1
|
Brashears HJ, Lea K, Ferdous SR, Dasgupta S, Baldwin EH, Bain LJ. Tert-butylphenol exposure alters cartilage and bone development in zebrafish. CHEMOSPHERE 2025; 376:144300. [PMID: 40096755 DOI: 10.1016/j.chemosphere.2025.144300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/19/2025]
Abstract
Phenolic antioxidants, such as 2,4-di-tert-butylphenol (2,4-DTBP), 2-tert-butyl phenol (2-BP), and 4-tert-butyl phenol (4-BP), are additives used in domestic water pipes, food packaging, paints, and other industrial products. As additives, they can leach from products and are frequently found in both environmental and human biological samples. Previous studies have demonstrated that 2,4-DTBP exposure can impair the differentiation of human iPS cells into somite- and sclerotome-like cells, and reduce key processes involved in osteoblast formation. Therefore, the goal of this study is to determine if 2-BP, 4-BP, 2,4-DTBP, and its metabolite 3,5-di-tert-butylcatechol (3,5-DTBC) impacts the development of cartilage and bone in vivo, using zebrafish as a model organism. Zebrafish embryos were exposed to increasing concentrations of each of the four chemicals from 1 h post fertilization (hpf) until 5 days post fertilization (dpf), and analyzed for markers of bone and cartilage development. At their highest concentrations tested, both 2-BP and 2,4-DTBP altered axial skeleton formation, with 76% and 61% of the zebrafish showing spinal curvatures, respectively. To corroborate these changes, the expression of marker transcripts were examined. 2-BP exposure reduced mRNA expression of the bone mineralization marker sparc by 1.6-fold. In contrast, 2,4-DTBP increased sparc transcript expression by 1.4-fold. All four compounds significantly upregulated sox9a, a chondrogenesis marker, between 1.4- to 5-fold. Changes in tail cartilage formation were noted using Alician blue staining, with 2,4-DTBP reducing width, length, and cartilage area of the tail, while 2-BP reduced the tail width but with increased the tail base, yielding a more straightened tail. Principle component analysis (PCA) demonstrated associations between sox9a, sparc, nrf2a, reactive oxygen species (ROS), and tail cartilage measurements, particularly in the 2,4-DTBP exposures, suggesting the involvement of nrf2a signaling in impairing cartilage formation. Overall, the study shows that each of the phenolic antioxidants differentially affects the development of bone and cartilage structures in zebrafish.
Collapse
Affiliation(s)
- Haley Jo Brashears
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC, 29634, USA
| | - Kayla Lea
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC, 29634, USA
| | - Syed Rubaiyat Ferdous
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC, 29634, USA
| | - Subham Dasgupta
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC, 29634, USA
| | - Eric H Baldwin
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC, 29634, USA
| | - Lisa J Bain
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC, 29634, USA.
| |
Collapse
|
2
|
Ottappilakkil H, Perumal E. Fluoride Exposure Modulates Skeletal Development and Mineralization in Zebrafish Larvae. ENVIRONMENTAL TOXICOLOGY 2025; 40:835-847. [PMID: 39865316 DOI: 10.1002/tox.24474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/10/2024] [Accepted: 01/12/2025] [Indexed: 01/28/2025]
Abstract
The presence of high levels of fluoride (F) in groundwater is a major issue worldwide. Although F is essential for healthy teeth and bones, excessive exposure can cause fluorosis or F toxicity. This condition primarily affects the hard tissues due to their high F retention capacity. F accumulation alters bone formation and resorption mechanisms interfering with mineral homeostasis and eventually manifests as skeletal fluorosis. Albeit the numerous studies on skeletal fluorosis, the effect of F on developmental osteogenesis is inconclusive. In light of this, we studied the effect of F on osteogenic differentiation, bone development, and mineralization in zebrafish. Zebrafish embryos were subjected to a low (25 ppm NaF), and a moderately high (50 ppm NaF) dose, along with a control (E3 medium alone) until 7 days postfertilization (dpf). The F content in the larvae was quantified to reveal a dose-dependent increase in the exposed groups. Alizarin Red and alkaline phosphatase (ALP) staining suggested enhanced mineralization in the F-treated groups. Quantitative analyses of the ALP activity and hydroxyproline (Hyp) content revealed similar results. Alcian blue staining of pharyngeal cartilages showed that F exposure alters the morphology of the major cartilages, indicating a possible craniofacial defect. Moreover, gene expression analyses of the bone markers associated with osteogenic differentiation, early mineralization, and remodeling (runx2a/b, bmp4, ocn, osx, col1a1, alp, rank, rankl, and opg) showed enhanced expression in the low F group. While the 50 ppm F group showed a decline in osteogenic activity, a considerable increase in the expression of mineralization markers was observed. The expression levels of cartilage markers sox9a and sox9b, remained insignificant, indicating the effect of F toxicity on osteogenesis and mineralization. Also, F exposure interferes with bone metabolism through altered osteogenic differentiation, development, and mineralization in zebrafish larvae.
Collapse
Affiliation(s)
- Harsheema Ottappilakkil
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
3
|
Ford C, de Sena-Tomás C, Wun TTR, Aleman AG, Rangaswamy U, Leyhr J, Nuñez MI, Gao CZ, Nim HT, See M, Coppola U, Waxman JS, Ramialison M, Haitina T, Smeeton J, Sanges R, Targoff KL. Nkx2.7 is a conserved regulator of craniofacial development. Nat Commun 2025; 16:3802. [PMID: 40268889 PMCID: PMC12019251 DOI: 10.1038/s41467-025-58821-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/02/2025] [Indexed: 04/25/2025] Open
Abstract
Craniofacial malformations arise from developmental defects in the head, face, and neck with phenotypes such as 22q11.2 deletion syndrome illustrating a developmental link between cardiovascular and craniofacial morphogenesis. NKX2-5 is a key cardiac transcription factor associated with congenital heart disease and mouse models of Nkx2-5 deficiency highlight roles in cardiac development. In zebrafish, nkx2.5 and nkx2.7 are paralogues in the NK4 family expressed in cardiomyocytes and pharyngeal arches. Despite shared cellular origins of cardiac and craniofacial tissues, the function of NK4 factors in head and neck patterning has not been elucidated. Molecular evolutionary analysis of NK4 genes shows that nkx2.5 and nkx2.7 are ohnologs resulting from whole genome duplication events. Nkx2.7 serves as a previously unappreciated regulator of branchiomeric muscle and cartilage formation for which nkx2.5 cannot fully compensate. Mechanistically, our results highlight that Nkx2.7 patterns the cranial neural crest and functions upstream of Endothelin1 to inhibit Notch signals. Together, our studies shed light on an evolutionarily conserved Nkx transcription factor with unique functions in vertebrate craniofacial development, advancing our understanding of congenital head and neck deformities.
Collapse
Affiliation(s)
- Caitlin Ford
- Department of Genetics & Development, College of Physicians & Surgeons, Columbia University, New York, NY, 10032, USA
- Division of Cardiology, Department of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, NY, 10032, USA
- Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA
| | - Carmen de Sena-Tomás
- Division of Cardiology, Department of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, NY, 10032, USA
- Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer, 08036, Barcelona, Spain
- Department of Genetics, Microbiology and Statistics, University of Barcelona, 08028, Barcelona, Spain
| | - Tint Tha Ra Wun
- Division of Cardiology, Department of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, NY, 10032, USA
- Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA
| | - Angelika G Aleman
- Division of Cardiology, Department of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, NY, 10032, USA
- Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA
- Department of Physiology & Cellular Biophysics, College of Physicians & Surgeons, Columbia University, New York, NY, 10032, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Uday Rangaswamy
- Functional and Structural Genomics, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136, Trieste, Italy
| | - Jake Leyhr
- Department of Organismal Biology, Uppsala University, 75236, Uppsala, Sweden
| | - María I Nuñez
- Division of Cardiology, Department of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, NY, 10032, USA
- Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA
| | - Cynthia Zehui Gao
- Division of Cardiology, Department of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, NY, 10032, USA
- Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA
- Department of Computer Science, Columbia University, New York, NY, 10027, USA
| | - Hieu T Nim
- The Novo Nordisk Foundation Center for Stem Cell Medicine & Stem Cell Biology, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, 3052, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
- Stem Cell Medicine, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
| | - Michael See
- The Novo Nordisk Foundation Center for Stem Cell Medicine & Stem Cell Biology, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
- Stem Cell Medicine, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
| | - Ugo Coppola
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, FL, 33965, USA
| | - Joshua S Waxman
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Mirana Ramialison
- The Novo Nordisk Foundation Center for Stem Cell Medicine & Stem Cell Biology, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, 3052, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
- Stem Cell Medicine, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
| | - Tatjana Haitina
- Department of Organismal Biology, Uppsala University, 75236, Uppsala, Sweden
| | - Joanna Smeeton
- Department of Genetics & Development, College of Physicians & Surgeons, Columbia University, New York, NY, 10032, USA
- Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA
- Department of Rehabilitation and Regenerative Medicine, College of Physicians & Surgeons, Columbia University, New York, NY, 10032, USA
| | - Remo Sanges
- Functional and Structural Genomics, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136, Trieste, Italy
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Via Enrico Melen 83, 16152, Genova, Italy
| | - Kimara L Targoff
- Division of Cardiology, Department of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, NY, 10032, USA.
- Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
4
|
Nayak PK, Subramanian A, Schilling TF. Transcriptome profiling of tendon fibroblasts at the onset of embryonic muscle contraction reveals novel force-responsive genes. eLife 2025; 14:e105802. [PMID: 40145570 PMCID: PMC12040314 DOI: 10.7554/elife.105802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Mechanical forces play a critical role in tendon development and function, influencing cell behavior through mechanotransduction signaling pathways and subsequent extracellular matrix (ECM) remodeling. Here, we investigate the molecular mechanisms by which tenocytes in developing zebrafish embryos respond to muscle contraction forces during the onset of swimming and cranial muscle activity. Using genome-wide bulk RNA sequencing of FAC-sorted tenocytes we identify novel tenocyte markers and genes involved in tendon mechanotransduction. Embryonic tendons show dramatic changes in expression of matrix remodeling associated 5b (mxra5b), matrilin 1 (matn1), and the transcription factor kruppel-like factor 2a (klf2a), as muscles start to contract. Using embryos paralyzed either by loss of muscle contractility or neuromuscular stimulation we confirm that muscle contractile forces influence the spatial and temporal expression patterns of all three genes. Quantification of these gene expression changes across tenocytes at multiple tendon entheses and myotendinous junctions reveals that their responses depend on force intensity, duration, and tissue stiffness. These force-dependent feedback mechanisms in tendons, particularly in the ECM, have important implications for improved treatments of tendon injuries and atrophy.
Collapse
Affiliation(s)
- Pavan K Nayak
- Department of Developmental and Cell Biology, University of CaliforniaIrvineUnited States
| | - Arul Subramanian
- Department of Developmental and Cell Biology, University of CaliforniaIrvineUnited States
| | - Thomas F Schilling
- Department of Developmental and Cell Biology, University of CaliforniaIrvineUnited States
| |
Collapse
|
5
|
Fragale N, Divvela SSK, Williams-Ward VC, Brand-Saberi B. Loss of Atoh8 Affects Neurocranial and Axial Skeleton Development in Zebrafish. FRONT BIOSCI-LANDMRK 2025; 30:26806. [PMID: 40152384 DOI: 10.31083/fbl26806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 03/29/2025]
Abstract
BACKGROUND The basic helix-loop-helix (bHLH) transcription factor atonal homologue 8 (Atoh8) has been implicated in various developmental and physiological processes by means of transient knockdown and conditional knockout approaches in zebrafish, chick and mouse. Despite its demonstrated involvement in multiple tissues, the role of Atoh8 remains elusive in zebrafish. A recent permanent knockout study in zebrafish investigated the role of Atoh8 on the background of previous morpholino studies which demonstrated various developmental defects but could not find any of the morpholino-based effects in the mutant. In mice, a knockout study demonstrated involvement of the transcription factor in skeletal development, showing that disruption of the atoh8 gene results in reduction of skeletal size. We investigated a mutant fish line generated using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) (CRISPR/Cas9)-technology for possible phenotypic effects on zebrafish skeletogenesis. METHODS Here, we present a CRISPR/Cas9-generated atoh8 permanent zebrafish mutant and investigate the phenotypic effects of the knockout on the developing zebrafish craniofacial and axial skeleton. We investigated the expression pattern of the gene in wildtype and conducted detailed morphometric analysis for a variety of bone and cartilage elements of the developing skeleton at 12 days post fertilisation (dpf) in zebrafish siblings from a heterozygous mating using detailed morphometric measurements and statistical analysis of the results. RESULTS Homozygous mutants are viable into late adulthood and show no overt morphological phenotype. Despite the prominent appearance of atoh8 signal in various embryonic and larval craniofacial and axial skeletal structures, detailed morphometric analysis revealed only subtle phenotypic effects of the mutation on skeletal development in zebrafish. We found the formation of the orbital cartilages of the developing neurocranium and the progress of chordacentra mineralisation to be negatively affected by loss of the transcription factor. CONCLUSIONS Despite the very subtle phenotypic effect of our mutation, we were able to show involvement of atoh8 in the skeletal development of zebrafish. We attribute the mild phenotype to a compensatory mechanism induced by nonsense-mediated degradation of messenger ribonucleic acid (mRNA) as suggested in the recent literature. The effect of atoh8-disruption on zebrafish skeletal development suggests that the loss of atoh8 cannot be compensated for at interfaces where more than one embryonic cell lineage contributes to bone and cartilage formation.
Collapse
Affiliation(s)
- Ninfa Fragale
- Department of Anatomy and Molecular Embryology, Institute of Anatomy, Ruhr-University, 44801 Bochum, Germany
| | | | | | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Institute of Anatomy, Ruhr-University, 44801 Bochum, Germany
| |
Collapse
|
6
|
Healey HM, Penn HB, Small CM, Bassham S, Goyal V, Woods MA, Cresko WA. Single-cell sequencing provides clues about the developmental genetic basis of evolutionary adaptations in syngnathid fishes. eLife 2025; 13:RP97764. [PMID: 39898521 PMCID: PMC11790252 DOI: 10.7554/elife.97764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
Seahorses, pipefishes, and seadragons are fishes from the family Syngnathidae that have evolved extraordinary traits including male pregnancy, elongated snouts, loss of teeth, and dermal bony armor. The developmental genetic and cellular changes that led to the evolution of these traits are largely unknown. Recent syngnathid genome assemblies revealed suggestive gene content differences and provided the opportunity for detailed genetic analyses. We created a single-cell RNA sequencing atlas of Gulf pipefish embryos to understand the developmental basis of four traits: derived head shape, toothlessness, dermal armor, and male pregnancy. We completed marker gene analyses, built genetic networks, and examined the spatial expression of select genes. We identified osteochondrogenic mesenchymal cells in the elongating face that express regulatory genes bmp4, sfrp1a, and prdm16. We found no evidence for tooth primordia cells, and we observed re-deployment of osteoblast genetic networks in developing dermal armor. Finally, we found that epidermal cells expressed nutrient processing and environmental sensing genes, potentially relevant for the brooding environment. The examined pipefish evolutionary innovations are composed of recognizable cell types, suggesting that derived features originate from changes within existing gene networks. Future work addressing syngnathid gene networks across multiple stages and species is essential for understanding how the novelties of these fish evolved.
Collapse
Affiliation(s)
- Hope M Healey
- Institute of Ecology and Evolution, University of OregonEugeneUnited States
- Knight Campus for Accelerating Scientific Impact, University of OregonEugeneUnited States
| | - Hayden B Penn
- Institute of Ecology and Evolution, University of OregonEugeneUnited States
| | - Clayton M Small
- Institute of Ecology and Evolution, University of OregonEugeneUnited States
- School of Computer and Data Science, University of OregonEugeneUnited States
| | - Susan Bassham
- Institute of Ecology and Evolution, University of OregonEugeneUnited States
| | - Vithika Goyal
- Institute of Ecology and Evolution, University of OregonEugeneUnited States
| | - Micah A Woods
- Institute of Ecology and Evolution, University of OregonEugeneUnited States
| | - William A Cresko
- Institute of Ecology and Evolution, University of OregonEugeneUnited States
- Knight Campus for Accelerating Scientific Impact, University of OregonEugeneUnited States
| |
Collapse
|
7
|
Psutkova V, Nickl P, Brezinova V, Machonova O, Machon O. Transcription factor Meis1b regulates craniofacial morphogenesis in zebrafish. Dev Dyn 2025; 254:40-60. [PMID: 39087648 DOI: 10.1002/dvdy.731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/28/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Meis family of transcription factors operates in Pbx-Meis-Hox regulatory network controlling development of various tissues including eye, limbs, heart, hindbrain or craniofacial skeletal elements originating from the neural crest. Although studies in mouse provide abundant information about Meis factors function in embryogenesis, little is known about their role in zebrafish. RESULTS We generated zebrafish lines carrying null mutations in meis1a, meis1b, meis2a, and meis2b genes. Only meis1b mutants are lethal at larval stage around 13 dpf whereas the other mutant lines are viable and fertile. We focused on development of neural crest-derived craniofacial structures such as tendons, cranial nerves, cartilage and accompanying muscles. Meis1b mutants displayed morphogenetic abnormalities in the cartilage originating from the first and second pharyngeal arches. Meckel's cartilage was shorter and wider with fused anterior symphysis and abnormal chondrocyte organization. This resulted in impaired tendons and muscle fiber connections while tenocyte development was not largely affected. CONCLUSIONS Loss-of-function mutation in meis1b affects cartilage morphology in the lower jaw that leads to disrupted organization of muscles and tendons.
Collapse
Affiliation(s)
- Viktorie Psutkova
- Department of Developmental Biology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Nickl
- Department of Developmental Biology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Veronika Brezinova
- Department of Developmental Biology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Olga Machonova
- Laboratory of Cell Differentiation, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Ondrej Machon
- Department of Developmental Biology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
8
|
Masiero C, Aresi C, Forlino A, Tonelli F. Zebrafish Models for Skeletal and Extraskeletal Osteogenesis Imperfecta Features: Unveiling Pathophysiology and Paving the Way for Drug Discovery. Calcif Tissue Int 2024; 115:931-959. [PMID: 39320469 PMCID: PMC11607041 DOI: 10.1007/s00223-024-01282-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/27/2024] [Indexed: 09/26/2024]
Abstract
In the last decades, the easy genetic manipulation, the external fertilization, the high percentage of homology with human genes and the reduced husbandry costs compared to rodents, made zebrafish a valid model for studying human diseases and for developing new therapeutical strategies. Since zebrafish shares with mammals the same bone cells and ossification types, it became widely used to dissect mechanisms and possible new therapeutic approaches in the field of common and rare bone diseases, such as osteoporosis and osteogenesis imperfecta (OI), respectively. OI is a heritable skeletal disorder caused by defects in gene encoding collagen I or proteins/enzymes necessary for collagen I synthesis and secretion. Nevertheless, OI patients can be also characterized by extraskeletal manifestations such as dentinogenesis imperfecta, muscle weakness, cardiac valve and pulmonary abnormalities and skin laxity. In this review, we provide an overview of the available zebrafish models for both dominant and recessive forms of OI. An updated description of all the main similarities and differences between zebrafish and mammal skeleton, muscle, heart and skin, will be also discussed. Finally, a list of high- and low-throughput techniques available to exploit both larvae and adult OI zebrafish models as unique tools for the discovery of new therapeutic approaches will be presented.
Collapse
Affiliation(s)
- Cecilia Masiero
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3B, 27100, Pavia, Italy
| | - Carla Aresi
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3B, 27100, Pavia, Italy
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3B, 27100, Pavia, Italy.
| | - Francesca Tonelli
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3B, 27100, Pavia, Italy
| |
Collapse
|
9
|
Healey HM, Penn HB, Small CM, Bassham S, Goyal V, Woods MA, Cresko WA. Single Cell Sequencing Provides Clues about the Developmental Genetic Basis of Evolutionary Adaptations in Syngnathid Fishes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.08.588518. [PMID: 38645265 PMCID: PMC11030337 DOI: 10.1101/2024.04.08.588518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Seahorses, pipefishes, and seadragons are fishes from the family Syngnathidae that have evolved extraordinary traits including male pregnancy, elongated snouts, loss of teeth, and dermal bony armor. The developmental genetic and cellular changes that led to the evolution of these traits are largely unknown. Recent syngnathid genome assemblies revealed suggestive gene content differences and provide the opportunity for detailed genetic analyses. We created a single cell RNA sequencing atlas of Gulf pipefish embryos to understand the developmental basis of four traits: derived head shape, toothlessness, dermal armor, and male pregnancy. We completed marker gene analyses, built genetic networks, and examined spatial expression of select genes. We identified osteochondrogenic mesenchymal cells in the elongating face that express regulatory genes bmp4, sfrp1a, and prdm16. We found no evidence for tooth primordia cells, and we observed re-deployment of osteoblast genetic networks in developing dermal armor. Finally, we found that epidermal cells expressed nutrient processing and environmental sensing genes, potentially relevant for the brooding environment. The examined pipefish evolutionary innovations are composed of recognizable cell types, suggesting derived features originate from changes within existing gene networks. Future work addressing syngnathid gene networks across multiple stages and species is essential for understanding how their novelties evolved.
Collapse
Affiliation(s)
- Hope M Healey
- Institute of Ecology and Evolution, University of Oregon
| | - Hayden B Penn
- Institute of Ecology and Evolution, University of Oregon
| | - Clayton M Small
- Institute of Ecology and Evolution, University of Oregon
- School of Computer and Data Science, University of Oregon
| | - Susan Bassham
- Institute of Ecology and Evolution, University of Oregon
| | - Vithika Goyal
- Institute of Ecology and Evolution, University of Oregon
| | - Micah A Woods
- Institute of Ecology and Evolution, University of Oregon
| | - William A Cresko
- Institute of Ecology and Evolution, University of Oregon
- Knight Campus for Accelerating Scientific Impact, University of Oregon
| |
Collapse
|
10
|
Caetano da Silva C, Macias Trevino C, Mitchell J, Murali H, Tsimbal C, Dalessandro E, Carroll SH, Kochhar S, Curtis SW, Cheng CHE, Wang F, Kutschera E, Carstens RP, Xing Y, Wang K, Leslie EJ, Liao EC. Functional analysis of ESRP1/2 gene variants and CTNND1 isoforms in orofacial cleft pathogenesis. Commun Biol 2024; 7:1040. [PMID: 39179789 PMCID: PMC11344038 DOI: 10.1038/s42003-024-06715-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024] Open
Abstract
Orofacial cleft (OFC) is a common human congenital anomaly. Epithelial-specific RNA splicing regulators ESRP1 and ESRP2 regulate craniofacial morphogenesis and their disruption result in OFC in zebrafish, mouse and humans. Using esrp1/2 mutant zebrafish and murine Py2T cell line models, we functionally tested the pathogenicity of human ESRP1/2 gene variants. We found that many variants predicted by in silico methods to be pathogenic were functionally benign. Esrp1 also regulates the alternative splicing of Ctnnd1 and these genes are co-expressed in the embryonic and oral epithelium. In fact, over-expression of ctnnd1 is sufficient to rescue morphogenesis of epithelial-derived structures in esrp1/2 zebrafish mutants. Additionally, we identified 13 CTNND1 variants from genome sequencing of OFC cohorts, confirming CTNND1 as a key gene in human OFC. This work highlights the importance of functional assessment of human gene variants and demonstrates the critical requirement of Esrp-Ctnnd1 acting in the embryonic epithelium to regulate palatogenesis.
Collapse
Affiliation(s)
- Caroline Caetano da Silva
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | - Hemma Murali
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Casey Tsimbal
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Shriners Hospital for Children, Tampa, FL, USA
| | - Eileen Dalessandro
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Shannon H Carroll
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Shriners Hospital for Children, Tampa, FL, USA
| | - Simren Kochhar
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sarah W Curtis
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ching Hsun Eric Cheng
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Feng Wang
- Center for Genomic Medicine, Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Eric Kutschera
- Center for Genomic Medicine, Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Russ P Carstens
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yi Xing
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Center for Genomic Medicine, Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kai Wang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Elizabeth J Leslie
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Eric C Liao
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Harvard Medical School, Boston, MA, USA.
- Shriners Hospital for Children, Tampa, FL, USA.
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
11
|
da Silva CC, Trevino CM, Mitchell J, Murali H, Tsimbal C, Dalessandro E, Carroll SH, Kochhar S, Curtis SW, Cheng CHE, Wang F, Kutschera E, Carstens RP, Xing Y, Wang K, Leslie EJ, Liao EC. Functional analysis of ESRP1/2 gene variants and CTNND1 isoforms in orofacial cleft pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601574. [PMID: 39005284 PMCID: PMC11245018 DOI: 10.1101/2024.07.02.601574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Orofacial cleft (OFC) is a common human congenital anomaly. Epithelial-specific RNA splicing regulators ESRP1 and ESRP2 regulate craniofacial morphogenesis and their disruption result in OFC in zebrafish, mouse and humans. Using esrp1/2 mutant zebrafish and murine Py2T cell line models, we functionally tested the pathogenicity of human ESRP1/2 gene variants. We found that many variants predicted by in silico methods to be pathogenic were functionally benign. Esrp1 also regulates the alternative splicing of Ctnnd1 and these genes are co-expressed in the embryonic and oral epithelium. In fact, over-expression of ctnnd1 is sufficient to rescue morphogenesis of epithelial-derived structures in esrp1/2 zebrafish mutants. Additionally, we identified 13 CTNND1 variants from genome sequencing of OFC cohorts, confirming CTNND1 as a key gene in human OFC. This work highlights the importance of functional assessment of human gene variants and demonstrates the critical requirement of Esrp-Ctnnd1 acting in the embryonic epithelium to regulate palatogenesis.
Collapse
Affiliation(s)
- Caroline Caetano da Silva
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of Philadelphia, PA, USA
| | | | | | - Hemma Murali
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Casey Tsimbal
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of Philadelphia, PA, USA
- Shriners Hospital for Children, Tampa, FL, USA
| | - Eileen Dalessandro
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of Philadelphia, PA, USA
| | - Shannon H. Carroll
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of Philadelphia, PA, USA
- Shriners Hospital for Children, Tampa, FL, USA
| | - Simren Kochhar
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sarah W. Curtis
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ching Hsun Eric Cheng
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of Philadelphia, PA, USA
| | - Feng Wang
- Center for Genomic Medicine, Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, PA, USA
| | - Eric Kutschera
- Center for Genomic Medicine, Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, PA, USA
| | - Russ P. Carstens
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yi Xing
- Center for Genomic Medicine, Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kai Wang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Elizabeth J. Leslie
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Eric C. Liao
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of Philadelphia, PA, USA
- Harvard Medical School, Boston, MA, USA
- Shriners Hospital for Children, Tampa, FL, USA
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
12
|
Incardona JP, Linbo TL, Cameron JR, Scholz NL. Structure-activity relationships for alkyl-phenanthrenes support two independent but interacting synergistic models for PAC mixture potency. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170544. [PMID: 38309367 DOI: 10.1016/j.scitotenv.2024.170544] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/19/2024] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
Multiple lines of evidence at whole animal, cellular and molecular levels implicate polycyclic aromatic compounds (PACs) with three rings as drivers of crude oil toxicity to developing fish. Phenanthrene (P0) and its alkylated homologs (C1- through C4-phenanthrenes) comprise the most prominent subfraction of tricyclic PACs in crude oils. Among this family, P0 has been studied intensively, with more limited detail available for the C4-phenanthrene 1-methyl-7-isopropyl-phenanthrene (1-M,7-IP, or retene). While both compounds are cardiotoxic, P0 impacts embryonic cardiac function and development through direct blockade of K+ and Ca2+ currents that regulate cardiomyocyte contractions. In contrast, 1-M,7-IP dysregulates aryl hydrocarbon receptor (AHR) activation in developing ventricular cardiomyocytes. Although no other compounds have been assessed in detail across the larger family of alkylated phenanthrenes, increasing alkylation might be expected to shift phenanthrene family member activity from K+/Ca2+ ion current blockade to AHR activation. Using embryos of two distantly related fish species, zebrafish and Atlantic haddock, we tested 14 alkyl-phenanthrenes in both acute and latent developmental cardiotoxicity assays. All compounds were cardiotoxic, and effects were resolved into impacts on multiple, highly specific aspects of heart development or function. Craniofacial defects were clearly linked to developmental cardiotoxicity. Based on these findings, we suggest a novel framework to delineate the developmental toxicity of petrogenic PAC mixtures in fish, which incorporates multi-mechanistic pathways that produce interactive synergism at the organ level. In addition, relationships among measured embryo tissue concentrations, cytochrome P4501A mRNA induction, and cardiotoxic responses suggest a two-compartment toxicokinetic model that independently predicts high potency of PAC mixtures through classical metabolic synergism. These two modes of synergism, specific to the sub-fraction of phenanthrenes, are sufficient to explain the high embryotoxic potency of crude oils, independent of as-yet unmeasured compounds in these complex environmental mixtures.
Collapse
Affiliation(s)
- John P Incardona
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA Fisheries, Seattle, WA, USA.
| | - Tiffany L Linbo
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA Fisheries, Seattle, WA, USA
| | - James R Cameron
- Saltwater, Inc., Under Contract to Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Nathaniel L Scholz
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA Fisheries, Seattle, WA, USA
| |
Collapse
|
13
|
Abrar M, Ali S, Hussain I, Khatoon H, Batool F, Ghazanfar S, Corcoran D, Kawakami Y, Abbasi AA. Cis-regulatory control of mammalian Trps1 gene expression. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:85-100. [PMID: 38369890 PMCID: PMC10978278 DOI: 10.1002/jez.b.23246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 12/22/2023] [Accepted: 01/31/2024] [Indexed: 02/20/2024]
Abstract
TRPS1 serves as the causative gene for tricho-rhino phalangeal syndrome, known for its craniofacial and skeletal abnormalities. The Trps1 gene encodes a protein that represses Wnt signaling through strong interactions with Wnt signaling inhibitors. The identification of genomic cis-acting regulatory sequences governing Trps1 expression is crucial for understanding its role in embryogenesis. Nevertheless, to date, no investigations have been conducted concerning these aspects of Trps1. To identify deeply conserved noncoding elements (CNEs) within the Trps1 locus, we employed a comparative genomics approach, utilizing slowly evolving fish such as coelacanth and spotted gar. These analyses resulted in the identification of eight CNEs in the intronic region of the Trps1 gene. Functional characterization of these CNEs in zebrafish revealed their regulatory potential in various tissues, including pectoral fins, heart, and pharyngeal arches. RNA in-situ hybridization experiments revealed concordance between the reporter expression pattern induced by the identified set of CNEs and the spatial expression pattern of the trps1 gene in zebrafish. Comparative in vivo data from zebrafish and mice for CNE7/hs919 revealed conserved functions of these enhancers. Each of these eight CNEs was further investigated in cell line-based reporter assays, revealing their repressive potential. Taken together, in vivo and in vitro assays suggest a context-dependent dual functionality for the identified set of Trps1-associated CNE enhancers. This functionally characterized set of CNE-enhancers will contribute to a more comprehensive understanding of the developmental roles of Trps1 and can aid in the identification of noncoding DNA variants associated with human diseases.
Collapse
Affiliation(s)
- Muhammad Abrar
- National Center for Bioinformatics, program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad Pakistan
| | - Shahid Ali
- National Center for Bioinformatics, program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad Pakistan
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA
| | - Irfan Hussain
- National Center for Bioinformatics, program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad Pakistan
- Center of regenerative medicine and stem cells research Aga Khan University hospital Karachi
| | - Hizran Khatoon
- National Center for Bioinformatics, program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad Pakistan
| | - Fatima Batool
- National Center for Bioinformatics, program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad Pakistan
| | - Shakira Ghazanfar
- National Institute for Genomics Advanced Biotechnology, National Agriculture Research Centre (NARC), Islamabad-45500, Pakistan
| | - Dylan Corcoran
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455 United States
| | - Yasuhiko Kawakami
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455 United States
| | - Amir Ali Abbasi
- National Center for Bioinformatics, program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad Pakistan
| |
Collapse
|
14
|
Fox SC, Waskiewicz AJ. Transforming growth factor beta signaling and craniofacial development: modeling human diseases in zebrafish. Front Cell Dev Biol 2024; 12:1338070. [PMID: 38385025 PMCID: PMC10879340 DOI: 10.3389/fcell.2024.1338070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024] Open
Abstract
Humans and other jawed vertebrates rely heavily on their craniofacial skeleton for eating, breathing, and communicating. As such, it is vital that the elements of the craniofacial skeleton develop properly during embryogenesis to ensure a high quality of life and evolutionary fitness. Indeed, craniofacial abnormalities, including cleft palate and craniosynostosis, represent some of the most common congenital abnormalities in newborns. Like many other organ systems, the development of the craniofacial skeleton is complex, relying on specification and migration of the neural crest, patterning of the pharyngeal arches, and morphogenesis of each skeletal element into its final form. These processes must be carefully coordinated and integrated. One way this is achieved is through the spatial and temporal deployment of cell signaling pathways. Recent studies conducted using the zebrafish model underscore the importance of the Transforming Growth Factor Beta (TGF-β) and Bone Morphogenetic Protein (BMP) pathways in craniofacial development. Although both pathways contain similar components, each pathway results in unique outcomes on a cellular level. In this review, we will cover studies conducted using zebrafish that show the necessity of these pathways in each stage of craniofacial development, starting with the induction of the neural crest, and ending with the morphogenesis of craniofacial elements. We will also cover human skeletal and craniofacial diseases and malformations caused by mutations in the components of these pathways (e.g., cleft palate, craniosynostosis, etc.) and the potential utility of zebrafish in studying the etiology of these diseases. We will also briefly cover the utility of the zebrafish model in joint development and biology and discuss the role of TGF-β/BMP signaling in these processes and the diseases that result from aberrancies in these pathways, including osteoarthritis and multiple synostoses syndrome. Overall, this review will demonstrate the critical roles of TGF-β/BMP signaling in craniofacial development and show the utility of the zebrafish model in development and disease.
Collapse
|
15
|
Yang S, Xu X, Yin Z, Liu Y, Wang H, Guo J, Wang F, Bao Y, Zhang T, Sun S. nkx2.3 is responsible for posterior pharyngeal cartilage formation by inhibiting Fgf signaling. Heliyon 2023; 9:e21915. [PMID: 38034615 PMCID: PMC10682621 DOI: 10.1016/j.heliyon.2023.e21915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Nkx2.3, a transcription factor, plays important roles in various developmental processes. However, the mechanisms underlying nkx2.3's regulation of pouch and pharyngeal arch development in zebrafish remain unclear. In this study, we demonstrated that knockdown or knockout of nkx2.3 resulted in the absence of posterior ceratobranchial cartilages in zebrafish. The absence of posterior pharyngeal cartilages is a consequence of the compromised proliferation and differentiation and survival of cranial neural crest cells (CNCCs). Notably, we found that nkx2.3 was not involved in endoderm pouch formation. Additionally, our findings suggested that nkx2.3 negatively regulated Fibroblast growth factor (Fgf) signaling, as overexpression of fgf8 could mimic the phenotype observed in nkx2.3 morphants, suppressing CNCC differentiation. Moreover, inhibiting Fgf signaling restored the abnormalities in posterior cartilages induced by nkx2.3 knockdown. These findings establish the essential role of nkx2.3 in the development of posterior ceratobranchial cartilages through the inhibition of fgf8.
Collapse
Affiliation(s)
- Shuyan Yang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Xin Xu
- Department of Biochemistry and Molecular Biology, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Zheng Yin
- Department of Biochemistry and Molecular Biology, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Yuelin Liu
- Department of Biochemistry and Molecular Biology, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Handong Wang
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Jin Guo
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Fang Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Yihua Bao
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Shaoguang Sun
- Department of Biochemistry and Molecular Biology, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| |
Collapse
|
16
|
Liu S, Kawanishi T, Shimada A, Ikeda N, Yamane M, Takeda H, Tasaki J. Identification of an adverse outcome pathway (AOP) for chemical-induced craniofacial anomalies using the transgenic zebrafish model. Toxicol Sci 2023; 196:38-51. [PMID: 37531284 PMCID: PMC10614053 DOI: 10.1093/toxsci/kfad078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023] Open
Abstract
Craniofacial anomalies are one of the most frequent birth defects worldwide and are often caused by genetic and environmental factors such as pharmaceuticals and chemical agents. Although identifying adverse outcome pathways (AOPs) is a central issue for evaluating the teratogenicity, the AOP causing craniofacial anomalies has not been identified. Recently, zebrafish has gained interest as an emerging model for predicting teratogenicity because of high throughput, cost-effectiveness and availability of various tools for examining teratogenic mechanisms. Here, we established zebrafish sox10-EGFP reporter lines to visualize cranial neural crest cells (CNCCs) and have identified the AOPs for craniofacial anomalies. When we exposed the transgenic embryos to teratogens that were reported to cause craniofacial anomalies in mammals, CNCC migration and subsequent morphogenesis of the first pharyngeal arch were impaired at 24 hours post-fertilization. We also found that cell proliferation and apoptosis of the migratory CNCCs were disturbed, which would be key events of the AOP. From these results, we propose that our sox10-EGFP reporter lines serve as a valuable model for detecting craniofacial skeletal abnormalities, from early to late developmental stages. Given that the developmental process of CNCCs around this stage is highly conserved between zebrafish and mammals, our findings can be extrapolated to mammalian craniofacial development and thus help in predicting craniofacial anomalies in human.
Collapse
Affiliation(s)
- Shujie Liu
- R&D, Safety Science Research, Kao Corporation, Tochigi 321-3497, Japan
| | - Toru Kawanishi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa 226-8501, Japan
| | - Atsuko Shimada
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Naohiro Ikeda
- R&D, Safety Science Research, Kao Corporation, Kanagawa 210-0821, Japan
| | - Masayuki Yamane
- R&D, Safety Science Research, Kao Corporation, Tochigi 321-3497, Japan
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Junichi Tasaki
- R&D, Safety Science Research, Kao Corporation, Kanagawa 210-0821, Japan
| |
Collapse
|
17
|
Subramanian A, Kanzaki LF, Schilling TF. Mechanical force regulates Sox9 expression at the developing enthesis. Development 2023; 150:dev201141. [PMID: 37497608 PMCID: PMC10445799 DOI: 10.1242/dev.201141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
Entheses transmit force from tendons and ligaments to the skeleton. Regional organization of enthesis extracellular matrix (ECM) generates differences in stiffness required for force transmission. Two key transcription factors co-expressed in entheseal tenocytes, scleraxis (Scx) and Sox9, directly control production of enthesis ECM components. Formation of embryonic craniofacial entheses in zebrafish coincides with onset of jaw movements, possibly in response to the force of muscle contraction. We show dynamic changes in scxa and sox9a mRNA levels in subsets of entheseal tenocytes that correlate with their roles in force transmission. We also show that transcription of a direct target of Scxa, Col1a, in enthesis ECM is regulated by the ratio of scxa to sox9a expression. Eliminating muscle contraction by paralyzing embryos during early stages of musculoskeletal differentiation alters relative levels of scxa and sox9a in entheses, primarily owing to increased sox9a expression. Force-dependent TGF-β (TGFβ) signaling is required to maintain this balance of scxa and sox9a expression. Thus, force from muscle contraction helps establish a balance of transcription factor expression that controls specialized ECM organization at the tendon enthesis and its ability to transmit force.
Collapse
Affiliation(s)
- Arul Subramanian
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Lauren F. Kanzaki
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Thomas F. Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| |
Collapse
|
18
|
Sunadome K, Erickson AG, Kah D, Fabry B, Adori C, Kameneva P, Faure L, Kanatani S, Kaucka M, Dehnisch Ellström I, Tesarova M, Zikmund T, Kaiser J, Edwards S, Maki K, Adachi T, Yamamoto T, Fried K, Adameyko I. Directionality of developing skeletal muscles is set by mechanical forces. Nat Commun 2023; 14:3060. [PMID: 37244931 PMCID: PMC10224984 DOI: 10.1038/s41467-023-38647-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 05/05/2023] [Indexed: 05/29/2023] Open
Abstract
Formation of oriented myofibrils is a key event in musculoskeletal development. However, the mechanisms that drive myocyte orientation and fusion to control muscle directionality in adults remain enigmatic. Here, we demonstrate that the developing skeleton instructs the directional outgrowth of skeletal muscle and other soft tissues during limb and facial morphogenesis in zebrafish and mouse. Time-lapse live imaging reveals that during early craniofacial development, myoblasts condense into round clusters corresponding to future muscle groups. These clusters undergo oriented stretch and alignment during embryonic growth. Genetic perturbation of cartilage patterning or size disrupts the directionality and number of myofibrils in vivo. Laser ablation of musculoskeletal attachment points reveals tension imposed by cartilage expansion on the forming myofibers. Application of continuous tension using artificial attachment points, or stretchable membrane substrates, is sufficient to drive polarization of myocyte populations in vitro. Overall, this work outlines a biomechanical guidance mechanism that is potentially useful for engineering functional skeletal muscle.
Collapse
Affiliation(s)
- Kazunori Sunadome
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Alek G Erickson
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Delf Kah
- Department of Physics, University of Erlangen-Nuremberg, 91052, Erlangen, Germany
| | - Ben Fabry
- Department of Physics, University of Erlangen-Nuremberg, 91052, Erlangen, Germany
| | - Csaba Adori
- Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden
- Department of Molecular Biosciences, Wenner Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Polina Kameneva
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, 1090, Vienna, Austria
| | - Louis Faure
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, 1090, Vienna, Austria
| | - Shigeaki Kanatani
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Marketa Kaucka
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str.2, 24306, Plön, Germany
| | | | - Marketa Tesarova
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Tomas Zikmund
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Jozef Kaiser
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Steven Edwards
- KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden
| | - Koichiro Maki
- Laboratory of Biomechanics, Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Taiji Adachi
- Laboratory of Biomechanics, Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Takuya Yamamoto
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, 606-8501, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Kaj Fried
- Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden.
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177, Stockholm, Sweden.
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, 1090, Vienna, Austria.
| |
Collapse
|
19
|
Ghosal R, Borrego-Soto G, Eberhart JK. Embryonic ethanol exposure disrupts craniofacial neuromuscular integration in zebrafish larvae. Front Physiol 2023; 14:1131075. [PMID: 36824468 PMCID: PMC9941677 DOI: 10.3389/fphys.2023.1131075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 01/24/2023] [Indexed: 02/10/2023] Open
Abstract
Forming a vertebrate head involves the meticulous integration of multiple tissue types during development. Prenatal alcohol exposure is known to cause a variety of birth defects, especially to tissues in the vertebrate head. However, a systematic analysis of coordinated defects across tissues in the head is lacking. Here, we delineate the effects of ethanol on individual tissue types and their integration during craniofacial development. We found that exposure to 1% ethanol induced ectopic cranial muscle and nerve defects with only slight effects on skeletal pattern. Ectopic muscles were, however, unaccompanied by ectopic tendons and could be partially rescued by anesthetizing the larvae before muscle fibers appeared. This finding suggests that the ectopic muscles result from fiber detachment and are not due to an underlying muscle patterning defect. Interestingly, immobilization did not rescue the nerve defects, thus ethanol has an independent effect on each tissue even though they are linked in developmental time and space. Time-course experiments demonstrated an increase in nerve defects with ethanol exposure between 48hpf-4dpf. Time-lapse imaging confirmed the absence of nerve pathfinding or misrouting defects until 48hpf. These results indicate that ethanol-induced nerve defects occur at the time of muscle innervation and after musculoskeletal patterning. Further, we investigated the effect of ethanol on the neuromuscular junctions of the craniofacial muscles and found a reduced number of postsynaptic receptors with no significant effect on the presynaptic terminals. Our study shows that craniofacial soft tissues are particularly susceptible to ethanol-induced damage and that these defects appear independent from one another. Thus, the effects of ethanol on the vertebrate head appear highly pleiotropic.
Collapse
Affiliation(s)
| | | | - Johann K. Eberhart
- Department of Molecular Biosciences, College of Natural Sciences and Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
20
|
Guo W, Jin P, Li R, Huang L, Liu Z, Li H, Zhou T, Fang B, Xia L. Dynamic network biomarker identifies cdkn1a-mediated bone mineralization in the triggering phase of osteoporosis. Exp Mol Med 2023; 55:81-94. [PMID: 36599933 PMCID: PMC9898265 DOI: 10.1038/s12276-022-00915-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/17/2022] [Accepted: 11/02/2022] [Indexed: 01/06/2023] Open
Abstract
The identification of predictive markers to determine the triggering phase prior to the onset of osteoporosis is essential to mitigate further irrevocable deterioration. To determine the early warning signs before osteoporosis, we used the dynamic network biomarker (DNB) approach to analyze time-series gene expression data in a zebrafish osteoporosis model, which revealed that cyclin-dependent kinase inhibitor 1 A (cdkn1a) is a core DNB. We found that cdkn1a negatively regulates osteogenesis, as evidenced by loss-of-function and gain-of-function studies. Specifically, CRISPR/Cas9-mediated cdkn1a knockout in zebrafish significantly altered skeletal development and increased bone mineralization, whereas inducible cdkn1a expression significantly contributed to osteoclast differentiation. We also found several mechanistic clues that cdkn1a participates in osteoclast differentiation by regulating its upstream signaling cascades. To summarize, in this study, we provided new insights into the dynamic nature of osteoporosis and identified cdkn1a as an early-warning signal of osteoporosis onset.
Collapse
Affiliation(s)
- Weiming Guo
- grid.16821.3c0000 0004 0368 8293Department of Orthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, 200001 China
| | - Peng Jin
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001 China
| | - Ruomei Li
- grid.16821.3c0000 0004 0368 8293Department of Orthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, 200001 China
| | - Lu Huang
- grid.16821.3c0000 0004 0368 8293Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001 China
| | - Zhen Liu
- grid.16821.3c0000 0004 0368 8293Department of Orthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, 200001 China
| | - Hairui Li
- grid.16821.3c0000 0004 0368 8293Department of Orthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, 200001 China
| | - Ting Zhou
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, 200001, China.
| | - Bing Fang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, 200001, China.
| | - Lunguo Xia
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, 200001, China.
| |
Collapse
|
21
|
Luderman LN, Michaels MT, Levic DS, Knapik EW. Zebrafish Erc1b mediates motor innervation and organization of craniofacial muscles in control of jaw movement. Dev Dyn 2023; 252:104-123. [PMID: 35708710 DOI: 10.1002/dvdy.511] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Movement of the lower jaw, a common behavior observed among vertebrates, is required for eating and processing food. This movement is controlled by signals sent from the trigeminal motor nerve through neuromuscular junctions (NMJs) to the masticatory muscles. Dysfunctional jaw movements contribute to craniomandibular disorders, yet the pathophysiology of these disorders is not well understood, as limited studies have been conducted on the molecular mechanisms of jaw movement. RESULTS Using erc1b/kimm533 genetic loss of function mutant, we evaluated lower jaw muscle organization and innervation by the cranial motor nerves in developing zebrafish. Using time-lapse confocal imaging of the erc1b mutant in a transgenic fluorescent reporter line, we found delayed trigeminal nerve growth and disrupted nerve branching architecture during muscle innervation. By automated 3D image analysis of NMJ distribution, we identified an increased number of small, disorganized NMJ clusters in erc1b mutant larvae compared to WT siblings. Using genetic replacement experiments, we determined the Rab GTPase binding domain of Erc1b is required for cranial motor nerve branching, but not NMJ organization or muscle attachment. CONCLUSIONS We identified Erc1b/ERC1 as a novel component of a genetic pathway contributing to muscle organization, trigeminal nerve outgrowth, and NMJ spatial distribution during development that is required for jaw movement.
Collapse
Affiliation(s)
- Lauryn N Luderman
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Mackenzie T Michaels
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Daniel S Levic
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
- Neuroscience Graduate Program, Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee, USA
| | - Ela W Knapik
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
22
|
Le Pabic P, Dranow DB, Hoyle DJ, Schilling TF. Zebrafish endochondral growth zones as they relate to human bone size, shape and disease. Front Endocrinol (Lausanne) 2022; 13:1060187. [PMID: 36561564 PMCID: PMC9763315 DOI: 10.3389/fendo.2022.1060187] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Research on the genetic mechanisms underlying human skeletal development and disease have largely relied on studies in mice. However, recently the zebrafish has emerged as a popular model for skeletal research. Despite anatomical differences such as a lack of long bones in their limbs and no hematopoietic bone marrow, both the cell types in cartilage and bone as well as the genetic pathways that regulate their development are remarkably conserved between teleost fish and humans. Here we review recent studies that highlight this conservation, focusing specifically on the cartilaginous growth zones (GZs) of endochondral bones. GZs can be unidirectional such as the growth plates (GPs) of long bones in tetrapod limbs or bidirectional, such as in the synchondroses of the mammalian skull base. In addition to endochondral growth, GZs play key roles in cartilage maturation and replacement by bone. Recent studies in zebrafish suggest key roles for cartilage polarity in GZ function, surprisingly early establishment of signaling systems that regulate cartilage during embryonic development, and important roles for cartilage proliferation rather than hypertrophy in bone size. Despite anatomical differences, there are now many zebrafish models for human skeletal disorders including mutations in genes that cause defects in cartilage associated with endochondral GZs. These point to conserved developmental mechanisms, some of which operate both in cranial GZs and limb GPs, as well as others that act earlier or in parallel to known GP regulators. Experimental advantages of zebrafish for genetic screens, high resolution live imaging and drug screens, set the stage for many novel insights into causes and potential therapies for human endochondral bone diseases.
Collapse
Affiliation(s)
- Pierre Le Pabic
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Willmington, NC, United States
| | - Daniel B. Dranow
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
| | - Diego J. Hoyle
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
| | - Thomas F. Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
23
|
Lalonde RL, Kemmler CL, Riemslagh FW, Aman AJ, Kresoja-Rakic J, Moran HR, Nieuwenhuize S, Parichy DM, Burger A, Mosimann C. Heterogeneity and genomic loci of ubiquitous transgenic Cre reporter lines in zebrafish. Dev Dyn 2022; 251:1754-1773. [PMID: 35582941 PMCID: PMC10069295 DOI: 10.1002/dvdy.499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The most-common strategy for zebrafish Cre/lox-mediated lineage labeling experiments combines ubiquitously expressed, lox-based Switch reporter transgenes with tissue-specific Cre or 4-OH-Tamoxifen-inducible CreERT2 driver lines. Although numerous Cre driver lines have been produced, only a few broadly expressed Switch reporters exist in zebrafish and their generation by random transgene integration has been challenging due to position-effect sensitivity of the lox-flanked recombination cassettes. Here, we compare commonly used Switch reporter lines for their recombination efficiency and reporter expression pattern during zebrafish development. RESULTS Using different experimental setups, we show that ubi:Switch and hsp70l:Switch outperform current generations of the two additional Switch reporters actb2:BFP-DsRed and actb2:Stop-DsRed. Our comparisons also document preferential Cre-dependent recombination of ubi:Switch and hsp70l:Switch in distinct zebrafish tissues at early developmental stages. To investigate what genomic features may influence Cre accessibility and lox recombination efficiency in highly functional Switch lines, we mapped these transgenes and charted chromatin dynamics at their integration sites. CONCLUSIONS Our data documents the heterogeneity among lox-based Switch transgenes toward informing suitable transgene selection for lineage labeling experiments. Our work further proposes that ubi:Switch and hsp70l:Switch define genomic integration sites suitable for universal transgene or switch reporter knock-in in zebrafish.
Collapse
Affiliation(s)
- Robert L Lalonde
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Cassie L Kemmler
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Fréderike W Riemslagh
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Andrew J Aman
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA.,Department of Biology and Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Jelena Kresoja-Rakic
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Hannah R Moran
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Susan Nieuwenhuize
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - David M Parichy
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA.,Department of Biology and Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Alexa Burger
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Christian Mosimann
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
24
|
Azimian Zavareh P, Silva P, Gimhani N, Atukorallaya D. Effect of Embryonic Alcohol Exposure on Craniofacial and Skin Melanocyte Development: Insights from Zebrafish ( Danio rerio). TOXICS 2022; 10:544. [PMID: 36136509 PMCID: PMC9501518 DOI: 10.3390/toxics10090544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Alcohol is a common addictive substance and prenatal alcohol exposure could cause fetal alcohol spectrum disorder (FASD) and can lead to various birth defects. The small teleost zebrafish (Danio rerio) has been identified as a fine animal model in developmental biology and toxicological research. Zebrafish models are widely used to study the harmful effects of alcohol and limited studies are available on the craniofacial and skin malformations associated with FASD. The present study attempts to investigate the effect of alcohol on early zebrafish embryonic development. The effects of prenatal alcohol exposure on neural crest cell-derived organ formation, including pharyngeal dentition, palatal bones and skin melanocytes were analysed. Whole-mount cartilage and bone staining and imaging techniques were applied to determine the effects of alcohol on the above-mentioned structures. The tooth size and shape were affected by alcohol exposure, but the number of teeth in the pharyngeal dentition was not affected. Only first-generation teeth showed size differences. The alcohol-exposed ethmoid bone, which is homologous to the human hard palate, was smaller and less dense in cell arrangement compared with the control medial ethmoid bone. The skin pigmentation defects included reduced melanocyte density, melanin contraction, smaller melanocyte surface area and aberrations in melanosome dispersion, revealing that alcohol significantly influenced and downregulated each and every step of the melanocyte developmental process. This descriptive study summarises the effects of alcohol on the development of neural crest cell-derived structures and highlights the importance of zebrafish in studying the phenotypic characteristics of fetal alcohol spectrum disorder.
Collapse
|
25
|
Acetaminophen Disrupts the Development of Pharyngeal Arch-Derived Cartilage and Muscle in Zebrafish. J Dev Biol 2022; 10:jdb10030030. [PMID: 35893125 PMCID: PMC9326545 DOI: 10.3390/jdb10030030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/23/2022] [Accepted: 07/13/2022] [Indexed: 01/27/2023] Open
Abstract
Acetaminophen is a common analgesic, but its potential effects on early embryonic development are not well understood. Previous studies using zebrafish (Danio rerio) have described the effects of acetaminophen on liver development and physiology, and a few have described gross physiological and morphological defects. Using a high but non-embryonic lethal dose of acetaminophen, we probed for defects in zebrafish craniofacial cartilage development. Strikingly, acetaminophen treatment caused severe craniofacial cartilage defects, primarily affecting both the presence and morphology of pharyngeal arch-derived cartilages of the viscerocranium. Delaying acetaminophen treatment restored developing cartilages in an order correlated with their corresponding pharyngeal arches, suggesting that acetaminophen may target pharyngeal arch development. Craniofacial cartilages are derived from cranial neural crest cells; however, many neural crest cells were still seen along their expected migration paths, and most remaining cartilage precursors expressed the neural crest markers sox9a and sox10, then eventually col2a1 (type II collagen). Therefore, the defects are not primarily due to an early breakdown of neural crest or cartilage differentiation. Instead, apoptosis is increased around the developing pharyngeal arches prior to chondrogenesis, further suggesting that acetaminophen may target pharyngeal arch development. Many craniofacial muscles, which develop in close proximity to the affected cartilages, were also absent in treated larvae. Taken together, these results suggest that high amounts of acetaminophen can disrupt multiple aspects of craniofacial development in zebrafish.
Collapse
|
26
|
Iwasaki M, Kawakami K, Wada H. Remodeling of the hyomandibular skeleton and facial nerve positioning during embryonic and postembryonic development of teleost fish. Dev Biol 2022; 489:134-145. [PMID: 35750208 DOI: 10.1016/j.ydbio.2022.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/03/2022] [Accepted: 06/16/2022] [Indexed: 11/30/2022]
Abstract
The vertebrate skeleton changes its shape during development through the activities of chondrocytes, osteoblasts and osteoclasts. Although much is known about the mechanisms for differentiation in these cells, it is less understood how they behave in a region-specific manner to acquire unique bone shapes. To address this question, we investigated the development of the hyomandibular (Hm) system in zebrafish. The Hm originates as cartilage carrying a single foramen (the Hm foramen), through which the facial (VII) nerve passes. We reveal that Schwann cells, which myelinate the VII nerve, regulate rearrangement of the chondrocytes to enlarge the Hm foramen. The Hm cartilage then becomes ossified in the perichondrium, where the marrow chondrocytes are replaced by adipocytes. Then, the bone matrix along the VII nerve is resorbed by osteoclasts, generating a gateway to the bone marrow. Subsequent movement of the VII nerve into the marrow, followed by deposition of new bone matrix, isolates the nerve from the jaw muscle insertion. Genetic ablation of osteoblasts and osteoclasts reveals specific roles of these cells during remodeling processes. Interestingly, the VII nerve relocation does not occur in medaka; instead, bone deposition distinct from those in zebrafish separates the VII nerve from the muscle insertion. Our results define novel mechanisms for skeletal remodeling, by which the bone shapes in a region- and species-specific manner.
Collapse
Affiliation(s)
- Miki Iwasaki
- College of Liberal Arts and Sciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Koichi Kawakami
- National Institute of Genetics; Graduate University for Advanced Studies (SOKENDAI), 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Hironori Wada
- College of Liberal Arts and Sciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan.
| |
Collapse
|
27
|
Yahya I, Böing M, Hockman D, Brand-Saberi B, Morosan-Puopolo G. The Emergence of Embryonic Myosin Heavy Chain during Branchiomeric Muscle Development. Life (Basel) 2022; 12:life12060785. [PMID: 35743816 PMCID: PMC9224566 DOI: 10.3390/life12060785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 12/31/2022] Open
Abstract
A prerequisite for discovering the properties and therapeutic potential of branchiomeric muscles is an understanding of their fate determination, pattering and differentiation. Although the expression of differentiation markers such as myosin heavy chain (MyHC) during trunk myogenesis has been more intensively studied, little is known about its expression in the developing branchiomeric muscle anlagen. To shed light on this, we traced the onset of MyHC expression in the facial and neck muscle anlagen by using the whole-mount in situ hybridization between embryonic days E9.5 and E15.5 in the mouse. Unlike trunk muscle, the facial and neck muscle anlagen express MyHC at late stages. Within the branchiomeric muscles, our results showed variation in the emergence of MyHC expression. MyHC was first detected in the first arch-derived muscle anlagen, while its expression in the second arch-derived muscle and non-somitic neck muscle began at a later time point. Additionally, we show that non-ectomesenchymal neural crest invasion of the second branchial arch is delayed compared with that of the first brachial arch in chicken embryos. Thus, our findings reflect the timing underlying branchiomeric muscle differentiation.
Collapse
Affiliation(s)
- Imadeldin Yahya
- Department of Anatomy, Faculty of Veterinary Medicine, University of Khartoum, Khartoum 11115, Sudan;
- Department of Anatomy and Molecular Embryology, Ruhr University Bochum, 44801 Bochum, Germany; (M.B.); (B.B.-S.)
- Division of Cell Biology, Department of Human Biology, Neuroscience Institute, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa;
| | - Marion Böing
- Department of Anatomy and Molecular Embryology, Ruhr University Bochum, 44801 Bochum, Germany; (M.B.); (B.B.-S.)
| | - Dorit Hockman
- Division of Cell Biology, Department of Human Biology, Neuroscience Institute, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa;
| | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Ruhr University Bochum, 44801 Bochum, Germany; (M.B.); (B.B.-S.)
| | - Gabriela Morosan-Puopolo
- Department of Anatomy and Molecular Embryology, Ruhr University Bochum, 44801 Bochum, Germany; (M.B.); (B.B.-S.)
- Correspondence:
| |
Collapse
|
28
|
Lukas P, Ziermann JM. Sequence of chondrocranial development in basal anurans-Let's make a cranium. Front Zool 2022; 19:17. [PMID: 35505372 PMCID: PMC9066780 DOI: 10.1186/s12983-022-00462-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/22/2022] [Indexed: 11/10/2022] Open
Abstract
Background The craniofacial skeleton is an evolutionary innovation of vertebrates. Due to its complexity and importance to protect the brain and aid in essential functions (e.g., feeding), its development requires a precisely tuned sequence of chondrification and/or ossification events. The comparison of sequential patterns of cartilage formation bears important insights into the evolution of development. Discoglossus scovazzi is a basal anuran species. The comparison of its chondrocranium (cartilaginous neuro- & viscerocranium) development with other basal anurans (Xenopus laevis, Bombina orientalis) will help establishing the ancestral pattern of chondrification sequences in anurans and will serve as basis for further studies to reconstruct ancestral conditions in amphibians, tetrapods, and vertebrates. Furthermore, evolutionary patterns in anurans can be studied in the light of adaptations once the ancestral sequence is established. Results We present a comprehensive overview on the chondrocranium development of D. scovazzi. With clearing and staining, histology and 3D reconstructions we tracked the chondrification of 44 elements from the first mesenchymal Anlagen to the premetamorphic cartilaginous head skeleton and illustrate the sequential changes of the skull. We identified several anuran and discoglossoid traits of cartilage development. In D. scovazzi the mandibular, hyoid, and first branchial arch Anlagen develop first followed by stepwise addition of the branchial arches II, III, and IV. Nonetheless, there is no strict anterior to posterior chondrification pattern within the viscerocranium of D. scovazzi. Single hyoid arch elements chondrify after elements of the branchial arch and mandibular arch elements chondrify after elements of the branchial arch I. Conclusions In Osteichthyes, neurocranial elements develop in anterior to posterior direction. In the anurans investigated so far, as well as in D. scovazzi, the posterior parts of the neurocranium extend anteriorly, while the anterior parts of the neurocranium, extend posteriorly until both parts meet and fuse. Anuran cartilaginous development differs in at least two crucial traits from other gnathostomes which further supports the urgent need for more developmental investigations among this clade to understand the evolution of cartilage development in vertebrates.
Collapse
Affiliation(s)
- Paul Lukas
- Institute of Zoology and Evolutionary Research, Friedrich-Schiller-University, Jena, Germany.
| | - Janine M Ziermann
- Howard University College of Medicine, 520 W St NW, Washington, DC, 20059, USA.
| |
Collapse
|
29
|
Song M, Yuan X, Racioppi C, Leslie M, Stutt N, Aleksandrova A, Christiaen L, Wilson MD, Scott IC. GATA4/5/6 family transcription factors are conserved determinants of cardiac versus pharyngeal mesoderm fate. SCIENCE ADVANCES 2022; 8:eabg0834. [PMID: 35275720 PMCID: PMC8916722 DOI: 10.1126/sciadv.abg0834] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
GATA4/5/6 transcription factors play essential, conserved roles in heart development. To understand how GATA4/5/6 modulates the mesoderm-to-cardiac fate transition, we labeled, isolated, and performed single-cell gene expression analysis on cells that express gata5 at precardiac time points spanning zebrafish gastrulation to somitogenesis. We found that most mesendoderm-derived lineages had dynamic gata5/6 expression. In the absence of Gata5/6, the population structure of mesendoderm-derived cells was substantially altered. In addition to the expected absence of cardiac mesoderm, we confirmed a concomitant expansion of cranial-pharyngeal mesoderm. Moreover, Gata5/6 loss led to extensive changes in chromatin accessibility near cardiac and pharyngeal genes. Functional analyses in zebrafish and the tunicate Ciona, which has a single GATA4/5/6 homolog, revealed that GATA4/5/6 acts upstream of tbx1 to exert essential and cell-autonomous roles in promoting cardiac and inhibiting pharyngeal mesoderm identity. Overall, cardiac and pharyngeal mesoderm fate choices are achieved through an evolutionarily conserved GATA4/5/6 regulatory network.
Collapse
Affiliation(s)
- Mengyi Song
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Xuefei Yuan
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Claudia Racioppi
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, USA
| | - Meaghan Leslie
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Nathan Stutt
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Anastasiia Aleksandrova
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
| | - Lionel Christiaen
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, USA
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Michael D. Wilson
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Corresponding author. (M.D.W.); (I.C.S.)
| | - Ian C. Scott
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Corresponding author. (M.D.W.); (I.C.S.)
| |
Collapse
|
30
|
Paudel S, Gjorcheska S, Bump P, Barske L. Patterning of cartilaginous condensations in the developing facial skeleton. Dev Biol 2022; 486:44-55. [DOI: 10.1016/j.ydbio.2022.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/14/2022] [Accepted: 03/23/2022] [Indexed: 11/30/2022]
|
31
|
Hoyle DJ, Dranow DB, Schilling TF. Pthlha and mechanical force control early patterning of growth zones in the zebrafish craniofacial skeleton. Development 2022; 149:dev199826. [PMID: 34919126 PMCID: PMC8917414 DOI: 10.1242/dev.199826] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 12/07/2021] [Indexed: 11/23/2022]
Abstract
Secreted signals in patterning systems often induce repressive signals that shape their distributions in space and time. In developing growth plates (GPs) of endochondral long bones, Parathyroid hormone-like hormone (Pthlh) inhibits Indian hedgehog (Ihh) to form a negative-feedback loop that controls GP progression and bone size. Whether similar systems operate in other bones and how they arise during embryogenesis remain unclear. We show that Pthlha expression in the zebrafish craniofacial skeleton precedes chondrocyte differentiation and restricts where cells undergo hypertrophy, thereby initiating a future GP. Loss of Pthlha leads to an expansion of cells expressing a novel early marker of the hypertrophic zone (HZ), entpd5a, and later HZ markers, such as ihha, whereas local Pthlha misexpression induces ectopic entpd5a expression. Formation of this early pre-HZ correlates with onset of muscle contraction and requires mechanical force; paralysis leads to loss of entpd5a and ihha expression in the pre-HZ, mislocalized pthlha expression and no subsequent ossification. These results suggest that local Pthlh sources combined with force determine HZ locations, establishing the negative-feedback loop that later maintains GPs.
Collapse
Affiliation(s)
| | | | - Thomas F. Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92693, USA
| |
Collapse
|
32
|
Xia Z, Bi X, Yang S, Yang X, Song Z, Wei J, Xu P, Rink L, Min J, Wang F. Metal transporter Slc30a1 controls pharyngeal neural crest differentiation via the zinc-Snai2-Jag1 cascade. MedComm (Beijing) 2021; 2:778-797. [PMID: 34977877 PMCID: PMC8706747 DOI: 10.1002/mco2.91] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023] Open
Abstract
The pharyngeal arch (PA) is a neural crest (NC)-derived organ that is transiently developed during embryogenesis and is required for the subsequent development of various tissues. However, the role of zinc during PA differentiation from NC progenitor cells is unknown. Here, we found that the metal transporters Slc30a1a and Slc30a1b mediate zinc homeostasis during PA differentiation. Slc30a1-deficient zebrafish develop zinc accumulation in NC cells, with increased expression of stemness markers and PA dorsal genes, and SMART-seq analyses revealed that the genes snai2 and jag1b may serve as downstream targets. Furthermore, functional studies showed that knocking down either snai2 or jag1b rescues PA development in Slc30a1-deficient zebrafish. Notably, we identified the double zinc-finger domain in the transcription factor Snai2 as a zinc-responsive element that regulates jag1b expression. Our findings indicate that the Slc30a1/zinc-snai2-jag1b axis is an essential regulatory network controlling PA differentiation, shedding new light on the function of zinc homeostasis in maintaining NC cell stemness and multipotency in vertebrates.
Collapse
Affiliation(s)
- Zhidan Xia
- The First Affiliated HospitalSchool of Public HealthInstitute of Translational MedicineInstitute of GeneticsZhejiang University School of MedicineHangzhouChina
| | - Xinying Bi
- The First Affiliated HospitalSchool of Public HealthInstitute of Translational MedicineInstitute of GeneticsZhejiang University School of MedicineHangzhouChina
- The First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyangChina
| | - Sisi Yang
- The First Affiliated HospitalSchool of Public HealthInstitute of Translational MedicineInstitute of GeneticsZhejiang University School of MedicineHangzhouChina
| | - Xiu Yang
- The First Affiliated HospitalSchool of Public HealthInstitute of Translational MedicineInstitute of GeneticsZhejiang University School of MedicineHangzhouChina
| | - Zijun Song
- The First Affiliated HospitalSchool of Public HealthInstitute of Translational MedicineInstitute of GeneticsZhejiang University School of MedicineHangzhouChina
| | - Jiayu Wei
- The First Affiliated HospitalSchool of Public HealthInstitute of Translational MedicineInstitute of GeneticsZhejiang University School of MedicineHangzhouChina
| | - Pengfei Xu
- The First Affiliated HospitalSchool of Public HealthInstitute of Translational MedicineInstitute of GeneticsZhejiang University School of MedicineHangzhouChina
| | - Lothar Rink
- Faculty of MedicineInstitute of ImmunologyRWTH Aachen UniversityAachenGermany
| | - Junxia Min
- The First Affiliated HospitalSchool of Public HealthInstitute of Translational MedicineInstitute of GeneticsZhejiang University School of MedicineHangzhouChina
| | - Fudi Wang
- The First Affiliated HospitalSchool of Public HealthInstitute of Translational MedicineInstitute of GeneticsZhejiang University School of MedicineHangzhouChina
- The First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyangChina
| |
Collapse
|
33
|
Moss JJ, Wirth M, Tooze SA, Lane JD, Hammond CL. Autophagy coordinates chondrocyte development and early joint formation in zebrafish. FASEB J 2021; 35:e22002. [PMID: 34708458 DOI: 10.1096/fj.202101167r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/16/2022]
Abstract
Autophagy is a catabolic process responsible for the removal of waste and damaged cellular components by lysosomal degradation. It plays a key role in fundamental cell processes, including ER stress mitigation, control of cell metabolism, and cell differentiation and proliferation, all of which are essential for cartilage cell (chondrocyte) development and survival, and for the formation of cartilage. Correspondingly, autophagy dysregulation has been implicated in several skeletal disorders such as osteoarthritis and osteoporosis. To test the requirement for autophagy during skeletal development in zebrafish, we generated an atg13 CRISPR knockout zebrafish line. This line showed a complete loss of atg13 expression, and restricted autophagic activity in vivo. In the absence of autophagy, chondrocyte maturation was accelerated, with chondrocytes exhibiting signs of premature hypertrophy. Focussing on the jaw element, autophagy disruption affected joint articulation causing restricted mouth opening. This gross behavioural phenotype corresponded with a failure to thrive, and death in homozygote atg13 nulls within 17 days. Taken together, our results are consistent with autophagy contributing to the timely regulation of chondrocyte maturation and for extracellular matrix formation.
Collapse
Affiliation(s)
- Joanna J Moss
- School of Biochemistry, University of Bristol, Bristol, UK.,School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Martina Wirth
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, London, UK
| | - Sharon A Tooze
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, London, UK
| | - Jon D Lane
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Chrissy L Hammond
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
34
|
From Bipotent Neuromesodermal Progenitors to Neural-Mesodermal Interactions during Embryonic Development. Int J Mol Sci 2021; 22:ijms22179141. [PMID: 34502050 PMCID: PMC8431582 DOI: 10.3390/ijms22179141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
To ensure the formation of a properly patterned embryo, multiple processes must operate harmoniously at sequential phases of development. This is implemented by mutual interactions between cells and tissues that together regulate the segregation and specification of cells, their growth and morphogenesis. The formation of the spinal cord and paraxial mesoderm derivatives exquisitely illustrate these processes. Following early gastrulation, while the vertebrate body elongates, a population of bipotent neuromesodermal progenitors resident in the posterior region of the embryo generate both neural and mesodermal lineages. At later stages, the somitic mesoderm regulates aspects of neural patterning and differentiation of both central and peripheral neural progenitors. Reciprocally, neural precursors influence the paraxial mesoderm to regulate somite-derived myogenesis and additional processes by distinct mechanisms. Central to this crosstalk is the activity of the axial notochord, which, via sonic hedgehog signaling, plays pivotal roles in neural, skeletal muscle and cartilage ontogeny. Here, we discuss the cellular and molecular basis underlying this complex developmental plan, with a focus on the logic of sonic hedgehog activities in the coordination of the neural-mesodermal axis.
Collapse
|
35
|
Hirschberger C, Sleight VA, Criswell KE, Clark SJ, Gillis JA. Conserved and unique transcriptional features of pharyngeal arches in the skate (Leucoraja erinacea) and evolution of the jaw. Mol Biol Evol 2021; 38:4187-4204. [PMID: 33905525 PMCID: PMC8476176 DOI: 10.1093/molbev/msab123] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The origin of the jaw is a long-standing problem in vertebrate evolutionary biology. Classical hypotheses of serial homology propose that the upper and lower jaw evolved through modifications of dorsal and ventral gill arch skeletal elements, respectively. If the jaw and gill arches are derived members of a primitive branchial series, we predict that they would share common developmental patterning mechanisms. Using candidate and RNAseq/differential gene expression analyses, we find broad conservation of dorsoventral (DV) patterning mechanisms within the developing mandibular, hyoid, and gill arches of a cartilaginous fish, the skate (Leucoraja erinacea). Shared features include expression of genes encoding members of the ventralizing BMP and endothelin signaling pathways and their effectors, the joint markers nkx3.2 and gdf5 and prochondrogenic transcription factor barx1, and the dorsal territory marker pou3f3. Additionally, we find that mesenchymal expression of eya1/six1 is an ancestral feature of the mandibular arch of jawed vertebrates, whereas differences in notch signaling distinguish the mandibular and gill arches in skate. Comparative transcriptomic analyses of mandibular and gill arch tissues reveal additional genes differentially expressed along the DV axis of the pharyngeal arches, including scamp5 as a novel marker of the dorsal mandibular arch, as well as distinct transcriptional features of mandibular and gill arch muscle progenitors and developing gill buds. Taken together, our findings reveal conserved patterning mechanisms in the pharyngeal arches of jawed vertebrates, consistent with serial homology of their skeletal derivatives, as well as unique transcriptional features that may underpin distinct jaw and gill arch morphologies.
Collapse
Affiliation(s)
| | - Victoria A Sleight
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK.,School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK
| | | | | | - J Andrew Gillis
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK.,Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 02543, USA
| |
Collapse
|
36
|
Kimmel CB, Wind AL, Oliva W, Ahlquist SD, Walker C, Dowd J, Blanco-Sánchez B, Titus TA, Batzel P, Talbot JC, Postlethwait JH, Nichols JT. Transgene-mediated skeletal phenotypic variation in zebrafish. JOURNAL OF FISH BIOLOGY 2021; 98:956-970. [PMID: 32112658 PMCID: PMC7483860 DOI: 10.1111/jfb.14300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 01/13/2020] [Accepted: 02/25/2020] [Indexed: 05/03/2023]
Abstract
When considering relationships between genotype and phenotype we frequently ignore the fact that the genome of a typical animal, notably including that of a fish and a human, harbours a huge amount of foreign DNA. Such DNA, in the form of transposable elements, can affect genome function in a major way, and transgene biology needs to be included in our understanding of the genome. Here we examine an unexpected phenotypic effect of the chromosomally integrated transgene fli1a-F-hsp70l:Gal4VP16 that serves as a model for transgene function generally. We examine larval fras1 mutant zebrafish (Danio rerio). Gal4VP16 is a potent transcriptional activator that is already well known for toxicity and mediating unusual transcriptional effects. In the presence of the transgene, phenotypes in the neural crest-derived craniofacial skeleton, notably fusions and shape changes associated with loss of function fras1 mutations, are made more severe, as we quantify by scoring phenotypic penetrance, the fraction of mutants expressing the trait. A very interesting feature is that the enhancements are highly specific for fras1 mutant phenotypes, occurring in the apparent absence of more widespread changes. Except for the features due to the fras1 mutation, the transgene-bearing larvae appear generally healthy and to be developing normally. The transgene behaves as a genetic partial dominant: a single copy is sufficient for the enhancements, yet, for some traits, two copies may exert a stronger effect. We made new strains bearing independent insertions of the fli1a-F-hsp70l:Gal4VP16 transgene in new locations in the genome, and observed increased severities of the same phenotypes as observed for the original insertion. This finding suggests that sequences within the transgene, for example Gal4VP16, are responsible for the enhancements, rather than the effect on neighbouring host sequences (such as an insertional mutation). The specificity and biological action underlying the traits are subjects of considerable interest for further investigation, as we discuss. Our findings show that work with transgenes needs to be undertaken with caution and attention to detail.
Collapse
Affiliation(s)
| | | | - Whitney Oliva
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | | | - Charline Walker
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - John Dowd
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Bernardo Blanco-Sánchez
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
- Current address: Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163, Institut Imagine, 75015 Paris, France
| | - Tom A. Titus
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Peter Batzel
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Jared C. Talbot
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
| | | | - James T. Nichols
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
37
|
Mitchell JM, Sucharov J, Pulvino AT, Brooks EP, Gillen AE, Nichols JT. The alx3 gene shapes the zebrafish neurocranium by regulating frontonasal neural crest cell differentiation timing. Development 2021; 148:dev197483. [PMID: 33741714 PMCID: PMC8077506 DOI: 10.1242/dev.197483] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/12/2021] [Indexed: 12/30/2022]
Abstract
During craniofacial development, different populations of cartilage- and bone-forming cells develop in precise locations in the head. Most of these cells are derived from pluripotent cranial neural crest cells and differentiate with distinct developmental timing and cellular morphologies. The mechanisms that divide neural crest cells into discrete populations are not fully understood. Here, we use single-cell RNA sequencing to transcriptomically define different populations of cranial neural crest cells. We discovered that the gene family encoding the Alx transcription factors is enriched in the frontonasal population of neural crest cells. Genetic mutant analyses indicate that alx3 functions to regulate the distinct differentiation timing and cellular morphologies among frontonasal neural crest cell subpopulations. This study furthers our understanding of how genes controlling developmental timing shape craniofacial skeletal elements.
Collapse
Affiliation(s)
- Jennyfer M. Mitchell
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Juliana Sucharov
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Anthony T. Pulvino
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Elliott P. Brooks
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Austin E. Gillen
- RNA Bioscience Initiative, Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Medicine, Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - James T. Nichols
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- RNA Bioscience Initiative, Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
38
|
Jiao S, Xu R, Du S. Smyd1 is essential for myosin expression and sarcomere organization in craniofacial, extraocular, and cardiac muscles. J Genet Genomics 2021; 48:208-218. [PMID: 33958316 PMCID: PMC9234968 DOI: 10.1016/j.jgg.2021.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 01/02/2023]
Abstract
Skeletal and cardiac muscles are striated myofibers that contain highly organized sarcomeres for muscle contraction. Recent studies revealed that Smyd1, a lysine methyltransferase, plays a key role in sarcomere assembly in heart and trunk skeletal muscles. However, Smyd1 expression and function in craniofacial muscles are not known. Here, we analyze the developmental expression and function of two smyd1 paralogous genes, smyd1a and smyd1b, in craniofacial and cardiac muscles of zebrafish embryos. Our data show that loss of smyd1a (smyd1amb5) or smyd1b (smyd1bsa15678) has no visible effects on myogenic commitment and expression of myod and myosin heavy-chain mRNA transcripts in craniofacial muscles. However, myosin heavy-chain protein accumulation and sarcomere organization are dramatically reduced in smyd1bsa15678 single mutant, and almost completely diminish in smyd1amb5; smyd1bsa15678 double mutant, but not in smyd1amb5 mutant. Similar defects are also observed in cardiac muscles of smyd1bsa15678 mutant. Defective craniofacial and cardiac muscle formation is associated with an upregulation of hsp90α1 and unc45b mRNA expression in smyd1bsa15678 and smyd1amb5; smyd1bsa15678 mutants. Together, our studies indicate that Smyd1b, but not Smyd1a, plays a key role in myosin heavy-chain protein expression and sarcomere organization in craniofacial and cardiac muscles. Loss of smyd1b results in muscle-specific stress response.
Collapse
Affiliation(s)
- Shuang Jiao
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD 21202, USA; Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Rui Xu
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD 21202, USA
| | - Shaojun Du
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD 21202, USA.
| |
Collapse
|
39
|
Wang Z, Mizoguchi T, Kuribara T, Nakajima M, Iwata M, Sakamoto Y, Nakamura H, Murayama T, Nemoto T, Itoh M. Py 3-FITC: a new fluorescent probe for live cell imaging of collagen-rich tissues and ionocytes. Open Biol 2021; 11:200241. [PMID: 33561382 PMCID: PMC8061698 DOI: 10.1098/rsob.200241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/04/2021] [Indexed: 11/12/2022] Open
Abstract
Polypyrrole-based polyamides are used as sequence-specific DNA probes. However, their cellular uptake and distribution are affected by several factors and have not been extensively studied in vivo. Here, we generated a series of fluorescence-conjugated polypyrrole compounds and examined their cellular distribution using live zebrafish and cultured human cells. Among the evaluated compounds, Py3-FITC was able to visualize collagen-rich tissues, such as the jaw cartilage, opercle and bulbus arteriosus, in early-stage living zebrafish embryos. Then, we stained cultured human cells with Py3-FITC and found that the staining became more intense as the amount of collagen was increased. In addition, Py3-FITC-stained HR cells, which represent a type of ionocyte on the body surface of living zebrafish embryos. Py3-FITC has low toxicity, and collagen-rich tissues and ionocytes can be visualized when soaked in Py3-FITC solution. Therefore, Py3-FITC may be a useful live imaging tool for detecting changes in collagen-rich tissue and ionocytes, including their mammalian analogues, during both normal development and disease progression.
Collapse
Affiliation(s)
- Zhaotong Wang
- Graduate School of Pharmaceutical Sciences, Chiba University, Japan
| | | | | | - Masaya Nakajima
- Graduate School of Pharmaceutical Sciences, Chiba University, Japan
| | - Mayuu Iwata
- Graduate School of Pharmaceutical Sciences, Chiba University, Japan
| | - Yuka Sakamoto
- Graduate School of Pharmaceutical Sciences, Chiba University, Japan
| | | | | | - Tetsuhiro Nemoto
- Graduate School of Pharmaceutical Sciences, Chiba University, Japan
| | - Motoyuki Itoh
- Graduate School of Pharmaceutical Sciences, Chiba University, Japan
| |
Collapse
|
40
|
Truong BT, Artinger KB. The power of zebrafish models for understanding the co-occurrence of craniofacial and limb disorders. Genesis 2021; 59:e23407. [PMID: 33393730 PMCID: PMC8153179 DOI: 10.1002/dvg.23407] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/30/2022]
Abstract
Craniofacial and limb defects are two of the most common congenital anomalies in the general population. Interestingly, these defects are not mutually exclusive. Many patients with craniofacial phenotypes, such as orofacial clefting and craniosynostosis, also present with limb defects, including polydactyly, syndactyly, brachydactyly, or ectrodactyly. The gene regulatory networks governing craniofacial and limb development initially seem distinct from one another, and yet these birth defects frequently occur together. Both developmental processes are highly conserved among vertebrates, and zebrafish have emerged as an advantageous model due to their high fecundity, relative ease of genetic manipulation, and transparency during development. Here we summarize studies that have used zebrafish models to study human syndromes that present with both craniofacial and limb phenotypes. We discuss the highly conserved processes of craniofacial and limb/fin development and describe recent zebrafish studies that have explored the function of genes associated with human syndromes with phenotypes in both structures. We attempt to identify commonalities between the two to help explain why craniofacial and limb anomalies often occur together.
Collapse
Affiliation(s)
- Brittany T. Truong
- Human Medical Genetics & Genomics Graduate Program, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
- Department of Craniofacial Biology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Kristin Bruk Artinger
- Department of Craniofacial Biology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
41
|
A globin-family protein, Cytoglobin 1, is involved in the development of neural crest-derived tissues and organs in zebrafish. Dev Biol 2021; 472:1-17. [PMID: 33358912 DOI: 10.1016/j.ydbio.2020.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 11/23/2022]
Abstract
The zebrafish is an excellent model animal that is amenable to forward genetics approaches. To uncover unknown developmental regulatory mechanisms in vertebrates, we conducted chemical mutagenesis screening and identified a novel mutation, kanazutsi (kzt). This mutation is recessive, and its homozygotes are embryonic lethal. Mutant embryos suffered from a variety of morphological defects, such as head flattening, pericardial edema, circulation defects, disrupted patterns of melanophore distribution, dwarf eyes, a defective jaw, and extensive apoptosis in the head, which indicates that the main affected tissues are derived from neural crest cells (NCCs). The expression of tissue-specific markers in kzt mutants showed that the early specification of NCCs was normal, but their later differentiation was severely affected. The mutation was mapped to chromosome 3 by linkage analyses, near cytoglobin 1 (cygb1), the product of which is a globin-family respiratory protein. cygb1 expression was activated during somitogenesis in somites and cranial NCCs in wild-type embryos but was significantly downregulated in mutant embryos, despite the normal primary structure of the gene product. The kzt mutation was phenocopied by cygb1 knockdown with low-dose morpholino oligos and was partially rescued by cygb1 overexpression. Both severe knockdown and null mutation of cygb1, established by the CRISPR/Cas9 technique, resulted in far more severe defects at early stages. Thus, it is highly likely that the downregulation of cygb1 is responsible for many, if not all, of the phenotypes of the kzt mutation. These results reveal a requirement for globin family proteins in vertebrate embryos, particularly in the differentiation and subsequent development of NCCs.
Collapse
|
42
|
Raterman ST, Metz JR, Wagener FADTG, Von den Hoff JW. Zebrafish Models of Craniofacial Malformations: Interactions of Environmental Factors. Front Cell Dev Biol 2020; 8:600926. [PMID: 33304906 PMCID: PMC7701217 DOI: 10.3389/fcell.2020.600926] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/23/2020] [Indexed: 11/13/2022] Open
Abstract
The zebrafish is an appealing model organism for investigating the genetic (G) and environmental (E) factors, as well as their interactions (GxE), which contribute to craniofacial malformations. Here, we review zebrafish studies on environmental factors involved in the etiology of craniofacial malformations in humans including maternal smoking, alcohol consumption, nutrition and drug use. As an example, we focus on the (cleft) palate, for which the zebrafish ethmoid plate is a good model. This review highlights the importance of investigating ExE interactions and discusses the variable effects of exposure to environmental factors on craniofacial development depending on dosage, exposure time and developmental stage. Zebrafish also promise to be a good tool to study novel craniofacial teratogens and toxin mixtures. Lastly, we discuss the handful of studies on gene–alcohol interactions using mutant sensitivity screens and reverse genetic techniques. We expect that studies addressing complex interactions (ExE and GxE) in craniofacial malformations will increase in the coming years. These are likely to uncover currently unknown mechanisms with implications for the prevention of craniofacial malformations. The zebrafish appears to be an excellent complementary model with high translational value to study these complex interactions.
Collapse
Affiliation(s)
- S T Raterman
- Radboud Institute of Molecular Life Sciences, Nijmegen, Netherlands.,Department of Dentistry-Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - J R Metz
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Frank A D T G Wagener
- Radboud Institute of Molecular Life Sciences, Nijmegen, Netherlands.,Department of Dentistry-Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Johannes W Von den Hoff
- Radboud Institute of Molecular Life Sciences, Nijmegen, Netherlands.,Department of Dentistry-Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
43
|
Niu X, Subramanian A, Hwang TH, Schilling TF, Galloway JL. Tendon Cell Regeneration Is Mediated by Attachment Site-Resident Progenitors and BMP Signaling. Curr Biol 2020; 30:3277-3292.e5. [PMID: 32649909 PMCID: PMC7484193 DOI: 10.1016/j.cub.2020.06.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/31/2020] [Accepted: 06/04/2020] [Indexed: 12/26/2022]
Abstract
The musculoskeletal system is a striking example of how cell identity and position is coordinated across multiple tissues to ensure function. However, it is unclear upon tissue loss, such as complete loss of cells of a central musculoskeletal connecting tendon, whether neighboring tissues harbor progenitors capable of mediating regeneration. Here, using a zebrafish model, we genetically ablate all embryonic tendon cells and find complete regeneration of tendon structure and pattern. We identify two regenerative progenitor populations, sox10+ perichondrial cells surrounding cartilage and nkx2.5+ cells surrounding muscle. Surprisingly, laser ablation of sox10+ cells, but not nkx2.5+ cells, increases tendon progenitor number in the perichondrium, suggesting a mechanism to regulate attachment location. We find BMP signaling is active in regenerating progenitor cells and is necessary and sufficient for generating new scxa+ cells. Our work shows that muscle and cartilage connective tissues harbor progenitor cells capable of fully regenerating tendons, and this process is regulated by BMP signaling.
Collapse
Affiliation(s)
- Xubo Niu
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Arul Subramanian
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Tyler H Hwang
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Thomas F Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Jenna L Galloway
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
44
|
Miyashita T, Baddam P, Smeeton J, Oel AP, Natarajan N, Gordon B, Palmer AR, Crump JG, Graf D, Allison WT. nkx3.2 mutant zebrafish accommodate jaw joint loss through a phenocopy of the head shapes of Paleozoic jawless fish. J Exp Biol 2020; 223:jeb216945. [PMID: 32527964 PMCID: PMC10668335 DOI: 10.1242/jeb.216945] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 06/01/2020] [Indexed: 12/11/2022]
Abstract
The vertebrate jaw is a versatile feeding apparatus. To function, it requires a joint between the upper and lower jaws, so jaw joint defects are often highly disruptive and difficult to study. To describe the consequences of jaw joint dysfunction, we engineered two independent null alleles of a single jaw joint marker gene, nkx3.2, in zebrafish. These mutations caused zebrafish to become functionally jawless via fusion of the upper and lower jaw cartilages (ankylosis). Despite lacking jaw joints, nkx3.2 mutants survived to adulthood and accommodated this defect by: (a) having a remodeled skull with a fixed open gape, reduced snout and enlarged branchial region; and (b) performing ram feeding in the absence of jaw-generated suction. The late onset and broad extent of phenotypic changes in the mutants suggest that modifications to the skull are induced by functional agnathia, secondarily to nkx3.2 loss of function. Interestingly, nkx3.2 mutants superficially resemble ancient jawless vertebrates (anaspids and furcacaudiid thelodonts) in overall head shape. Because no homology exists in individual skull elements between these taxa, the adult nkx3.2 phenotype is not a reversal but rather a convergence due to similar functional requirements of feeding without moveable jaws. This remarkable analogy strongly suggests that jaw movements themselves dramatically influence the development of jawed vertebrate skulls. Thus, these mutants provide a unique model with which to: (a) investigate adaptive responses to perturbation in skeletal development; (b) re-evaluate evolutionarily inspired interpretations of phenocopies generated by gene knockdowns and knockouts; and (c) gain insight into feeding mechanics of the extinct agnathans.
Collapse
Affiliation(s)
- Tetsuto Miyashita
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9
| | - Pranidhi Baddam
- Department of Dentistry, University of Alberta, Edmonton, AB, Canada T6G 2R3
| | - Joanna Smeeton
- Department of Stem Cell Biology and Regenerative Medicine, W. M. Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - A Phil Oel
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Natasha Natarajan
- Department of Stem Cell Biology and Regenerative Medicine, W. M. Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Brogan Gordon
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9
| | - A Richard Palmer
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9
| | - J Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, W. M. Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Daniel Graf
- Department of Dentistry, University of Alberta, Edmonton, AB, Canada T6G 2R3
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada T6G 2R7
| | - W Ted Allison
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada T6G 2R7
| |
Collapse
|
45
|
Failed Progenitor Specification Underlies the Cardiopharyngeal Phenotypes in a Zebrafish Model of 22q11.2 Deletion Syndrome. Cell Rep 2019; 24:1342-1354.e5. [PMID: 30067987 PMCID: PMC6261257 DOI: 10.1016/j.celrep.2018.06.117] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 05/08/2018] [Accepted: 06/28/2018] [Indexed: 12/13/2022] Open
Abstract
Microdeletions involving TBX1 result in variable congenital malformations known collectively as 22q11.2 deletion syndrome (22q11.2DS). Tbx1-deficient mice and zebrafish recapitulate several disease phenotypes, including pharyngeal arch artery (PAA), head muscle (HM), and cardiac outflow tract (OFT) deficiencies. In zebrafish, these structures arise from nkx2.5+ progenitors in pharyngeal arches 2-6. Because pharyngeal arch morphogenesis is compromised in Tbx1-deficient animals, the malformations were considered secondary. Here, we report that the PAA, HM, and OFT phenotypes in tbx1 mutant zebrafish are primary and arise prior to pharyngeal arch morphogenesis from failed specification of the nkx2.5+ pharyngeal lineage. Through in situ analysis and lineage tracing, we reveal that nkx2.5 and tbx1 are co-expressed in this progenitor population. Furthermore, we present evidence suggesting that gdf3-ALK4 signaling is a downstream mediator of nkx2.5+ pharyngeal lineage specification. Collectively, these studies support a cellular mechanism potentially underlying the cardiovascular and craniofacial defects observed in the 22q11.2DS population.
Collapse
|
46
|
Nucleoporin 62-Like Protein is Required for the Development of Pharyngeal Arches through Regulation of Wnt/β-Catenin Signaling and Apoptotic Homeostasis in Zebrafish. Cells 2019; 8:cells8091038. [PMID: 31492028 PMCID: PMC6770318 DOI: 10.3390/cells8091038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/04/2019] [Accepted: 09/04/2019] [Indexed: 12/12/2022] Open
Abstract
We have previously observed the predominant expression of nucleoporin 62-like (Nup62l) mRNA in the pharyngeal region of zebrafish, which raises the question whether Nup62l has important implications in governing the morphogenesis of pharyngeal arches (PA) in zebrafish. Herein, we explored the functions of Nup62l in PA development. The disruption of Nup62l with a CRISPR/Cas9-dependent gene knockout approach led to defective PA, which was characterized by a thinned and shortened pharyngeal region and a significant loss of pharyngeal cartilages. During pharyngeal cartilage formation, prechondrogenic condensation and chondrogenic differentiation were disrupted in homozygous nup62l-mutants, while the specification and migration of cranial neural crest cells (CNCCs) were unaffected. Mechanistically, the impaired PA region of nup62l-mutants underwent extensive apoptosis, which was mainly dependent on activation of p53-dependent apoptotic pathway. Moreover, aberrant activation of a series of apoptotic pathways in nup62l-mutants is closely associated with the inactivation of Wnt/β-catenin signaling. Thus, these findings suggest that the regulation of Wnt/β-catenin activity by Nup62l is crucial for PA formation in zebrafish.
Collapse
|
47
|
The Role of Developmental Integration and Historical Contingency in the Origin and Evolution of Cypriniform Trophic Novelties. Integr Comp Biol 2019; 59:473-488. [DOI: 10.1093/icb/icz056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
AbstractWhile functional morphologists have long studied the evolution of anatomical structures, the origin of morphological novelties has received less attention. When such novelties first originate they must become incorporated into an integrated system to be rendered fully functional. Thus, developmental integration is key at the origin of morphological novelties. However, given enough evolutionary time such integration may be broken, allowing for a division of labor that is facilitated by subsequent decoupling of structures. Cypriniformes represent a diverse group of freshwater fishes characterized by several trophic novelties that include: kinethmoid-mediated premaxillary protrusion, a muscular palatal and post-lingual organ, hypertrophied lower pharyngeal jaws that masticate against the base of the neurocranium, novel pharyngeal musculature controlling movement of the hypertrophied lower pharyngeal jaws, and in a few species an incredibly complex epibranchial organ used to aggregate filtered phytoplankton. Here, we use the wealth of such trophic novelties in different cypriniform fishes to present case studies in which developmental integration allowed for the origin of morphological innovations. As proposed in case studies 1 and 2 trophic innovations may be associated with both morphological and lineage diversification. Alternatively, case studies 3 and 4 represent a situation where ecological niche was expanded but with no concomitant increase in species diversity.
Collapse
|
48
|
Parsons KJ, Son YH, Crespel A, Thambithurai D, Killen S, Harris MP, Albertson RC. Conserved but flexible modularity in the zebrafish skull: implications for craniofacial evolvability. Proc Biol Sci 2019; 285:rspb.2017.2671. [PMID: 29669899 DOI: 10.1098/rspb.2017.2671] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/27/2018] [Indexed: 01/06/2023] Open
Abstract
Morphological variation is the outward manifestation of development and provides fodder for adaptive evolution. Because of this contingency, evolution is often thought to be biased by developmental processes and functional interactions among structures, which are statistically detectable through forms of covariance among traits. This can take the form of substructures of integrated traits, termed modules, which together comprise patterns of variational modularity. While modularity is essential to an understanding of evolutionary potential, biologists currently have little understanding of its genetic basis and its temporal dynamics over generations. To address these open questions, we compared patterns of craniofacial modularity among laboratory strains, defined mutant lines and a wild population of zebrafish (Danio rerio). Our findings suggest that relatively simple genetic changes can have profound effects on covariance, without greatly affecting craniofacial shape. Moreover, we show that instead of completely deconstructing the covariance structure among sets of traits, mutations cause shifts among seemingly latent patterns of modularity suggesting that the skull may be predisposed towards a limited number of phenotypes. This new insight may serve to greatly increase the evolvability of a population by providing a range of 'preset' patterns of modularity that can appear readily and allow for rapid evolution.
Collapse
Affiliation(s)
- Kevin J Parsons
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Young H Son
- Department of Biology, Syracuse University, Syracuse, NY 13244, USA
| | - Amelie Crespel
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Davide Thambithurai
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Shaun Killen
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Matthew P Harris
- Department of Genetics, Harvard Medical School, Orthopaedic Research, Boston Children's Hospital, Boston, MA 02115, USA
| | - R Craig Albertson
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
49
|
Seda M, Peskett E, Demetriou C, Bryant D, Moore GE, Stanier P, Jenkins D. Analysis of transgenic zebrafish expressing the Lenz-Majewski syndrome gene PTDSS1 in skeletal cell lineages. F1000Res 2019; 8:273. [PMID: 31231513 PMCID: PMC6557000 DOI: 10.12688/f1000research.17314.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/19/2019] [Indexed: 01/05/2023] Open
Abstract
Background: Lenz-Majewski syndrome (LMS) is characterized by osteosclerosis and hyperostosis of skull, vertebrae and tubular bones as well as craniofacial, dental, cutaneous, and digit abnormalities. We previously found that LMS is caused by de novo dominant missense mutations in the PTDSS1 gene, which encodes phosphatidylserine synthase 1 (PSS1), an enzyme that catalyses the conversion of phosphatidylcholine to phosphatidylserine. The mutations causing LMS result in a gain-of-function, leading to increased enzyme activity and blocking end-product inhibition of PSS1. Methods: Here, we have used transpose-mediated transgenesis to attempt to stably express wild-type and mutant forms of human PTDSS1 ubiquitously or specifically in chondrocytes, osteoblasts or osteoclasts in zebrafish. Results: We report multiple genomic integration sites for each of 8 different transgenes. While we confirmed that the ubiquitously driven transgene constructs were functional in terms of driving gene expression following transient transfection in HeLa cells, and that all lines exhibited expression of a heart-specific cistron within the transgene, we failed to detect PTDSS1 gene expression at either the RNA or protein levels in zebrafish. All wild-type and mutant transgenic lines of zebrafish exhibited mild scoliosis with variable incomplete penetrance which was never observed in non-transgenic animals. Conclusions: Collectively the data suggest that the transgenes are silenced, that animals with integrations that escape silencing are not viable, or that other technical factors prevent transgene expression. In conclusion, the incomplete penetrance of the phenotype and the lack of a matched transgenic control model precludes further meaningful investigations of these transgenic lines.
Collapse
Affiliation(s)
- Marian Seda
- GOS Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Emma Peskett
- GOS Institute of Child Health, University College London, London, WC1N 1EH, UK
| | | | - Dale Bryant
- GOS Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Gudrun E. Moore
- GOS Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Philip Stanier
- GOS Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Dagan Jenkins
- GOS Institute of Child Health, University College London, London, WC1N 1EH, UK
| |
Collapse
|
50
|
Proteasomal inhibition attenuates craniofacial malformations in a zebrafish model of Treacher Collins Syndrome. Biochem Pharmacol 2019; 163:362-370. [PMID: 30849304 DOI: 10.1016/j.bcp.2019.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/04/2019] [Indexed: 01/07/2023]
Abstract
Treacher Collins Syndrome (TCS) is a congenital disease characterized by defects in the craniofacial skeleton and absence of mental alterations. Recently we modelled TCS in zebrafish (Danio rerio) embryos through the microinjection of Morpholino® oligonucleotides blocking the translation of the ortholog of the main causative gene (TCOF1). We showed that Cnbp, a key cytoprotective protein involved in normal rostral head development, was detected in lower levels (without changes in its mRNA expression) in TCS-like embryos. As previous reports suggested that Cnbp is degraded through the proteasomal pathway, we tested whether proteasome inhibitors (MG132 and Bortezomib (Velcade®, Millennium laboratories)) were able to ameliorate cranial skeleton malformations in TCS. Here we show that treatment with both proteasome inhibitors produced a robust craniofacial cartilage phenotype recovery. This recovery seems to be consequence of a decreased degradation of Cnbp in TCS-like embryos. Critical TCS manifestations, such as neuroepithelial cell death and cell redox imbalance were attenuated. Thus, proteasome inhibitors may offer an opportunity for TCS molecular and phenotypic manifestation's prevention. Although further development of new safe inhibitors compatible with administration during pregnancy is required, our results encourage this therapeutic approach.
Collapse
|