- Department of Biological Chemistry, University of California, Irvine, California 92697, USA
- Developmental Biology Center, University of California, Irvine, California 92697, USA
- To whom correspondence and reprint requests should be addressed. Fax: (949) 824-2688.
| |
Collapse
|
25
|
Salles C, Mével-Ninio M, Vincent A, Payre F. A germline-specific splicing generates an extended ovo protein isoform required for Drosophila oogenesis. Dev Biol 2002; 246:366-76. [PMID: 12051822 DOI: 10.1006/dbio.2002.0659] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Most regulatory genes are employed multiple times to control different processes during development. The Drosophila Ovo/Shavenbaby (Svb) transcription factor is required both for germline and epidermal differentiation, two roles also found for its ortholog m-ovo1 in mice. In Drosophila, these two distinct functions are contributed by separate control regions directing the expression of Ovo/Svb in the germline (ovo) and soma (svb), respectively. We report here that alternative splicing represents an additional level of the regulation of Ovo/Svb functional specificity. Characterization of the ovo(D1rv23) mutation revealed that the intragenic insertion of a novel retrotransposon, romano, inactivates ovo without altering svb. We provide evidence that this insertion disrupts a germline-specific alternative exon, exon 2b, which encodes a 178-amino-acid internal extension (2B). While both isoforms, Ovo+2B and Ovo-2B, accumulate during oogenesis, only Ovo+2B is able to fulfill germinal ovo functions. Ovo-2B is unable, even when overexpressed, to fully rescue oogenic defects resulting from the absence of wild type ovo product. By contrast, either Ovo+2B or Ovo-2B germline protein can substitute for Svb in the epidermis. Our results emphasize the specific features of splicing in the germline, and reveal its functional importance for the control of ovo/svb-dependent ovarian and epidermal differentiation.
Collapse
Affiliation(s)
- Cathy Salles
- Centre de Biologie du Développement, UMR CNRS 5547, Toulouse, France, 31062 cedex 4
| | | | | | | |
Collapse
|
26
|
Andrews J, Oliver B. Sex determination signals control ovo-B transcription in Drosophila melanogaster germ cells. Genetics 2002; 160:537-45. [PMID: 11861560 PMCID: PMC1461963 DOI: 10.1093/genetics/160.2.537] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nonautonomous inductive signals from the soma and autonomous signals due to a 2X karyotype determine the sex of Drosophila melanogaster germ cells. These two signals have partially overlapping influences on downstream sex determination genes. The upstream OVO-B transcription factor is required for the viability of 2X germ cells, regardless of sexual identity, and for female germline sexual identity. The influence of inductive and autonomous signals on ovo expression has been controversial. We show that ovo-B is strongly expressed in the 2X germ cells in either a male or a female soma. This indicates that a 2X karyotype controls ovo-B expression in the absence of inductive signals from the female soma. However, we also show that female inductive signals positively regulate ovo-B transcription in the 1X germ cells that do not require ovo-B function. Genetic analysis clearly indicates that inductive signals from the soma are not required for ovo-B function in 2X germ cells. Thus, while somatic inductive signals and chromosome karyotype have overlapping regulatory influences, a 2X karyotype is a critical germline autonomous determinant of ovo-B function in the germline.
Collapse
Affiliation(s)
- Justen Andrews
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
27
|
Labrador M, Corces VG. Protein determinants of insertional specificity for the Drosophila gypsy retrovirus. Genetics 2001; 158:1101-10. [PMID: 11454759 PMCID: PMC1461702 DOI: 10.1093/genetics/158.3.1101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The gypsy retrovirus invades the germ line of Drosophila females, inserting with a high frequency into the ovo locus. Gypsy insertion sites in ovo are clustered within a region in the promoter of the ovo gene that contains multiple binding sites for the OvoA and OvoB proteins. We found that a 1.3-kb DNA fragment containing this region is able to confer gypsy insertional specificity independent of its genomic location. The frequency of gypsy insertions into the ovo gene is significantly lower in wild-type females than in ovoD1 females. In addition, gypsy insertions in ovoD1 females occur during most stages of germ-line development whereas insertions in wild-type females occur only in late stages. This pattern of temporally specific insertions, as well as the higher frequency of insertion in ovoD1 females, correlates with the presence of the OvoA or OvoD1 proteins. The results suggest that gypsy insertional specificity might be determined by the binding of the OvoA repressor isoform to the promoter region of the gene.
Collapse
Affiliation(s)
- M Labrador
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
28
|
Lü J, Oliver B. Drosophila OVO regulates ovarian tumor transcription by binding unusually near the transcription start site. Development 2001; 128:1671-86. [PMID: 11290304 DOI: 10.1242/dev.128.9.1671] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Evolutionarily conserved ovo loci encode developmentally regulated, sequence-specific, DNA-binding, C(2)H(2)-zinc-finger proteins required in the germline and epidermal cells of flies and mice. The direct targets of OVO activity are not known. Genetic experiments suggest that ovo acts in the same regulatory network as ovarian tumor (otu), but the relative position of these genes in the pathway is controversial. Three OVO-binding sites exist in a compact regulatory region that controls germline expression of the otu gene. Interestingly, the strongest OVO-binding site is very near the otu transcription start, where basal transcriptional complexes must function. Loss-of-function, gain-of-function and promoter swapping constructs demonstrate that OVO binding near the transcription start site is required for OVO-dependent otu transcription in vivo. These data unambiguously identify otu as a direct OVO target gene and raise the tantalizing possibility that an OVO site, at the location normally occupied by basal components, functions as part of a specialized core promoter.
Collapse
Affiliation(s)
- J Lü
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892-2715, USA
| | | |
Collapse
|
29
|
Abstract
The Drosophila melanogaster germ plasm has become the paradigm for understanding both the assembly of a specific cytoplasmic localization during oogenesis and its function. The posterior ooplasm is necessary and sufficient for the induction of germ cells. For its assembly, localization of gurken mRNA and its translation at the posterior pole of early oogenic stages is essential for establishing the posterior pole of the oocyte. Subsequently, oskar mRNA becomes localized to the posterior pole where its translation leads to the assembly of a functional germ plasm. Many gene products are required for producing the posterior polar plasm, but only oskar, tudor, valois, germcell-less and some noncoding RNAs are required for germ cell formation. A key feature of germ cell formation is the precocious segregation of germ cells, which isolates the primordial germ cells from mRNA turnover, new transcription, and continued cell division. nanos is critical for maintaining the transcription quiescent state and it is required to prevent transcription of Sex-lethal in pole cells. In spite of the large body of information about the formation and function of the Drosophila germ plasm, we still do not know what specifically is required to cause the pole cells to be germ cells. A series of unanswered problems is discussed in this chapter.
Collapse
Affiliation(s)
- A P Mahowald
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Illinois 60637, USA
| |
Collapse
|
30
|
Andrews J, Garcia-Estefania D, Delon I, Lü J, Mével-Ninio M, Spierer A, Payre F, Pauli D, Oliver B. OVO transcription factors function antagonistically in the Drosophila female germline. Development 2000; 127:881-92. [PMID: 10648246 DOI: 10.1242/dev.127.4.881] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OVO controls germline and epidermis differentiation in flies and mice. In the Drosophila germline, alternative OVO-B and OVO-A isoforms have a common DNA-binding domain, but different N-termini. We show that these isoforms are transcription factors with opposite regulatory activities. Using yeast one-hybrid assays, we identified a strong activation domain within a common region and a counteracting repression domain within the OVO-A-specific region. In flies, OVO-B positively regulated the ovarian tumor promoter, while OVO-A was a negative regulator of the ovarian tumor and ovo promoters. OVO-B isoforms supplied ovo(+) function in the female germline and epidermis, while OVO-A isoforms had dominant-negative activity in both tissues. Moreover, elevated expression of OVO-A resulted in maternal-effect lethality while the absence of OVO-A resulted in maternal-effect sterility. Our data indicate that tight regulation of antagonistic OVO-B and OVO-A isoforms is critical for germline formation and differentiation.
Collapse
Affiliation(s)
- J Andrews
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda MD, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Payre F, Vincent A, Carreno S. ovo/svb integrates Wingless and DER pathways to control epidermis differentiation. Nature 1999; 400:271-5. [PMID: 10421370 DOI: 10.1038/22330] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In Drosophila, as in mammals, epidermal differentiation is controlled by signalling cascades that include Wnt proteins and the ovo/shavenbaby (svb) family of zinc-finger transcription factors. Ovo/svb is a complex gene with two genetic functions corresponding to separate control regions: ovo is required for female germline development and svb for epidermal morphogenesis. In the Drosophila embryo, the ventral epidermis consists of the segmental alternance of two major cell types that produce either naked cuticle or cytoplasmic extrusions known as denticles. Wingless signalling specifies smooth cells that produce naked cuticle, whereas the activation of the Drosophila epidermal growth factor (EGF) receptor (DER) leads to the production of denticles. Here we show that expression of the ovo/svb gene controls the choice between these cell fates. We find that svb is a key selector gene that, cell autonomously, directs cytoskeletal modifications producing the denticle. The DER pathway promotes denticle formation by activating svb expression. Conversely, Wingless promotes the smooth cell fate through the transcriptional repression of svb by the bipartite nuclear factor Armadillo/dTcf. Our data indicate that transcriptional regulation of svb integrates inputs from the Wingless and DER pathways and controls epidermal differentiation.
Collapse
Affiliation(s)
- F Payre
- Centre de Biologie du Développement, UMR5547, Toulouse, France.
| | | | | |
Collapse
|
32
|
Sahut-Barnola I, Pauli D. The Drosophila gene stand still encodes a germline chromatin-associated protein that controls the transcription of the ovarian tumor gene. Development 1999; 126:1917-26. [PMID: 10101125 DOI: 10.1242/dev.126.9.1917] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Drosophila gene stand still (stil) encodes a novel protein required for survival, sexual identity and differentiation of female germ cells. Using specific antibodies, we show that the Stil protein accumulates in the nucleus of all female germ cells throughout development, and is transiently expressed during early stages of male germline differentiation. Changes of Stil subnuclear localization during oogenesis suggest an association with chromatin. Several mutant alleles, which are point mutations in the Stil N-terminal domain, encode proteins that no longer co-localized with chromatin. We find that Stil binds to many sites on polytene chromosomes with strong preference for decondensed chromatin. This localization is very similar to that of RNA polymerase II. We show that Stil is required for high levels of transcription of the ovarian tumor gene in germ cells. Expression of ovarian tumor in somatic cells can be induced by ectopic expression of Stil. Finally, we find that transient ubiquitous somatic expression of Stil results in lethality of the fly at all stages of development.
Collapse
Affiliation(s)
- I Sahut-Barnola
- Department of Zoology and Animal Biology, University of Geneva, 1211 Geneva 4, Switzerland
| | | |
Collapse
|
33
|
Dai X, Schonbaum C, Degenstein L, Bai W, Mahowald A, Fuchs E. The ovo gene required for cuticle formation and oogenesis in flies is involved in hair formation and spermatogenesis in mice. Genes Dev 1998; 12:3452-63. [PMID: 9808631 PMCID: PMC317232 DOI: 10.1101/gad.12.21.3452] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/1998] [Accepted: 09/09/1998] [Indexed: 11/24/2022]
Abstract
The Drosophila svb/ovo gene gives rise to differentially expressed transcripts encoding a zinc finger protein. svb/ovo has two distinct genetic functions: shavenbaby (svb) is required for proper formation of extracellular projections that are produced by certain epidermal cells in late-stage differentiation; ovo is required for survival and differentiation of female germ cells. We cloned a mouse gene, movo1 encoding a nuclear transcription factor that is highly similar to its fly counterpart in its zinc-finger sequences. In mice, the gene is expressed in skin, where it localizes to the differentiating cells of epidermis and hair follicles, and in testes, where it is present in spermatocytes and spermatids. Using gene targeting, we show that movo1 is required for proper development of both hair and sperm. movo1(-/-) mice are small, produce aberrant hairs, and display hypogenitalism, with a reduced ability to reproduce. These mice also develop abnormalities in kidney, where movo1 is also expressed. Our findings reveal remarkable parallels between mice and flies in epidermal appendage formation and in germ-cell maturation. Furthermore, they uncover a phenotype similar to that of Bardet-Biedl syndrome, a human disorder that maps to the same locus as human ovo1.
Collapse
Affiliation(s)
- X Dai
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637 USA
| | | | | | | | | | | |
Collapse
|
34
|
Masu Y, Ikeda S, Okuda-Ashitaka E, Sato E, Ito S. Expression of murine novel zinc finger proteins highly homologous to Drosophila ovo gene product in testis. FEBS Lett 1998; 421:224-8. [PMID: 9468311 DOI: 10.1016/s0014-5793(97)01567-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have cloned two isoforms of cDNAs encoding novel zinc finger proteins. One form encodes a 274-amino acid protein containing an acidic amino acid and serine-rich domain and a zinc finger domain which shows high sequence homology to that of Drosophila Ovo protein. The other form encodes a 179-amino acid protein containing only the zinc finger domain. Expression of both proteins possessing an antigenic epitope in COS cells revealed that they are localized in the nucleus. The 1.3-kbp mRNAs are predominantly expressed in testis, and the expression increases from 3 weeks postnatal, implying that these proteins may play important roles in the development of the testes.
Collapse
Affiliation(s)
- Y Masu
- Department of Medical Chemistry, Kansai Medical University, Moriguchi, Osaka, Japan
| | | | | | | | | |
Collapse
|