1
|
Briney CA, Henriksen JC, Lin C, Jones LA, Benner L, Rains AB, Gutierrez R, Gafken PR, Rissland OS. Muskelin is a substrate adaptor of the highly regulated Drosophila embryonic CTLH E3 ligase. EMBO Rep 2025; 26:1647-1669. [PMID: 39979464 PMCID: PMC11933467 DOI: 10.1038/s44319-025-00397-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 02/22/2025] Open
Abstract
The maternal-to-zygotic transition (MZT) is a conserved developmental process where the maternally-derived protein and mRNA cache is replaced with newly made zygotic gene products. We have previously shown that in Drosophila the deposited RNA-binding proteins ME31B, Cup, and Trailer Hitch are ubiquitylated by the CTLH E3 ligase and cleared. However, the organization and regulation of the CTLH complex remain poorly understood in flies because Drosophila lacks an identifiable substrate adaptor, and the mechanisms restricting the degradation of ME31B and its cofactors to the MZT are unknown. Here, we show that the developmental regulation of the CTLH complex is multi-pronged, including transcriptional control by OVO and autoinhibition of the E3 ligase. One major regulatory target is the subunit Muskelin, which we demonstrate is a substrate adaptor for the Drosophila CTLH complex. Finally, we find that Muskelin has few targets beyond the three known RNA-binding proteins, showing exquisite target specificity. Thus, multiple levels of integrated regulation restrict the activity of the embryonic CTLH complex to early embryogenesis, during which time it regulates three important RNA-binding proteins.
Collapse
Affiliation(s)
- Chloe A Briney
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Jesslyn C Henriksen
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Chenwei Lin
- Proteomics & Metabolomics Shared Resource, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Lisa A Jones
- Proteomics & Metabolomics Shared Resource, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Leif Benner
- Section of Developmental Genomics, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Addison B Rains
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Roxana Gutierrez
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Philip R Gafken
- Proteomics & Metabolomics Shared Resource, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Olivia S Rissland
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
2
|
Briney CA, Henriksen JC, Lin C, Jones LA, Benner L, Rains AB, Gutierrez R, Gafken PR, Rissland OS. Muskelin acts as a substrate receptor of the highly regulated Drosophila CTLH E3 ligase during the maternal-to-zygotic transition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601265. [PMID: 39005399 PMCID: PMC11244905 DOI: 10.1101/2024.06.28.601265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The maternal-to-zygotic transition (MZT) is a conserved developmental process where the maternally-derived protein and mRNA cache is replaced with newly made zygotic gene products. We have previously shown that in Drosophila the deposited RNA-binding proteins ME31B, Cup, and Trailer Hitch (TRAL) are ubiquitylated by the CTLH E3 ligase and cleared. However, the organization and regulation of the CTLH complex remain poorly understood in flies. In particular, Drosophila lacks an identifiable substrate adaptor, and the mechanisms restricting degradation of ME31B and its cofactors to the MZT are unknown. Here, we show that the developmental specificity of the CTLH complex is mediated by multipronged regulation, including transcriptional control by the transcription factor OVO and autoinhibition of the E3 ligase. One major regulatory target is the subunit Muskelin, which we demonstrate acts as a substrate adaptor for the Drosophila CTLH complex. Although conserved, Muskelin has structural roles in other species, suggesting a surprising functional plasticity. Finally, we find that Muskelin has few targets beyond the three known RNA binding proteins, showing exquisite target specificity. Thus, multiple levels of integrated regulation restrict the activity of the embryonic CTLH complex to early embryogenesis, seemingly with the goal of regulating three important RNA binding proteins.
Collapse
Affiliation(s)
- Chloe A Briney
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Jesslyn C Henriksen
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Chenwei Lin
- Proteomics & Metabolomics Shared Resource, Fred Hutchinson Cancer Center, Seattle, WA 98109
| | - Lisa A Jones
- Proteomics & Metabolomics Shared Resource, Fred Hutchinson Cancer Center, Seattle, WA 98109
| | - Leif Benner
- Section of Developmental Genomics, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health
| | - Addison B Rains
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Roxana Gutierrez
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Philip R Gafken
- Proteomics & Metabolomics Shared Resource, Fred Hutchinson Cancer Center, Seattle, WA 98109
| | - Olivia S Rissland
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
3
|
Finger DS, Williams AE, Holt VV, Ables ET. Novel roles for RNA binding proteins squid, hephaesteus, and Hrb27C in Drosophila oogenesis. Dev Dyn 2023; 252:415-428. [PMID: 36308715 PMCID: PMC9991940 DOI: 10.1002/dvdy.550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/30/2022] [Accepted: 10/16/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Reproductive capacity in many organisms is maintained by germline stem cells (GSCs). A complex regulatory network influences stem cell fate, including intrinsic factors, local signals, and hormonal and nutritional cues. Posttranscriptional regulatory mechanisms ensure proper cell fate transitions, promoting germ cell differentiation to oocytes. As essential RNA binding proteins with constitutive functions in RNA metabolism, heterogeneous nuclear ribonucleoproteins (hnRNPs) have been implicated in GSC function and axis specification during oocyte development. HnRNPs support biogenesis, localization, maturation, and translation of nascent transcripts. Whether and individual hnRNPs specifically regulate GSC function has yet to be explored. RESULTS We demonstrate that hnRNPs are expressed in distinct patterns in the Drosophila germarium. We show that three hnRNPs, squid, hephaestus, and Hrb27C are cell-autonomously required in GSCs for their maintenance. Although these hnRNPs do not impact adhesion of GSCs to adjacent cap cells, squid and hephaestus (but not Hrb27C) are necessary for proper bone morphogenetic protein signaling in GSCs. Moreover, Hrb27C promotes proper GSC proliferation, whereas hephaestus promotes cyst division. CONCLUSIONS We find that hnRNPs are independently and intrinsically required in GSCs for their maintenance in adults. Our results support the model that hnRNPs play unique roles in stem cells essential for their self-renewal and proliferation.
Collapse
Affiliation(s)
- Danielle S. Finger
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Anna E. Williams
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Vivian V. Holt
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Elizabeth T. Ables
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| |
Collapse
|
4
|
Climent-Cantó P, Carbonell A, Tamirisa S, Henn L, Pérez-Montero S, Boros IM, Azorín F. The tumour suppressor brain tumour (Brat) regulates linker histone dBigH1 expression in the Drosophila female germline and the early embryo. Open Biol 2021; 11:200408. [PMID: 33947246 PMCID: PMC8097206 DOI: 10.1098/rsob.200408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Linker histones H1 are essential chromatin components that exist as multiple developmentally regulated variants. In metazoans, specific H1s are expressed during germline development in a tightly regulated manner. However, the mechanisms governing their stage-dependent expression are poorly understood. Here, we address this question in Drosophila, which encodes for a single germline-specific dBigH1 linker histone. We show that during female germline lineage differentiation, dBigH1 is expressed in germ stem cells and cystoblasts, becomes silenced during transit-amplifying (TA) cystocytes divisions to resume expression after proliferation stops and differentiation starts, when it progressively accumulates in the oocyte. We find that dBigH1 silencing during TA divisions is post-transcriptional and depends on the tumour suppressor Brain tumour (Brat), an essential RNA-binding protein that regulates mRNA translation and stability. Like other oocyte-specific variants, dBigH1 is maternally expressed during early embryogenesis until it is replaced by somatic dH1 at the maternal-to-zygotic transition (MZT). Brat also mediates dBigH1 silencing at MZT. Finally, we discuss the situation in testes, where Brat is not expressed, but dBigH1 is translationally silenced too.
Collapse
Affiliation(s)
- Paula Climent-Cantó
- Institute of Molecular Biology of Barcelona, CSIC, Barcelona 08028, Spain.,Institute for Research in Biomedicine, IRB Barcelona, The Barcelona Institute for Science and Technology, Barcelona 08028, Spain
| | - Albert Carbonell
- Institute of Molecular Biology of Barcelona, CSIC, Barcelona 08028, Spain.,Institute for Research in Biomedicine, IRB Barcelona, The Barcelona Institute for Science and Technology, Barcelona 08028, Spain
| | - Srividya Tamirisa
- Institute of Molecular Biology of Barcelona, CSIC, Barcelona 08028, Spain.,Institute for Research in Biomedicine, IRB Barcelona, The Barcelona Institute for Science and Technology, Barcelona 08028, Spain
| | - Laszlo Henn
- Institute of Biochemistry, Biological Research Centre of Szeged, Szeged 6726, Hungary
| | - Salvador Pérez-Montero
- Institute of Molecular Biology of Barcelona, CSIC, Barcelona 08028, Spain.,Institute for Research in Biomedicine, IRB Barcelona, The Barcelona Institute for Science and Technology, Barcelona 08028, Spain
| | - Imre M Boros
- Institute of Biochemistry, Biological Research Centre of Szeged, Szeged 6726, Hungary.,Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged 6726, Hungary
| | - Fernando Azorín
- Institute of Molecular Biology of Barcelona, CSIC, Barcelona 08028, Spain.,Institute for Research in Biomedicine, IRB Barcelona, The Barcelona Institute for Science and Technology, Barcelona 08028, Spain
| |
Collapse
|
5
|
Bayega A, Oikonomopoulos S, Gregoriou ME, Tsoumani KT, Giakountis A, Wang YC, Mathiopoulos KD, Ragoussis J. Nanopore long-read RNA-seq and absolute quantification delineate transcription dynamics in early embryo development of an insect pest. Sci Rep 2021; 11:7878. [PMID: 33846393 PMCID: PMC8042104 DOI: 10.1038/s41598-021-86753-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 03/10/2021] [Indexed: 11/21/2022] Open
Abstract
The olive fruit fly, Bactrocera oleae, is the most important pest for the olive fruit but lacks adequate transcriptomic characterization that could aid in molecular control approaches. We apply nanopore long-read RNA-seq with internal RNA standards allowing absolute transcript quantification to analyze transcription dynamics during early embryo development for the first time in this organism. Sequencing on the MinION platform generated over 31 million reads. Over 50% of the expressed genes had at least one read covering its entire length validating our full-length approach. We generated a de novo transcriptome assembly and identified 1768 new genes and a total of 79,810 isoforms; a fourfold increase in transcriptome diversity compared to the current NCBI predicted transcriptome. Absolute transcript quantification per embryo allowed an insight into the dramatic re-organization of maternal transcripts. We further identified Zelda as a possible regulator of early zygotic genome activation in B. oleae and provide further insights into the maternal-to-zygotic transition. These data show the utility of long-read RNA in improving characterization of non-model organisms that lack a fully annotated genome, provide potential targets for sterile insect technic approaches, and provide the first insight into the transcriptome landscape of the developing olive fruit fly embryo.
Collapse
Affiliation(s)
- Anthony Bayega
- McGill Genome Centre, Department of Human Genetics, McGill University, Montréal, Québec, Canada
| | - Spyros Oikonomopoulos
- McGill Genome Centre, Department of Human Genetics, McGill University, Montréal, Québec, Canada
| | - Maria-Eleni Gregoriou
- Laboratory of Molecular Biology and Genomics, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Konstantina T Tsoumani
- Laboratory of Molecular Biology and Genomics, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Antonis Giakountis
- Laboratory of Molecular Biology and Genomics, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Yu Chang Wang
- McGill Genome Centre, Department of Human Genetics, McGill University, Montréal, Québec, Canada
| | - Kostas D Mathiopoulos
- Laboratory of Molecular Biology and Genomics, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece.
| | - Jiannis Ragoussis
- McGill Genome Centre, Department of Human Genetics, McGill University, Montréal, Québec, Canada.
- Department of Bioengineering, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
6
|
Connacher RP, Goldstrohm AC. Molecular and biological functions of TRIM-NHL RNA-binding proteins. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 12:e1620. [PMID: 32738036 PMCID: PMC7855385 DOI: 10.1002/wrna.1620] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 01/02/2023]
Abstract
The TRIM-NHL family of proteins shares a conserved domain architecture and play crucial roles in stem cell biology, fertility, and development. This review synthesizes new insights that have revolutionized our understanding of the molecular and biological functions of TRIM-NHL proteins. Multiple TRIM-NHLs have been shown to bind specific RNA sequences and structures. X-ray crystal structures of TRIM-NHL proteins in complex with RNA ligands reveal versatile modes of RNA recognition by the NHL domain. Functional and genetic analyses show that TRIM-NHL RNA-binding proteins negatively regulate the protein expression from the target mRNAs that they bind. This repressive activity plays a crucial role in controlling stem cell fate in the developing brain and differentiating germline. To highlight these paradigms, we focus on several of the most-extensively studied TRIM-NHL proteins, specifically Drosophila and vertebrate TRIM71, among others. Brat is essential for development and regulates key target mRNAs to control differentiation of germline and neural stem cells. TRIM71 is also required for development and promotes stem cell proliferation while antagonizing differentiation. Moreover, TRIM71 can be utilized to help reprogram fibroblasts into induced pluripotent stem cells. Recently discovered mutations in TRIM71 cause the neurodevelopmental disease congenital hydrocephalus and emphasize the importance of its RNA-binding function in brain development. Further relevance of TRIM71 to disease pathogenesis comes from evidence linking it to several types of cancer, including liver and testicular cancer. Collectively, these advances demonstrate a primary role for TRIM-NHL proteins in the post-transcriptional regulation of gene expression in crucial biological processes. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Translation > Translation Regulation RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- Robert P. Connacher
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA 55455
| | - Aaron C. Goldstrohm
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA 55455
| |
Collapse
|
7
|
Kontur C, Jeong M, Cifuentes D, Giraldez AJ. Ythdf m 6A Readers Function Redundantly during Zebrafish Development. Cell Rep 2020; 33:108598. [PMID: 33378672 PMCID: PMC11407899 DOI: 10.1016/j.celrep.2020.108598] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/09/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022] Open
Abstract
During the maternal-to-zygotic transition (MZT), multiple mechanisms precisely control massive decay of maternal mRNAs. N6-methyladenosine (m6A) is known to regulate mRNA decay, yet how this modification promotes maternal transcript degradation remains unclear. Here, we find that m6A promotes maternal mRNA deadenylation. Yet, genetic loss of m6A readers Ythdf2 and Ythdf3 did not impact global maternal mRNA clearance, zygotic genome activation, or the onset of gastrulation, challenging the view that Ythdf2 alone is critical to developmental timing. We reveal that Ythdf proteins function redundantly during zebrafish oogenesis and development, as double Ythdf2 and Ythdf3 deletion prevented female gonad formation and triple Ythdf mutants were lethal. Finally, we show that the microRNA miR-430 functions additively with methylation to promote degradation of common transcript targets. Together these findings reveal that m6A facilitates maternal mRNA deadenylation and that multiple pathways and readers act in concert to mediate these effects of methylation on RNA stability.
Collapse
Affiliation(s)
- Cassandra Kontur
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA.
| | - Minsun Jeong
- Chey Institute for Advanced Studies, Seoul 06141, Republic of Korea
| | - Daniel Cifuentes
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Antonio J Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
8
|
Arvola RM, Chang CT, Buytendorp JP, Levdansky Y, Valkov E, Freddolino L, Goldstrohm AC. Unique repression domains of Pumilio utilize deadenylation and decapping factors to accelerate destruction of target mRNAs. Nucleic Acids Res 2020; 48:1843-1871. [PMID: 31863588 PMCID: PMC7038932 DOI: 10.1093/nar/gkz1187] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/02/2019] [Accepted: 12/09/2019] [Indexed: 12/20/2022] Open
Abstract
Pumilio is an RNA-binding protein that represses a network of mRNAs to control embryogenesis, stem cell fate, fertility and neurological functions in Drosophila. We sought to identify the mechanism of Pumilio-mediated repression and find that it accelerates degradation of target mRNAs, mediated by three N-terminal Repression Domains (RDs), which are unique to Pumilio orthologs. We show that the repressive activities of the Pumilio RDs depend on specific subunits of the Ccr4-Not (CNOT) deadenylase complex. Depletion of Pop2, Not1, Not2, or Not3 subunits alleviates Pumilio RD-mediated repression of protein expression and mRNA decay, whereas depletion of other CNOT components had little or no effect. Moreover, the catalytic activity of Pop2 deadenylase is important for Pumilio RD activity. Further, we show that the Pumilio RDs directly bind to the CNOT complex. We also report that the decapping enzyme, Dcp2, participates in repression by the N-terminus of Pumilio. These results support a model wherein Pumilio utilizes CNOT deadenylase and decapping complexes to accelerate destruction of target mRNAs. Because the N-terminal RDs are conserved in mammalian Pumilio orthologs, the results of this work broadly enhance our understanding of Pumilio function and roles in diseases including cancer, neurodegeneration and epilepsy.
Collapse
Affiliation(s)
- René M Arvola
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chung-Te Chang
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Joseph P Buytendorp
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yevgen Levdansky
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Eugene Valkov
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Lydia Freddolino
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Aaron C Goldstrohm
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
9
|
Story B, Ma X, Ishihara K, Li H, Hall K, Peak A, Anoja P, Park J, Haug J, Blanchette M, Xie T. Defining the expression of piRNA and transposable elements in Drosophila ovarian germline stem cells and somatic support cells. Life Sci Alliance 2019; 2:2/5/e201800211. [PMID: 31619466 PMCID: PMC6796194 DOI: 10.26508/lsa.201800211] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/01/2019] [Accepted: 10/04/2019] [Indexed: 11/26/2022] Open
Abstract
Comprehensive transcriptional characterization of mRNA and small RNA in early Drosophila germline stem cells reveals novel piRNA clusters, transposon dynamics, and alternative splicing events. Piwi-interacting RNAs (piRNAs) are important for repressing transposable elements (TEs) and modulating gene expression in germ cells, thereby maintaining genome stability and germ cell function. Although they are also important for maintaining germline stem cells (GSCs) in the Drosophila ovary by repressing TEs and preventing DNA damage, piRNA expression has not been investigated in GSCs or their early progeny. Here, we show that the canonical piRNA clusters are more active in GSCs and their early progeny than late germ cells and also identify more than 3,000 new piRNA clusters from deep sequencing data. The increase in piRNAs in GSCs and early progeny can be attributed to both canonical and newly identified piRNA clusters. As expected, piRNA clusters in GSCs, but not those in somatic support cells (SCs), exhibit ping-pong signatures. Surprisingly, GSCs and early progeny express more TE transcripts than late germ cells, suggesting that the increase in piRNA levels may be related to the higher levels of TE transcripts in GSCs and early progeny. GSCs also have higher piRNA levels and lower TE levels than SCs. Furthermore, the 3′ UTRs of 171 mRNA transcripts may produce sense, antisense, or dual-stranded piRNAs. Finally, we show that alternative promoter usage and splicing are frequently used to modulate gene function in GSCs and SCs. Overall, this study has provided important insight into piRNA production and TE repression in GSCs and SCs. The rich information provided by this study will be a beneficial resource to the fields of piRNA biology and germ cell development.
Collapse
Affiliation(s)
- Benjamin Story
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Xing Ma
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Kazue Ishihara
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Hua Li
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Kathryn Hall
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Allison Peak
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Perera Anoja
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Jungeun Park
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Jeff Haug
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Ting Xie
- Stowers Institute for Medical Research, Kansas City, MO, USA
| |
Collapse
|
10
|
Drummond-Barbosa D. Local and Physiological Control of Germline Stem Cell Lineages in Drosophila melanogaster. Genetics 2019; 213:9-26. [PMID: 31488592 PMCID: PMC6727809 DOI: 10.1534/genetics.119.300234] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022] Open
Abstract
The long-term survival of any multicellular species depends on the success of its germline in producing high-quality gametes and maximizing survival of the offspring. Studies in Drosophila melanogaster have led our growing understanding of how germline stem cell (GSC) lineages maintain their function and adjust their behavior according to varying environmental and/or physiological conditions. This review compares and contrasts the local regulation of GSCs by their specialized microenvironments, or niches; discusses how diet and diet-dependent factors, mating, and microorganisms modulate GSCs and their developing progeny; and briefly describes the tie between physiology and development during the larval phase of the germline cycle. Finally, it concludes with broad comparisons with other organisms and some future directions for further investigation.
Collapse
Affiliation(s)
- Daniela Drummond-Barbosa
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205
| |
Collapse
|
11
|
Vastenhouw NL, Cao WX, Lipshitz HD. The maternal-to-zygotic transition revisited. Development 2019; 146:146/11/dev161471. [PMID: 31189646 DOI: 10.1242/dev.161471] [Citation(s) in RCA: 266] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The development of animal embryos is initially directed by maternal gene products. Then, during the maternal-to-zygotic transition (MZT), developmental control is handed to the zygotic genome. Extensive research in both vertebrate and invertebrate model organisms has revealed that the MZT can be subdivided into two phases, during which very different modes of gene regulation are implemented: initially, regulation is exclusively post-transcriptional and post-translational, following which gradual activation of the zygotic genome leads to predominance of transcriptional regulation. These changes in the gene expression program of embryos are precisely controlled and highly interconnected. Here, we review current understanding of the mechanisms that underlie handover of developmental control during the MZT.
Collapse
Affiliation(s)
- Nadine L Vastenhouw
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Wen Xi Cao
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| | - Howard D Lipshitz
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| |
Collapse
|
12
|
The target specificity of the RNA binding protein Pumilio is determined by distinct co-factors. Biosci Rep 2019; 39:BSR20190099. [PMID: 31097674 PMCID: PMC6549094 DOI: 10.1042/bsr20190099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/17/2019] [Accepted: 05/09/2019] [Indexed: 12/22/2022] Open
Abstract
Puf family proteins are translational regulators essential to a wide range of biological processes, including cell fate specification, stem cell self-renewal, and neural function. Yet, despite being associated with hundreds of RNAs, the underlying mechanisms of Puf target specification remain to be fully elucidated. In Drosophila, Pumilio – a sole Puf family protein – is known to collaborate with cofactors Nanos (Nos) and Brain Tumor (Brat); however, their roles in target specification are not clearly defined. Here, we identify Bag-of-marbles (Bam) as a new Pum cofactor in repression of Mothers against dpp (mad) mRNAs, for which Nos is known to be dispensable. Notably, our data show that Nos (but not Bam) was required for Pum association with hunchback (hb) mRNAs, a well-known target of Pum and Nos. In contrast, Bam (but not Nos) was required for Pum association with mad mRNAs. These findings show for the first time that Pum target specificity is determined not independently but in collaboration with cofactors.
Collapse
|
13
|
A Novel Mutation in Brain Tumor Causes Both Neural Over-Proliferation and Neurodegeneration in Adult Drosophila. G3-GENES GENOMES GENETICS 2018; 8:3331-3346. [PMID: 30126833 PMCID: PMC6169379 DOI: 10.1534/g3.118.200627] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A screen for neuroprotective genes in Drosophila melanogaster led to the identification of a mutation that causes extreme, progressive loss of adult brain neuropil in conjunction with massive brain overgrowth. We mapped the mutation to the brain tumor (brat) locus, which encodes a tripartite motif-NCL-1, HT2A, and LIN-41 (TRIM-NHL) RNA-binding protein with established roles limiting stem cell proliferation in developing brain and ovary. However, a neuroprotective role for brat in the adult Drosophila brain has not been described previously. The new allele, bratcheesehead (bratchs), carries a mutation in the coiled-coil domain of the TRIM motif, and is temperature-sensitive. We demonstrate that mRNA and protein levels of neural stem cell genes are increased in heads of adult bratchs mutants and that the over-proliferation phenotype initiates prior to adult eclosion. We also report that disruption of an uncharacterized gene coding for a presumptive prolyl-4-hydroxylase strongly enhances the over-proliferation and neurodegeneration phenotypes. Together, our results reveal an unexpected role for brat that could be relevant to human cancer and neurodegenerative diseases.
Collapse
|
14
|
Kumar GA, Subramaniam K. PUF-8 facilitates homologous chromosome pairing by promoting proteasome activity during meiotic entry in C. elegans. Development 2018. [PMID: 29540500 DOI: 10.1242/dev.163949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Pairing of homologous chromosomes is essential for genetic recombination during gametogenesis. In many organisms, chromosome ends are attached to cytoplasmic dynein, and dynein-driven chromosomal movements facilitate the pairing process. Factors that promote or control the cytoskeletal tethering of chromosomes are largely unknown. Here, we show that the conserved RNA-binding protein PUF-8 facilitates the tethering and pairing processes in the C. elegans germline by promoting proteasome activity. We have isolated a hypomorphic allele of pas-1, which encodes a proteasome core subunit, and find that the homologous chromosomes fail to pair in the puf-8; pas-1 double mutant due to failure of chromosome tethering. Our results reveal that the puf-8; pas-1 meiotic defects are caused by the loss of proteasome activity. The axis component HTP-3 accumulates prematurely in the double mutant, and reduction of its activity partially suppresses some of the puf-8; pas-1 meiotic defects, suggesting that HTP-3 might be an important target of the proteasome in promoting early meiotic events. In summary, our results reveal a role for the proteasome in chromosome tethering and identify PUF-8 as a regulator of proteasome activity during early meiosis.
Collapse
Affiliation(s)
- Ganga Anil Kumar
- Department of Biotechnology, Indian Institute of Technology-Madras, Chennai 600036, India.,Department of Biological Sciences & Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Kuppuswamy Subramaniam
- Department of Biotechnology, Indian Institute of Technology-Madras, Chennai 600036, India
| |
Collapse
|
15
|
Chartier A, Joly W, Simonelig M. Measurement of mRNA Poly(A) Tail Lengths in Drosophila Female Germ Cells and Germ-Line Stem Cells. Methods Mol Biol 2018; 1463:93-102. [PMID: 27734350 DOI: 10.1007/978-1-4939-4017-2_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
mRNA regulation by poly(A) tail length variations plays an important role in many developmental processes. Recent advances have shown that, in particular, deadenylation (the shortening of mRNA poly(A) tails) is essential for germ-line stem cell biology in the Drosophila ovary. Therefore, a rapid and accurate method to analyze poly(A) tail lengths of specific mRNAs in this tissue is valuable. Several methods of poly(A) test (PAT) assays have been reported to measure mRNA poly(A) tail lengths in vivo. Here, we describe two of these methods (PAT and ePAT) that we have adapted for Drosophila ovarian germ cells and germ-line stem cells.
Collapse
Affiliation(s)
- Aymeric Chartier
- mRNA Regulation and Development, Institut de Génétique Humaine, CNRS UPR1142 and University of Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France
| | - Willy Joly
- mRNA Regulation and Development, Institut de Génétique Humaine, CNRS UPR1142 and University of Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France
| | - Martine Simonelig
- mRNA Regulation and Development, Institut de Génétique Humaine, CNRS UPR1142 and University of Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France
| |
Collapse
|
16
|
Chen D, Dale RK, Lei EP. Shep regulates Drosophila neuronal remodeling by controlling transcription of its chromatin targets. Development 2018; 145:dev.154047. [PMID: 29158441 DOI: 10.1242/dev.154047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 11/07/2017] [Indexed: 11/20/2022]
Abstract
Neuronal remodeling is crucial for formation of the mature nervous system and disruption of this process can lead to neuropsychiatric diseases. Global gene expression changes in neurons during remodeling as well as the factors that regulate these changes remain poorly defined. To elucidate this process, we performed RNA-seq on isolated Drosophila larval and pupal neurons and found upregulated synaptic signaling and downregulated gene expression regulators as a result of normal neuronal metamorphosis. We further tested the role of alan shepard (shep), which encodes an evolutionarily conserved RNA-binding protein required for proper neuronal remodeling. Depletion of shep in neurons prevents the execution of metamorphic gene expression patterns, and shep-regulated genes correspond to Shep chromatin and/or RNA-binding targets. Reduced expression of a Shep-inhibited target gene that we identified, brat, is sufficient to rescue neuronal remodeling defects of shep knockdown flies. Our results reveal direct regulation of transcriptional programs by Shep to regulate neuronal remodeling during metamorphosis.
Collapse
Affiliation(s)
- Dahong Chen
- Nuclear Organization and Gene Expression Section, Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ryan K Dale
- Nuclear Organization and Gene Expression Section, Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elissa P Lei
- Nuclear Organization and Gene Expression Section, Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
17
|
Rojas-Ríos P, Chartier A, Pierson S, Simonelig M. Aubergine and piRNAs promote germline stem cell self-renewal by repressing the proto-oncogene Cbl. EMBO J 2017; 36:3194-3211. [PMID: 29030484 PMCID: PMC5666619 DOI: 10.15252/embj.201797259] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/30/2017] [Accepted: 09/04/2017] [Indexed: 12/19/2022] Open
Abstract
PIWI proteins play essential roles in germ cells and stem cell lineages. In Drosophila, Piwi is required in somatic niche cells and germline stem cells (GSCs) to support GSC self‐renewal and differentiation. Whether and how other PIWI proteins are involved in GSC biology remains unknown. Here, we show that Aubergine (Aub), another PIWI protein, is intrinsically required in GSCs for their self‐renewal and differentiation. Aub needs to be loaded with piRNAs to control GSC self‐renewal and acts through direct mRNA regulation. We identify the Cbl proto‐oncogene, a regulator of mammalian hematopoietic stem cells, as a novel GSC differentiation factor. Aub stimulates GSC self‐renewal by repressing Cbl mRNA translation and does so in part through recruitment of the CCR4‐NOT complex. This study reveals the role of piRNAs and PIWI proteins in controlling stem cell homeostasis via translational repression and highlights piRNAs as major post‐transcriptional regulators in key developmental decisions.
Collapse
Affiliation(s)
- Patricia Rojas-Ríos
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Université de Montpellier, Montpellier Cedex 5, France
| | - Aymeric Chartier
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Université de Montpellier, Montpellier Cedex 5, France
| | - Stéphanie Pierson
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Université de Montpellier, Montpellier Cedex 5, France
| | - Martine Simonelig
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Université de Montpellier, Montpellier Cedex 5, France
| |
Collapse
|
18
|
Singh R, Hansen D. Regulation of the Balance Between Proliferation and Differentiation in Germ Line Stem Cells. Results Probl Cell Differ 2017; 59:31-66. [PMID: 28247045 DOI: 10.1007/978-3-319-44820-6_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In many animals, reproductive fitness is dependent upon the production of large numbers of gametes over an extended period of time. This level of gamete production is possible due to the continued presence of germ line stem cells. These cells can produce two types of daughter cells, self-renewing daughter cells that will maintain the stem cell population and differentiating daughter cells that will become gametes. A balance must be maintained between the proliferating self-renewing cells and those that differentiate for long-term gamete production to be maintained. Too little proliferation can result in depletion of the stem cell population, while too little differentiation can lead to a lack of gamete formation and possible tumor formation. In this chapter, we discuss our current understanding of how the balance between proliferation and differentiation is achieved in three well-studied germ line model systems: the Drosophila female, the mouse male, and the C. elegans hermaphrodite. While these three systems have significant differences in how this balance is regulated, including differences in stem cell population size, signaling pathways utilized, and the use of symmetric and/or asymmetric cell divisions, there are also similarities found between them. These similarities include the reliance on a predominant signaling pathway to promote proliferation, negative feedback loops to rapidly shutoff proliferation-promoting cues, close association of the germ line stem cells with a somatic niche, cytoplasmic connections between cells, projections emanating from the niche cell, and multiple mechanisms to limit the spatial influence of the niche. A comparison between different systems may help to identify elements that are essential for a proper balance between proliferation and differentiation to be achieved and elements that may be achieved through various mechanisms.
Collapse
Affiliation(s)
- Ramya Singh
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada, T2N 1N4
| | - Dave Hansen
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada, T2N 1N4.
| |
Collapse
|
19
|
Pushpa K, Kumar GA, Subramaniam K. Translational Control of Germ Cell Decisions. Results Probl Cell Differ 2017; 59:175-200. [PMID: 28247049 DOI: 10.1007/978-3-319-44820-6_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Germline poses unique challenges to gene expression control at the transcriptional level. While the embryonic germline maintains a global hold on new mRNA transcription, the female adult germline produces transcripts that are not translated into proteins until embryogenesis of subsequent generation. As a consequence, translational control plays a central role in governing various germ cell decisions including the formation of primordial germ cells, self-renewal/differentiation decisions in the adult germline, onset of gametogenesis and oocyte maturation. Mechanistically, several common themes such as asymmetric localization of mRNAs, conserved RNA-binding proteins that control translation by 3' UTR binding, translational activation by the cytoplasmic elongation of the polyA tail and the assembly of mRNA-protein complexes called mRNPs have emerged from the studies on Caenorhabditis elegans, Xenopus and Drosophila. How mRNPs assemble, what influences their dynamics, and how a particular 3' UTR-binding protein turns on the translation of certain mRNAs while turning off other mRNAs at the same time and space are key challenges for future work.
Collapse
Affiliation(s)
- Kumari Pushpa
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Ganga Anil Kumar
- Indian Institute of Technology-Kanpur, Kanpur, India.,Indian Institute of Technology-Madras, Chennai, India
| | | |
Collapse
|
20
|
Eichhorn SW, Subtelny AO, Kronja I, Kwasnieski JC, Orr-Weaver TL, Bartel DP. mRNA poly(A)-tail changes specified by deadenylation broadly reshape translation in Drosophila oocytes and early embryos. eLife 2016; 5. [PMID: 27474798 PMCID: PMC4988829 DOI: 10.7554/elife.16955] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/29/2016] [Indexed: 12/21/2022] Open
Abstract
Because maturing oocytes and early embryos lack appreciable transcription, posttranscriptional regulatory processes control their development. To better understand this control, we profiled translational efficiencies and poly(A)-tail lengths throughout Drosophila oocyte maturation and early embryonic development. The correspondence between translational-efficiency changes and tail-length changes indicated that tail-length changes broadly regulate translation until gastrulation, when this coupling disappears. During egg activation, relative changes in poly(A)-tail length, and thus translational efficiency, were largely retained in the absence of cytoplasmic polyadenylation, which indicated that selective poly(A)-tail shortening primarily specifies these changes. Many translational changes depended on PAN GU and Smaug, and these changes were largely attributable to tail-length changes. Our results also revealed the presence of tail-length-independent mechanisms that maintained translation despite tail-length shortening during oocyte maturation, and prevented essentially all translation of bicoid and several other mRNAs before egg activation. In addition to these fundamental insights, our results provide valuable resources for future studies.
Collapse
Affiliation(s)
- Stephen W Eichhorn
- Howard Hughes Medical Institute, Whitehead Institute for Biomedical Research, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Alexander O Subtelny
- Howard Hughes Medical Institute, Whitehead Institute for Biomedical Research, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, United States
| | - Iva Kronja
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Whitehead Institute for Biomedical Research, Cambridge, United States
| | - Jamie C Kwasnieski
- Howard Hughes Medical Institute, Whitehead Institute for Biomedical Research, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Terry L Orr-Weaver
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Whitehead Institute for Biomedical Research, Cambridge, United States
| | - David P Bartel
- Howard Hughes Medical Institute, Whitehead Institute for Biomedical Research, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
21
|
Abstract
The discovery of a handful of conserved signaling pathways that dictate most aspects of embryonic and post-embryonic development of multicellular organisms has generated a universal view of animal development (Perrimon, N., Pitsouli, C., and Shilo, B. Z. (2012)Cold Spring Harb. Perspect. Biol.4, a005975). Although we have at hand most of the "hardware" elements that mediate cell communication events that dictate cell fate choices, we are still far from a comprehensive mechanistic understanding of these processes. One of the next challenges entails an analysis of developmental signaling pathways from the cell biology perspective. Where in the cell does signaling take place, and how do general cellular machineries and structures contribute to the regulation of developmental signaling? Another challenge is to examine these signaling pathways from a quantitative perspective, rather than as crude on/off switches. This requires more precise measurements, and incorporation of the time element to generate a dynamic sequence instead of frozen snapshots of the process. The quantitative outlook also brings up the issue of precision, and the unknown mechanisms that buffer variability in signaling between embryos, to produce a robust and reproducible output. Although these issues are universal to all multicellular organisms, they can be effectively tackled in theDrosophilamodel, by a combination of genetic manipulations, biochemical analyses, and a variety of imaging techniques. This review will present some of the recent advances that were accomplished by utilizing the versatility of theDrosophilasystem.
Collapse
Affiliation(s)
- Ben-Zion Shilo
- From the Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|