1
|
Hara S, Matsuhisa F, Kitajima S, Yatsuki H, Kubiura-Ichimaru M, Higashimoto K, Soejima H. Identification of responsible sequences which mutations cause maternal H19-ICR hypermethylation with Beckwith-Wiedemann syndrome-like overgrowth. Commun Biol 2024; 7:1605. [PMID: 39623082 PMCID: PMC11612015 DOI: 10.1038/s42003-024-07323-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024] Open
Abstract
Beckwith-Wiedemann syndrome (BWS) is caused by a gain of methylation (GOM) at the imprinting control region within the Igf2-H19 domain on the maternal allele (H19-ICR GOM). Mutations in the binding sites of several transcription factors are involved in H19-ICR GOM and BWS. However, the responsible sequence(s) for H19-ICR GOM with BWS-like overgrowth has not been identified in mice. Here, we report that a mutation in the SOX-OCT binding site (SOBS) causes partial H19-ICR GOM, which does not extend beyond CTCF binding site 3 (CTS3). Moreover, simultaneously mutating both SOBS and CTS3 causes complete GOM of the entire H19-ICR, leading to the misexpression of the imprinted genes, and frequent BWS-like overgrowth. In addition, CTS3 is critical for CTCF/cohesin-mediated chromatin conformation. These results indicate that SOBS and CTS3 are the sequences in which mutations cause H19-ICR GOM leading to BWS-like overgrowth and are essential for maintaining the unmethylated state of maternal H19-ICR.
Collapse
Affiliation(s)
- Satoshi Hara
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan.
| | - Fumikazu Matsuhisa
- Division of Biological Resources and Development, Analytical Research Center for Experimental Sciences, Saga University, Saga, 849-8501, Japan
| | - Shuji Kitajima
- Division of Biological Resources and Development, Analytical Research Center for Experimental Sciences, Saga University, Saga, 849-8501, Japan
| | - Hitomi Yatsuki
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
| | - Musashi Kubiura-Ichimaru
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
| | - Ken Higashimoto
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
| | - Hidenobu Soejima
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan.
| |
Collapse
|
2
|
Drewell RA, Cormier TC, Steenwyk JL, Denis JS, Tabima J, Dresch J, Larochelle D. The Dictyostelium discoideum genome lacks significant DNA methylation and uncovers palindromic sequences as a source of false positives in bisulfite sequencing. NAR Genom Bioinform 2023; 5:lqad035. [PMID: 37081864 PMCID: PMC10111430 DOI: 10.1093/nargab/lqad035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/13/2023] [Accepted: 03/30/2023] [Indexed: 04/22/2023] Open
Abstract
DNA methylation, the addition of a methyl (CH3) group to a cytosine residue, is an evolutionarily conserved epigenetic mark involved in a number of different biological functions in eukaryotes, including transcriptional regulation, chromatin structural organization, cellular differentiation and development. In the social amoeba Dictyostelium, previous studies have shown the existence of a DNA methyltransferase (DNMA) belonging to the DNMT2 family, but the extent and function of 5-methylcytosine in the genome are unclear. Here, we present the whole genome DNA methylation profile of Dictyostelium discoideum using deep coverage replicate sequencing of bisulfite-converted gDNA extracted from post-starvation cells. We find an overall very low number of sites with any detectable level of DNA methylation, occurring at significant levels in only 303-3432 cytosines out of the ∼7.5 million total cytosines in the genome depending on the replicate. Furthermore, a knockout of the DNMA enzyme leads to no overall decrease in DNA methylation. Of the identified sites, significant methylation is only detected at 11 sites in all four of the methylomes analyzed. Targeted bisulfite PCR sequencing and computational analysis demonstrate that the methylation profile does not change during development and that these 11 cytosines are most likely false positives generated by protection from bisulfite conversion due to their location in hairpin-forming palindromic DNA sequences. Our data therefore provide evidence that there is no significant DNA methylation in Dictyostelium before fruiting body formation and identify a reproducible experimental artifact from bisulfite sequencing.
Collapse
Affiliation(s)
- Robert A Drewell
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, USA
| | - Tayla C Cormier
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, USA
| | - Jacob L Steenwyk
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, USA
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - James St Denis
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, USA
| | - Javier F Tabima
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, USA
| | - Jacqueline M Dresch
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, USA
| | - Denis A Larochelle
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, USA
| |
Collapse
|
3
|
Chang S, Fulmer D, Hur SK, Thorvaldsen JL, Li L, Lan Y, Rhon-Calderon EA, Leu NA, Chen X, Epstein JA, Bartolomei MS. Dysregulated H19/Igf2 expression disrupts cardiac-placental axis during development of Silver-Russell syndrome-like mouse models. eLife 2022; 11:e78754. [PMID: 36441651 PMCID: PMC9704805 DOI: 10.7554/elife.78754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
Dysregulation of the imprinted H19/IGF2 locus can lead to Silver-Russell syndrome (SRS) in humans. However, the mechanism of how abnormal H19/IGF2 expression contributes to various SRS phenotypes remains unclear, largely due to incomplete understanding of the developmental functions of these two genes. We previously generated a mouse model with humanized H19/IGF2 imprinting control region (hIC1) on the paternal allele that exhibited H19/Igf2 dysregulation together with SRS-like growth restriction and perinatal lethality. Here, we dissect the role of H19 and Igf2 in cardiac and placental development utilizing multiple mouse models with varying levels of H19 and Igf2. We report severe cardiac defects such as ventricular septal defects and thinned myocardium, placental anomalies including thrombosis and vascular malformations, together with growth restriction in mouse embryos that correlated with the extent of H19/Igf2 dysregulation. Transcriptomic analysis using cardiac endothelial cells of these mouse models shows that H19/Igf2 dysregulation disrupts pathways related to extracellular matrix and proliferation of endothelial cells. Our work links the heart and placenta through regulation by H19 and Igf2, demonstrating that accurate dosage of both H19 and Igf2 is critical for normal embryonic development, especially related to the cardiac-placental axis.
Collapse
Affiliation(s)
- Suhee Chang
- Department of Cell and Developmental Biology, Epigenetics Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Diana Fulmer
- Department of Cell and Developmental Biology, Epigenetics Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Penn Cardiovascular Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Stella K Hur
- Department of Cell and Developmental Biology, Epigenetics Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Joanne L Thorvaldsen
- Department of Cell and Developmental Biology, Epigenetics Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Li Li
- Department of Cell and Developmental Biology, Epigenetics Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Penn Cardiovascular Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Yemin Lan
- Department of Cell and Developmental Biology, Epigenetics Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Eric A Rhon-Calderon
- Department of Cell and Developmental Biology, Epigenetics Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Nicolae Adrian Leu
- Department of Biomedical Sciences, School of Veterinary Medicine, Institute for Regenerative Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Xiaowen Chen
- Penn Cardiovascular Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Jonathan A Epstein
- Department of Cell and Developmental Biology, Epigenetics Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Penn Cardiovascular Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Marisa S Bartolomei
- Department of Cell and Developmental Biology, Epigenetics Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
4
|
Matsuzaki H, Miyajima Y, Fukamizu A, Tanimoto K. Orientation of mouse H19 ICR affects imprinted H19 gene expression through promoter methylation-dependent and -independent mechanisms. Commun Biol 2021; 4:1410. [PMID: 34921234 PMCID: PMC8683476 DOI: 10.1038/s42003-021-02939-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/30/2021] [Indexed: 11/19/2022] Open
Abstract
The mouse Igf2/H19 locus is regulated by genomic imprinting, in which the paternally methylated H19 imprinting control region (ICR) plays a critical role in mono-allelic expression of the genes in the locus. Although the maternal allele-specific insulator activity of the H19 ICR in regulating imprinted Igf2 expression has been well established, the detailed mechanism by which the H19 ICR controls mono-allelic H19 gene expression has not been fully elucidated. In this study, we evaluated the effect of H19 ICR orientation on imprinting regulation in mutant mice in which the H19 ICR sequence was inverted at the endogenous locus. When the inverted-ICR allele was paternally inherited, the methylation level of the H19 promoter was decreased and the H19 gene was derepressed, suggesting that methylation of the H19 promoter is essential for complete repression of H19 gene expression. Unexpectedly, when the inverted allele was maternally inherited, the expression level of the H19 gene was lower than that of the WT allele, even though the H19 promoter remained fully hypomethylated. These observations suggested that the polarity of the H19 ICR is involved in controlling imprinted H19 gene expression on each parental allele, dependent or independent on DNA methylation of the H19 promoter.
Collapse
Affiliation(s)
- Hitomi Matsuzaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | - Yu Miyajima
- Graduate school of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akiyoshi Fukamizu
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Keiji Tanimoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
5
|
Khalili-Tanha G, Moghbeli M. Long non-coding RNAs as the critical regulators of doxorubicin resistance in tumor cells. Cell Mol Biol Lett 2021; 26:39. [PMID: 34425750 PMCID: PMC8381522 DOI: 10.1186/s11658-021-00282-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/17/2021] [Indexed: 12/16/2022] Open
Abstract
Resistance against conventional chemotherapeutic agents is one of the main reasons for tumor relapse and poor clinical outcomes in cancer patients. Various mechanisms are associated with drug resistance, including drug efflux, cell cycle, DNA repair and apoptosis. Doxorubicin (DOX) is a widely used first-line anti-cancer drug that functions as a DNA topoisomerase II inhibitor. However, DOX resistance has emerged as a large hurdle in efficient tumor therapy. Furthermore, despite its wide clinical application, DOX is a double-edged sword: it can damage normal tissues and affect the quality of patients’ lives during and after treatment. It is essential to clarify the molecular basis of DOX resistance to support the development of novel therapeutic modalities with fewer and/or lower-impact side effects in cancer patients. Long non-coding RNAs (lncRNAs) have critical roles in the drug resistance of various tumors. In this review, we summarize the state of knowledge on all the lncRNAs associated with DOX resistance. The majority are involved in promoting DOX resistance. This review paves the way to introducing an lncRNA panel marker for the prediction of the DOX response and clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Ghazaleh Khalili-Tanha
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Mookerjee-Basu J, Hua X, Ge L, Nicolas E, Li Q, Czyzewicz P, Zhongping D, Peri S, FuxmanBass JI, Walhout AJM, Kappes DJ. Functional Conservation of a Developmental Switch in Mammals since the Jurassic Age. Mol Biol Evol 2019; 36:39-53. [PMID: 30295892 DOI: 10.1093/molbev/msy191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
ThPOK is a "master regulator" of T lymphocyte lineage choice, whose presence or absence is sufficient to dictate development to the CD4 or CD8 lineages, respectively. Induction of ThPOK is transcriptionally regulated, via a lineage-specific silencer element, SilThPOK. Here, we take advantage of the available genome sequence data as well as site-specific gene targeting technology, to evaluate the functional conservation of ThPOK regulation across mammalian evolution, and assess the importance of motif grammar (order and orientation of TF binding sites) on SilThPOK function in vivo. We make three important points: First, the SilThPOK is present in marsupial and placental mammals, but is not found in available genome assemblies of nonmammalian vertebrates, indicating that it arose after divergence of mammals from other vertebrates. Secondly, by replacing the murine SilThPOK in situ with its marsupial equivalent using a knockin approach, we demonstrate that the marsupial SilThPOK supports correct CD4 T lymphocyte lineage-specification in mice. To our knowledge, this is the first in vivo demonstration of functional equivalency for a silencer element between marsupial and placental mammals using a definitive knockin approach. Finally, we show that alteration of the position/orientation of a highly conserved region within the murine SilThPOK is sufficient to destroy silencer activity in vivo, demonstrating that motif grammar of this "solid" synteny block is critical for silencer function. Dependence of SilThPOK function on motif grammar conserved since the mid-Jurassic age, 165 Ma, suggests that the SilThPOK operates as a silenceosome, by analogy with the previously proposed enhanceosome model.
Collapse
Affiliation(s)
- Jayati Mookerjee-Basu
- Blood Cell Development and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Xiang Hua
- Blood Cell Development and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Lu Ge
- Blood Cell Development and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Emmanuelle Nicolas
- Blood Cell Development and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Qin Li
- Blood Cell Development and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Philip Czyzewicz
- Blood Cell Development and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Dai Zhongping
- Blood Cell Development and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Suraj Peri
- Blood Cell Development and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Juan I FuxmanBass
- Program in Systems Biology, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Albertha J M Walhout
- Program in Systems Biology, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Dietmar J Kappes
- Blood Cell Development and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA
| |
Collapse
|
7
|
Bonakdar E, Edriss MA, Bakhtari A, Jafarpour F, Asgari V, Hosseini SM, Boroujeni NS, Hajian M, Rahmani HR, Nasr-Esfahani MH. A physiological, rather than a superovulated, post-implantation environment can attenuate the compromising effect of assisted reproductive techniques on gene expression in developing mice embryos. Mol Reprod Dev 2015; 82:191-206. [PMID: 25728573 DOI: 10.1002/mrd.22461] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 01/12/2015] [Indexed: 02/03/2023]
Abstract
Assisted reproductive techniques (ARTs) may perturb the pre-/peri-conception microenvironments, which subsequently threaten the health of offspring. This study aimed to investigate the effects of superovulation, vitrification, in vitro culture, and embryo transfer on the expression of epigenetic modulators, imprinted genes, and pluripotency markers in expanded blastocysts and Day-9.5 (D9.5) concepti. Results revealed that 53.4% (8/15) and 86.7% (13/15) of genes in the fetus and placenta, respectively, have similar patterns of transcription in all D9.5 concepti, despite the perturbed mRNA expression observed at the blastocyst stage for each embryo-production technique. These observations indicate a counterbalancing of the abnormal expression pattern analyzed at the blastocyst stage during post-implantation development, particularly when the uterus of a naturally synchronized foster mother is employed. Superovulation resulted in the most abnormal expression patterns compared to other treatment groups, although these same blastocysts were able to develop in a synchronized uterus. Thus, superovulation creates a hormonal environment that negatively affected gene expression and impairs fetal growth more adversely during post-implantation development than other ART protocols, such as in vitro culture, vitrification, or embryo transfer-although each did contribute negatively to the implantation and development process. Together, these results may have implications for treating infertility in humans.
Collapse
Affiliation(s)
- E Bonakdar
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ideraabdullah FY, Thorvaldsen JL, Myers JA, Bartolomei MS. Tissue-specific insulator function at H19/Igf2 revealed by deletions at the imprinting control region. Hum Mol Genet 2014; 23:6246-59. [PMID: 24990148 DOI: 10.1093/hmg/ddu344] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Parent-of-origin-specific expression at imprinted genes is regulated by allele-specific DNA methylation at imprinting control regions (ICRs). This mechanism of gene regulation, where one element controls allelic expression of multiple genes, is not fully understood. Furthermore, the mechanism of gene dysregulation through ICR epimutations, such as loss or gain of DNA methylation, remains a mystery. We have used genetic mouse models to dissect ICR-mediated genetic and epigenetic regulation of imprinted gene expression. The H19/insulin-like growth factor 2 (Igf2) ICR has a multifunctional role including insulation, activation and repression. Microdeletions at the human H19/IGF2 ICR (IC1) are proposed to be responsible for IC1 epimutations associated with imprinting disorders such as Beckwith-Wiedemann syndrome (BWS). Here, we have generated and characterized a mouse model that mimics BWS microdeletions to define the role of the deleted sequence in establishing and maintaining epigenetic marks and imprinted expression at the H19/IGF2 locus. These mice carry a 1.3 kb deletion at the H19/Igf2 ICR [Δ2,3] removing two of four CCCTC-binding factor (CTCF) sites and the intervening sequence, ∼75% of the ICR. Surprisingly, the Δ2,3 deletion does not perturb DNA methylation at the ICR; however, it does disrupt imprinted expression. While repressive functions of the ICR are compromised by the deletion regardless of tissue type, insulator function is only disrupted in tissues of mesodermal origin where a significant amount of CTCF is poly(ADP-ribosyl)ated. These findings suggest that insulator activity of the H19/Igf2 ICR varies by cell type and may depend on cell-specific enhancers as well as posttranslational modifications of the insulator protein CTCF.
Collapse
Affiliation(s)
- Folami Y Ideraabdullah
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, 9-123 SCTR, 3400 Civic Center Boulevard, Philadelphia PA 19104, USA and Department of Genetics, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA
| | - Joanne L Thorvaldsen
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, 9-123 SCTR, 3400 Civic Center Boulevard, Philadelphia PA 19104, USA and
| | - Jennifer A Myers
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, 9-123 SCTR, 3400 Civic Center Boulevard, Philadelphia PA 19104, USA and
| | - Marisa S Bartolomei
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, 9-123 SCTR, 3400 Civic Center Boulevard, Philadelphia PA 19104, USA and
| |
Collapse
|
9
|
Choufani S, Shuman C, Weksberg R. Molecular findings in Beckwith-Wiedemann syndrome. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2013; 163C:131-40. [PMID: 23592339 DOI: 10.1002/ajmg.c.31363] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Our understanding of Beckwith-Wiedemann syndrome (BWS) has recently been enhanced by advances in its molecular characterization. These advances have further delineated intricate (epi)genetic regulation of the imprinted gene cluster on chromosome 11p15.5 and the role of these genes in normal growth and development. Studies of the molecular changes associated with the BWS phenotype have been instrumental in elucidating critical molecular elements in this imprinted region. This review will provide updated information on the multiple new regulatory elements that have been recently found to contribute to in cis or in trans control of imprinted gene expression in the chromosome 11p15.5 region and the clinical expression of the BWS phenotype.
Collapse
Affiliation(s)
- Sanaa Choufani
- Research Institute of the Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | | | | |
Collapse
|
10
|
Okamura E, Matsuzaki H, Sakaguchi R, Takahashi T, Fukamizu A, Tanimoto K. The H19 imprinting control region mediates preimplantation imprinted methylation of nearby sequences in yeast artificial chromosome transgenic mice. Mol Cell Biol 2013; 33:858-71. [PMID: 23230275 PMCID: PMC3571351 DOI: 10.1128/mcb.01003-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 12/06/2012] [Indexed: 12/30/2022] Open
Abstract
In the mouse Igf2/H19 imprinted locus, differential methylation of the imprinting control region (H19 ICR) is established during spermatogenesis and is maintained in offspring throughout development. Previously, however, we observed that the paternal H19 ICR, when analyzed in yeast artificial chromosome transgenic mice (YAC-TgM), was preferentially methylated only after fertilization. To identify the DNA sequences that confer methylation imprinting, we divided the H19 ICR into two fragments (1.7 and 1.2 kb), ligated them to both ends of a λ DNA fragment into which CTCF binding sites had been inserted, and analyzed this in YAC-TgM. The maternally inherited λ sequence, normally methylated after implantation in the absence of H19 ICR sequences, became hypomethylated, demonstrating protective activity against methylation within the ICR. Meanwhile, the paternally inherited λ sequence was hypermethylated before implantation only when a 1.7-kb fragment was ligated. Consistently, when two subfragments of the H19 ICR were individually investigated for their activities in YAC-TgM, only the 1.7-kb fragment was capable of introducing paternal allele-specific DNA methylation. These results show that postfertilization methylation imprinting is conferred by a paternal allele-specific methylation activity present in a 1.7-kb DNA fragment of the H19 ICR, while maternal allele-specific activities protect the allele from de novo DNA methylation.
Collapse
Affiliation(s)
- Eiichi Okamura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hitomi Matsuzaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Ryuuta Sakaguchi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takuya Takahashi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akiyoshi Fukamizu
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Keiji Tanimoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
11
|
McEachern LA, Lloyd VK. The maize b1 paramutation control region causes epigenetic silencing in Drosophila melanogaster. Mol Genet Genomics 2012; 287:591-606. [DOI: 10.1007/s00438-012-0702-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 06/11/2012] [Indexed: 10/28/2022]
|
12
|
Transgenic epigenetics: using transgenic organisms to examine epigenetic phenomena. GENETICS RESEARCH INTERNATIONAL 2012; 2012:689819. [PMID: 22567397 PMCID: PMC3335706 DOI: 10.1155/2012/689819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 12/19/2011] [Accepted: 01/02/2012] [Indexed: 01/21/2023]
Abstract
Non-model organisms are generally more difficult and/or time consuming to work with than model organisms. In addition, epigenetic analysis of model organisms is facilitated by well-established protocols, and commercially-available reagents and kits that may not be available for, or previously tested on, non-model organisms. Given the evolutionary conservation and widespread nature of many epigenetic mechanisms, a powerful method to analyze epigenetic phenomena from non-model organisms would be to use transgenic model organisms containing an epigenetic region of interest from the non-model. Interestingly, while transgenic Drosophila and mice have provided significant insight into the molecular mechanisms and evolutionary conservation of the epigenetic processes that target epigenetic control regions in other model organisms, this method has so far been under-exploited for non-model organism epigenetic analysis. This paper details several experiments that have examined the epigenetic processes of genomic imprinting and paramutation, by transferring an epigenetic control region from one model organism to another. These cross-species experiments demonstrate that valuable insight into both the molecular mechanisms and evolutionary conservation of epigenetic processes may be obtained via transgenic experiments, which can then be used to guide further investigations and experiments in the species of interest.
Collapse
|
13
|
Epigenetic mechanisms of genomic imprinting: common themes in the regulation of imprinted regions in mammals, plants, and insects. GENETICS RESEARCH INTERNATIONAL 2012; 2012:585024. [PMID: 22567394 PMCID: PMC3335465 DOI: 10.1155/2012/585024] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Accepted: 09/26/2011] [Indexed: 01/08/2023]
Abstract
Genomic imprinting is a form of epigenetic inheritance whereby the regulation of a gene or chromosomal region is dependent on the sex of the transmitting parent. During gametogenesis, imprinted regions of DNA are differentially marked in accordance to the sex of the parent, resulting in parent-specific expression. While mice are the primary research model used to study genomic imprinting, imprinted regions have been described in a broad variety of organisms, including other mammals, plants, and insects. Each of these organisms employs multiple, interrelated, epigenetic mechanisms to maintain parent-specific expression. While imprinted genes and imprint control regions are often species and locus-specific, the same suites of epigenetic mechanisms are often used to achieve imprinted expression. This review examines some examples of the epigenetic mechanisms responsible for genomic imprinting in mammals, plants, and insects.
Collapse
|
14
|
Ideraabdullah FY, Bartolomei MS. ZFP57: KAPturing DNA methylation at imprinted loci. Mol Cell 2011; 44:341-2. [PMID: 22055179 DOI: 10.1016/j.molcel.2011.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 10/17/2011] [Accepted: 10/17/2011] [Indexed: 11/29/2022]
Abstract
In this issue of Molecular Cell, Quenneville et al. (2011) characterize the role of ZFP57 in the maintenance of DNA methylation at imprinting control regions (ICRs), revealing an allele-specific binding pattern, binding motif, and interactions with other epigenetic regulators.
Collapse
Affiliation(s)
- Folami Y Ideraabdullah
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
15
|
Ideraabdullah FY, Abramowitz LK, Thorvaldsen JL, Krapp C, Wen SC, Engel N, Bartolomei MS. Novel cis-regulatory function in ICR-mediated imprinted repression of H19. Dev Biol 2011; 355:349-57. [PMID: 21600199 PMCID: PMC3125397 DOI: 10.1016/j.ydbio.2011.04.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/25/2011] [Accepted: 04/30/2011] [Indexed: 11/27/2022]
Abstract
Expression of coregulated imprinted genes, H19 and Igf2, is monoallelic and parent-of-origin-dependent. Like most imprinted genes, H19 and Igf2 are regulated by a differentially methylated imprinting control region (ICR). CTCF binding sites and DNA methylation at the ICR have previously been identified as key cis-acting elements required for proper H19/Igf2 imprinting. Here, we use mouse models to elucidate further the mechanism of ICR-mediated gene regulation. We specifically address the question of whether sequences outside of CTCF sites at the ICR are required for paternal H19 repression. To this end, we generated two types of mutant ICRs in the mouse: (i) deletion of intervening sequence between CTCF sites (H19(ICR∆IVS)), which changes size and CpG content at the ICR; and (ii) CpG depletion outside of CTCF sites (H19(ICR-8nrCG)), which only changes CpG content at the ICR. Individually, both mutant alleles (H19(ICR∆IVS) and H19(ICR-8nrCG)) show loss of imprinted repression of paternal H19. Interestingly, this loss of repression does not coincide with a detectable change in methylation at the H19 ICR or promoter. Thus, neither intact CTCF sites nor hypermethylation at the ICR is sufficient for maintaining the fully repressed state of the paternal H19 allele. Our findings demonstrate, for the first time in vivo, that sequence outside of CTCF sites at the ICR is required in cis for ICR-mediated imprinted repression at the H19/Igf2 locus. In addition, these results strongly implicate a novel role of ICR size and CpG density in paternal H19 repression.
Collapse
Affiliation(s)
- Folami Y. Ideraabdullah
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, 415 Curie Boulevard, Philadelphia, PA 19104 USA
| | - Lara K. Abramowitz
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, 415 Curie Boulevard, Philadelphia, PA 19104 USA
| | - Joanne L. Thorvaldsen
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, 415 Curie Boulevard, Philadelphia, PA 19104 USA
| | - Christopher Krapp
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, 415 Curie Boulevard, Philadelphia, PA 19104 USA
| | - Sherry C. Wen
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, 415 Curie Boulevard, Philadelphia, PA 19104 USA
| | - Nora Engel
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, 3307 North Broad Street, Philadelphia, PA 19140 USA
| | - Marisa S. Bartolomei
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, 415 Curie Boulevard, Philadelphia, PA 19104 USA
| |
Collapse
|
16
|
Choufani S, Shuman C, Weksberg R. Beckwith-Wiedemann syndrome. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2010; 154C:343-54. [PMID: 20803657 DOI: 10.1002/ajmg.c.30267] [Citation(s) in RCA: 233] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Beckwith-Wiedemann syndrome (BWS) is an imprinting disorder characterized by overgrowth, tumor predisposition, and congenital malformations. Approximately 85% of reported BWS cases are sporadic, while the remaining 15% are familial. BWS is caused by epigenetic or genomic alterations which disrupt genes in one or both of the two imprinted domains on chromosome 11p15.5. In each domain, an imprinting center regulates the expression of imprinted genes in cis. Normally in domain 1, insulin-like growth factor 2 (IGF2) and the untranslated mRNA H19 are monoallelically expressed. In BWS, increased expression of IGF2 occurs via several mechanisms. In domain 2, CDKN1C, a growth repressor, and an untranslated RNA, KCNQ1OT1, are normally expressed monoallelically. In cases of BWS, several mechanisms result in reduced expression of CDKN1C. Recent reports of BWS cases have identified mutations outside the chromosome 11p15.5 critical region, thereby broadening the challenges in the diagnosis and genetic counseling of individuals and families with BWS.
Collapse
Affiliation(s)
- Sanaa Choufani
- Department of Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | |
Collapse
|
17
|
Pathak S, Saxena M, D'Souza R, Balasinor NH. Disrupted imprinting status at the H19 differentially methylated region is associated with the resorbed embryo phenotype in rats. Reprod Fertil Dev 2010; 22:939-48. [DOI: 10.1071/rd09154] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 01/20/2010] [Indexed: 12/17/2022] Open
Abstract
Igf2, an imprinted gene that is paternally expressed in embryos, encodes an embryonic growth factor. An important regulator of Igf2 expression is methylation of the H19 differentially methylated region (DMR). A significant association has been observed between sperm methylation status at the H19 DMR and post-implantation loss. In addition, tamoxifen treatment has been shown to increase post-implantation loss and reduce DNA methylation at the H19 DMR in rat spermatozoa. Because this DMR is a primary DMR transmitting epigenetic imprint information from the gametes to the embryo, the aim of the present study was to determine the imprinting status of H19 DMR in post-implantation normal and resorbed embryos (F1) and to compare it with the H19 DMR in the spermatozoa of the respective sires. Analysis of the H19 DMR revealed methylation errors in resorbed embryo that were also observed in their sires' spermatozoa in the control and tamoxifen-treated groups. Expression analysis of the reciprocally imprinted genes Igf2 and H19 showed significant downregulation of Igf2 protein without any effect on H19 transcript levels in the resorbed embryos. The results indicate an association between disrupted imprinting status at the H19 DMR in resorbed embryos and the spermatozoa from their respective sires regardless of treatment, implying a common mechanism of resorption. The results demonstrate transmission of methylation errors at the Igf2–H19 locus through the paternal germline to the subsequent generation, emphasising the role of paternal factors during embryogenesis.
Collapse
|
18
|
Takamiya T, Hosobuchi S, Noguchi T, Asai K, Nakamura E, Habu Y, Paterson AH, Iijima H, Murakami Y, Okuizumi H. Inheritance and alteration of genome methylation in F1 hybrid rice. Electrophoresis 2009; 29:4088-95. [PMID: 18958879 DOI: 10.1002/elps.200700784] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We analyzed the inheritance of DNA methylation in the first filial generation(F1) hybrid of Oryza sativa L. ("Nipponbare"x"Kasalath") by restriction landmark genome scanning (RLGS). Most parental RLGS spots were found in the F1, but eight spots (4%) showed abnormal inheritance: seven of the eight spots were missing in the F1, and one was newly detected in the F1. Here we show demethylation at restriction enzyme sites in the F1. We also found a candidate site of stable heterozygous methylation in the genome. These results show the applicability of the RLGS method for analysis of the inheritance and alteration of methylation in F1 hybrid plants.
Collapse
Affiliation(s)
- Tomoko Takamiya
- Division of Genome and Biodiversity Research, National Institute of Agrobiological Sciences (NIAS), Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Haycock PC, Ramsay M. Exposure of mouse embryos to ethanol during preimplantation development: effect on DNA methylation in the h19 imprinting control region. Biol Reprod 2009; 81:618-27. [PMID: 19279321 DOI: 10.1095/biolreprod.108.074682] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In the present study, it was hypothesized that disruption of imprinting control in the H19/Igf2 domain may be a mechanism of ethanol-induced growth retardation-a key clinical feature of the fetal alcohol spectrum disorders (FASD). To test this prediction, genomic bisulphite sequencing was carried out on 473 bp of the H19 imprinting control region in DNA obtained from midgestation F(1) hybrid mouse embryos (C57BL/6 x Mus musculus castaneus) exposed to ethanol during preimplantation development. Although ethanol-exposed placentae and embryos were severely growth retarded in comparison with saline-treated controls, DNA methylation at paternal and maternal alleles was unaffected in embryos. However, paternal alleles were significantly less methylated in ethanol-treated placentae in comparison with saline-treated controls. Partial correlations suggested that the relationship between ethanol and placental weight partly depended on DNA methylation at a CCCTC-binding factor site on the paternal allele in placentae, suggesting a novel mechanism of ethanol-induced growth retardation. In contrast, partial correlations suggested that embryo growth retardation was independent of placental growth retardation. Relaxation of allele-specific DNA methylation in control placentae in comparison with control embryos was also observed, consistent with a model of imprinting in which 1) regulation of allele-specific DNA methylation in the placenta depends on a stochastic interplay between silencer and enhancer chromatin assembly factors and 2) imprinting control mechanisms in the embryo are more robust to environmental perturbations.
Collapse
Affiliation(s)
- Philip C Haycock
- Division of Human Genetics, University of the Witwatersrand and National Health Laboratory Service, Johannesburg, South Africa
| | | |
Collapse
|
20
|
Chen Y, Dhupelia A, Schoenherr CJ. The Igf2/H19 imprinting control region exhibits sequence-specific and cell-type-dependent DNA methylation-mediated repression. Nucleic Acids Res 2008; 37:793-803. [PMID: 19074953 PMCID: PMC2647309 DOI: 10.1093/nar/gkn985] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Methylation of CpGs is generally thought to repress transcription without significant influence from the sequence surrounding the methylated dinucleotides. Using the mouse Igf2/H19 imprinting control region (ICR), Igf2r differentially methylated region 2 (DMR2) and bacterial sequences, we addressed how methylation-dependent repression (MDR) from a distance varies with CpG number, density and surrounding sequence. In stably transfected F9 cells, the methylated ICR repressed expression from a CpG-free reporter plasmid more than 1000-fold compared with its unmethylated control. A segment of pBluescript, with a CpG number equal to the ICR's but with a higher density, repressed expression only 70-fold when methylated. A bacteriophage lambda fragment and the Igf2r DMR2 showed minimal MDR activity, despite having CpG numbers and densities similar to or greater than the ICR. By rearranging or deleting CpGs, we identified CpGs associated with three CTCF sites in the ICR that are necessary and sufficient for sequence-specific MDR. In contrast to F9 cells, the methylated ICR and pBS fragments exhibited only 3-fold reporter repression in Hela cells and none in Cos7. Our results show that the strength of MDR from a distance can vary a 1000-fold between different cell types and depends on the sequence surrounding the methylated CpGs, but does not necessarily increase with CpG number or density.
Collapse
Affiliation(s)
- Yinming Chen
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | | | | |
Collapse
|
21
|
Wu J, Qin Y, Li B, He WZ, Sun ZL. Hypomethylated and hypermethylated profiles of H19DMR are associated with the aberrant imprinting of IGF2 and H19 in human hepatocellular carcinoma. Genomics 2008; 91:443-50. [PMID: 18358696 DOI: 10.1016/j.ygeno.2008.01.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Accepted: 01/18/2008] [Indexed: 12/16/2022]
Abstract
In this study, 39 human hepatocellular carcinoma (HCC) tissues and 7 normal adult liver tissues were screened for heterozygous polymorphisms in IGF2, H19, and the differentially methylated region of H19 (H19DMR) using PCR-RFLP and PCR sequencing. The imprinting of IGF2 and H19 was examined by RT-PCR-RFLP, while the methylation profile of H19DMR was detected by bisulfite sequencing from every informative sample. Of the informative HCC samples 47.06% (8 of 17) demonstrated a gain of imprinting of IGF2, and 21.74% (5 of 23) of the informative HCC samples demonstrated a loss of imprinting of H19. Interestingly, we found three methylation profiles for H19DMR in the informative HCC samples: hyper-, medium-, and hypomethylated profiles. Furthermore, the hypomethylated and hypermethylated profiles were immediately associated with aberrant imprinting of IGF2 and H19.
Collapse
Affiliation(s)
- Jing Wu
- Department of Biochemistry and Molecular Biology, School of Preclinical and Forensic Medicine, West China Medical Center, Chengdu 610041, Sichuan Province, China
| | | | | | | | | |
Collapse
|
22
|
Schoenfelder S, Smits G, Fraser P, Reik W, Paro R. Non-coding transcripts in the H19 imprinting control region mediate gene silencing in transgenic Drosophila. EMBO Rep 2007; 8:1068-73. [PMID: 17948025 PMCID: PMC2247386 DOI: 10.1038/sj.embor.7401094] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 08/22/2007] [Accepted: 09/13/2007] [Indexed: 12/16/2022] Open
Abstract
The imprinting control region (ICR) upstream of H19 is the key regulatory element conferring monoallelic expression on H19 and Igf2 (insulin-like growth factor 2). Epigenetic marks in the ICR regulate its interaction with the chromatin protein CCCTC-binding factor and with other control factors to coordinate gene silencing in the imprinting cluster. Here, we show that the H19 ICR is biallelically transcribed, producing both sense and antisense RNAs. We analyse the function of the non-coding transcripts in a Drosophila transgenic system in which the H19 upstream region silences the expression of a reporter gene. We show that knockdown of H19 ICR non-coding RNA (ncRNA) by RNA interference leads to the loss of reporter gene silencing. Our results are, to the best of our knowledge, the first to show that ncRNAs in the H19 ICR are functionally significant, and also indicate that they have a role in regulating gene expression and perhaps epigenetic marks at the H19/Igf2 locus.
Collapse
Affiliation(s)
- Stefan Schoenfelder
- Zentrum fuer Molekulare Biologie Heidelberg (ZMBH), Universitaet Heidelberg, INF 282, 69120 Heidelberg, Germany
- Laboratory of Chromatin and Gene Expression
| | - Guillaume Smits
- Laboratory of Developmental Genetics and Imprinting, Babraham Institute, Cambridge CB22 3AT, UK
| | | | - Wolf Reik
- Laboratory of Developmental Genetics and Imprinting, Babraham Institute, Cambridge CB22 3AT, UK
| | - Renato Paro
- Zentrum fuer Molekulare Biologie Heidelberg (ZMBH), Universitaet Heidelberg, INF 282, 69120 Heidelberg, Germany
- Present address: Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| |
Collapse
|
23
|
Arney KL, Bae E, Olsen C, Drewell RA. The human and mouse H19 imprinting control regions harbor an evolutionarily conserved silencer element that functions on transgenes in Drosophila. Dev Genes Evol 2006; 216:811-9. [PMID: 17016732 DOI: 10.1007/s00427-006-0102-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Accepted: 07/05/2006] [Indexed: 10/24/2022]
Abstract
Differentially methylated regions have been characterized at a number of imprinted gene complexes with important roles in the regulation of monoallelic expression of one or more genes. The differentially methylated imprinting control region (ICR) located upstream of the murine H19 gene has been shown to control the imprinted expression of H19 and the coordinately regulated Igf2 gene by acting as a transcriptional silencer. In this study, we show that the murine ICR maintains this function when tested in an in vivo transgenic Drosophila assay in the absence of DNA methylation. Furthermore, the H19 ICR interacts distinctively with Drosophila promoters of different regulatory strengths. We also demonstrate that the comparable region upstream of the human H19 gene is a multipartite cis-regulatory element, demonstrating silencing function when tested in mammalian and Drosophila systems. These results indicate a conservation of the H19/Igf2 imprinting mechanism between humans and mice and further elucidate the functional activities of the H19 ICR. They demonstrate the value of Drosophila as an in vivo system for testing function and interaction of eukaryotic regulatory elements and that mechanisms of transcriptional cis-regulation in mammals and Drosophila are conserved.
Collapse
Affiliation(s)
- Katharine L Arney
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital Campus, Du Cane Road, London, UK
| | | | | | | |
Collapse
|
24
|
Engel N, Thorvaldsen JL, Bartolomei MS. CTCF binding sites promote transcription initiation and prevent DNA methylation on the maternal allele at the imprinted H19/Igf2 locus. Hum Mol Genet 2006; 15:2945-54. [PMID: 16928784 DOI: 10.1093/hmg/ddl237] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Imprinting at the H19/Igf2 locus depends on a differentially methylated domain (DMD) acting as a maternal-specific, methylation-sensitive insulator and a paternal-specific locus of hypermethylation. Four repeats in the DMD bind CTCF on the maternal allele and have been proposed to recruit methylation on the paternal allele. We deleted the four repeats and assayed the effects of the mutation at the endogenous locus. The H19DMD-DeltaR allele can successfully acquire methylation during spermatogenesis and silence paternal H19, indicating that these paternal-specific functions are independent of the CTCF binding sites. Maternal inheritance of the mutations leads to biallelic Igf2 expression, consistent with the loss of a functional insulator. Additionally, we uncovered two previously undescribed roles for the CTCF binding sites. On the mutant allele, H19 RNA is barely detectable in 6.5 d.p.c. embryos and 9.5 d.p.c. placenta, for the first time identifying the repeats as the elements responsible for initiating H19 transcription. Furthermore, methylation is abruptly acquired on the mutant maternal allele after implantation, a time when the embryo is undergoing genome-wide de novo methylation. Together, these experiments show that in addition to being essential for a functional insulator, the CTCF repeats facilitate initiation of H19 expression in the early embryo and are required to maintain the hypomethylated state of the entire DMD.
Collapse
Affiliation(s)
- Nora Engel
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | | | |
Collapse
|
25
|
Arima T, Yamasaki K, John RM, Kato K, Sakumi K, Nakabeppu Y, Wake N, Kono T. The human HYMAI/PLAGL1 differentially methylated region acts as an imprint control region in mice. Genomics 2006; 88:650-8. [PMID: 16928428 DOI: 10.1016/j.ygeno.2006.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2006] [Revised: 06/30/2006] [Accepted: 07/10/2006] [Indexed: 11/24/2022]
Abstract
Imprinting centers (IC) can be defined as cis-elements that are recognized in the germ line and are epigenetically modified to bring about the full imprinting program in a somatic cell. Two paternally expressed human genes, HYMAI and PLAGL1 (LOT1/ZAC), are located within human chromosome 6q24. Within this region lies a 1-kb CpG island that is differentially methylated in somatic cells, unmethylated in sperm, and methylated in mature oocytes in mice, characteristic features of an IC. Loss of methylation of the homologous region in humans is observed in patients with transient neonatal diabetes mellitus and hypermethylation is associated with a variety of cancers, suggesting that this region regulates the expression of one or more key genes in this region involved in these diseases. We now report that a transgene carrying the human HYMAI/PLAGL1 DMR was methylated in the correct parent-origin-specific manner in mice and this was sufficient to confer imprinted expression from the transgene. Therefore, we propose that this DMR functions as the IC for the HYMAI/PLAGL1 domain.
Collapse
Affiliation(s)
- Takahiro Arima
- Division of Molecular and Cell Therapeutics, Department of Molecular Genetics, Kyusyu University, Beppu, Oita 874-0838, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Reese KJ, Bartolomei MS. Establishment and maintenance of H19 imprinting in the germline and preimplantation embryo. Cytogenet Genome Res 2006; 113:153-8. [PMID: 16575175 DOI: 10.1159/000090827] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2005] [Accepted: 09/12/2005] [Indexed: 12/20/2022] Open
Abstract
The mouse H19 and Igf2 genes are oppositely imprinted and share enhancers that reside 3' to the genes. The imprinted expression of these genes is coordinated by a 2-kb regulatory element, the differentially methylated domain (DMD), positioned between the two genes. The methylation status of this region determines the ability of the insulator factor CTCF to bind to its sites in the DMD. Deletions and mutations of the DMD that affect imprinting in the soma have little effect on the methylation pattern of H19 in the germline, suggesting that additional sequences and factors contribute to the earliest stages of imprinting regulation at this locus. Less is known about these initial steps, which include the marking of the parental alleles, the onset of allele-specific expression patterns and maintenance of the imprints in the preimplantation embryo. Here, we will focus on these early steps, summarizing what is known and what questions remain to be addressed.
Collapse
Affiliation(s)
- K J Reese
- Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
27
|
Hagège H, Nasser R, Weber M, Milligan L, Aptel N, Jacquet C, Drewell RA, Dandolo L, Surani MA, Cathala G, Forné T. The 3' portion of the mouse H19 Imprinting-Control Region is required for proper tissue-specific expression of the Igf2 gene. Cytogenet Genome Res 2006; 113:230-7. [PMID: 16575185 DOI: 10.1159/000090837] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Accepted: 09/15/2005] [Indexed: 11/19/2022] Open
Abstract
Genomic imprinting at the H19/Igf2 locus is governed by a cis-acting Imprinting-Control Region (ICR), located 2 kb upstream of the H19 gene. This region possesses an insulator function which is activated on the unmethylated maternal allele through the binding of the CTCF factor. It has been previously reported that paternal transmission of the H19(SilK) deletion, which removes the 3' portion of H19 ICR, leads to the loss of H19 imprinting. Here we show that, in the liver, this reactivation of the paternal H19 gene is concomitant to a dramatic decrease in Igf2 mRNA levels. This deletion alters higher-order chromatin architecture, Igf2 promoter usage and tissue-specific expression. Therefore, when methylated, the 3' portion of the H19 ICR is a bi-functional regulatory element involved not only in H19 imprinting but also in 'formatting' the higher-order chromatin structure for proper tissue-specific expression of both H19 and Igf2 genes.
Collapse
Affiliation(s)
- H Hagège
- Institut de Génétique Moléculaire de Montpellier, Montpellier, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Arima T, Wake N. Establishment of the primary imprint of the HYMAI/PLAGL1 imprint control region during oogenesis. Cytogenet Genome Res 2006; 113:247-52. [PMID: 16575187 DOI: 10.1159/000090839] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Accepted: 08/12/2005] [Indexed: 01/11/2023] Open
Abstract
Imprinting within domains occurs through epigenetic alterations to imprinting centers (ICs) that result in the establishment of parental-specific differences in gene expression. One candidate IC lies within the imprinted domain on human chromosome region 6q24. This domain contains two paternally expressed genes, the zinc finger protein gene PLAGL1 (ZAC/LOT1) and an untranslated mRNAcalled HYMAI. The putative IC overlaps exon 1 of HYMAI and is differentially methylated in somatic tissues. In humans, loss of methylation within this region is seen in some patients with transient neonatal diabetes mellitus, and hypermethylation of this region is found in ovarian cancer and is associated with changes in expression of PLAGL1, suggesting that it plays a key role in regulating gene expression. Differential methylation within this region is conserved in the homologous region on mouse chromosome 10A and is present on the maternal allele. In this paper, we report that DNA methylation is established during the growth phase of oogenesis and that this coincides with the establishment of monoallelic expression from this region lending further support to the hypothesis that this region functions as an IC.
Collapse
Affiliation(s)
- T Arima
- Division of Molecular and Cell Therapeutics, Department of Molecular Genetics, Medical Institute of Bioregulation, Kyusyu University, Kyusyu, Japan.
| | | |
Collapse
|
29
|
Gabory A, Ripoche MA, Yoshimizu T, Dandolo L. The H19 gene: regulation and function of a non-coding RNA. Cytogenet Genome Res 2006; 113:188-93. [PMID: 16575179 DOI: 10.1159/000090831] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2005] [Accepted: 11/14/2005] [Indexed: 12/18/2022] Open
Abstract
The H19 gene encodes a 2.3-kb non-coding mRNA which is strongly expressed during embryogenesis. This gene belongs to an imprinted cluster, conserved on mouse chromosome 7 and human chromosome 11p15. H19 is maternally expressed and the neighbouring Igf2 gene is transcribed from the paternal allele. These two genes are co-expressed in endoderm- and mesoderm-derived tissues during embryonic development, which suggests a common mechanism of regulation. The regulatory elements (imprinted control region, CTCF insulation, different enhancer sequences, promoters of the two genes, matrix attachment regions) confer a differential chromatin architecture to the two parental alleles leading to reciprocal expression. The role of the H19 gene is unclear but different aspects have been proposed. H19 influences growth by way of a cis control on Igf2 expression. Although H19(-/-) mice are viable, a role for this gene during development has been suggested by viable H19(-/-) parthenogenetic mice. Finally it has been described as a putative tumour suppressor gene. H19 has been studied by numerous laboratories over the last fifteen years, nevertheless the function of this non-coding RNA remains to be elucidated.
Collapse
Affiliation(s)
- A Gabory
- Department of Genetics and Development, Institut Cochin, INSERM U567, CNRS UMR 8104, University Paris V Descartes, Paris, France
| | | | | | | |
Collapse
|
30
|
Thorvaldsen JL, Fedoriw AM, Nguyen S, Bartolomei MS. Developmental profile of H19 differentially methylated domain (DMD) deletion alleles reveals multiple roles of the DMD in regulating allelic expression and DNA methylation at the imprinted H19/Igf2 locus. Mol Cell Biol 2006; 26:1245-58. [PMID: 16449639 PMCID: PMC1367202 DOI: 10.1128/mcb.26.4.1245-1258.2006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The differentially methylated domain (DMD) of the mouse H19 gene is a methylation-sensitive insulator that blocks access of the Igf2 gene to shared enhancers on the maternal allele and inactivates H19 expression on the methylated paternal allele. By analyzing H19 DMD deletion alleles H19DeltaDMD and H19Delta3.8kb-5'H19 in pre- and postimplantation embryos, we show that the DMD exhibits positive transcriptional activity and is required for H19 expression in blastocysts and full activation of H19 during subsequent development. We also show that the DMD is required to establish Igf2 imprinting by blocking access to shared enhancers when Igf2 monoallelic expression is initiated in postimplantation embryos and that the single remaining CTCF site of the H19DeltaDMD allele is unable to provide this function. Furthermore, our data demonstrate that sequence outside of the DMD can attract some paternal-allele-specific CpG methylation 5' of H19 in preimplantation embryos, although this methylation is not maintained during postimplantation in the absence of the DMD. Finally, we report a conditional allele floxing the 1.6-kb sequence deleted from the H19DeltaDMD allele and demonstrate that the DMD is required to maintain repression of the maternal Igf2 allele and the full activity of the paternal Igf2 allele in neonatal liver.
Collapse
Affiliation(s)
- Joanne L Thorvaldsen
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
31
|
Abstract
Genomic imprinting leads to parent-of-origin-specific monoallelic expression of about 60 known genes in the mammalian genome. It was discovered 20 years ago and the aim of this review is to summarize its main characteristics. The nature of the imprint, still unknown, is characterized by differential chromatin structure and DNA methylation. The imprint is reset at each generation during gametogenesis, which can be observed by demethylation in the PGCs, then gamete-specific remethylation. The imprinted genes are usually located in clusters and regulated by cis sequences such as imprinting centres, trans factors such as the insulator protein CTCF and/or large non coding antisense RNAs. Genetic and epigenetic abnormalities of the imprinted clusters can lead to human diseases such as Prader-Willi, Angelman or Beckwith-Wiedemann syndromes.
Collapse
Affiliation(s)
- Anne Gabory
- Equipe Empreinte parentale, Département Génétique et Développement, Institut Cochin, 24, rue du Faubourg Saint-Jacques, 75014 Paris, France
| | | |
Collapse
|
32
|
Lewis A, Reik W. How imprinting centres work. Cytogenet Genome Res 2006; 113:81-9. [PMID: 16575166 DOI: 10.1159/000090818] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Accepted: 09/15/2005] [Indexed: 11/19/2022] Open
Abstract
Imprinted genes tend to be clustered in the genome. Most of these clusters have been found to be under the control of discrete DNA elements called imprinting centres (ICs) which are normally differentially methylated in the germline. ICs can regulate imprinted expression and epigenetic marks at many genes in the region, even those which lie several megabases away. Some of the molecular and cellular mechanisms by which ICs control other genes and regulatory regions in the cluster are becoming clear. One involves the insulation of genes on one side of the IC from enhancers on the other, mediated by the insulator protein CTCF and higher-order chromatin interactions. Another mechanism may involve non-coding RNAs that originate from the IC, targeting histone modifications to the surrounding genes. Given that several imprinting clusters contain CTCF dependent insulators and/or non-coding RNAs, it is likely that one or both of these two mechanisms regulate imprinting at many loci. Both mechanisms involve a variety of epigenetic marks including DNA methylation and histone modifications but the hierarchy of and interactions between these modifications are not yet understood. The challenge now is to establish a chain of developmental events beginning with differential methylation of an IC in the germline and ending with imprinting of many genes, often in a lineage dependent manner.
Collapse
Affiliation(s)
- A Lewis
- Laboratory of Developmental Genetics and Imprinting, The Babraham Institute, Cambridge, UK.
| | | |
Collapse
|
33
|
Schoenfelder S, Paro R. Drosophila Su(Hw) regulates an evolutionarily conserved silencer from the mouse H19 imprinting control region. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2005; 69:47-54. [PMID: 16117632 DOI: 10.1101/sqb.2004.69.47] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- S Schoenfelder
- Center for Molecular Biology Heidelberg (ZMBH), University of Heidelberg, 69120 Heidelberg, Germany
| | | |
Collapse
|
34
|
Reply to "Microdeletion and IGF2 loss of imprinting in a cascade causing Beckwith-Wiedemann syndrome with Wilms' tumor". Nat Genet 2005. [DOI: 10.1038/ng0805-786] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
35
|
Verona RI, Bartolomei MS. Role of H19 3' sequences in controlling H19 and Igf2 imprinting and expression. Genomics 2005; 84:59-68. [PMID: 15203204 DOI: 10.1016/j.ygeno.2003.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2003] [Accepted: 12/02/2003] [Indexed: 01/19/2023]
Abstract
The regulation of H19 and Igf2 imprinting and expression depends on common elements. Using comparative analysis between human and mouse, we identified conserved regions 3' of the H19 transcription unit, including the H19/Igf2 endodermal enhancers and elements within a 4.2-kb domain between the H19 transcription unit and the enhancers. Transgene experiments implicate these elements in imprinting regulation. To establish whether they are required at the endogenous locus, first we replaced the endodermal enhancers with the alpha-fetoprotein endodermal enhancers (H19Afp). Second, we deleted the 4.2-kb region (H19delta4.2). Our analysis revealed that H19 and Igf2 imprinting and tissue-specific expression were maintained for both mutations, except for a slight reduction in paternal Igf2 expression from the H19Afp allele in liver. These results demonstrate that the H19 insulator can interact with heterologous enhancers to imprint Igf2. Furthermore, for H19, chromatin context or additional sequences possibly compensate for loss of conserved 3' elements.
Collapse
Affiliation(s)
- Raluca I Verona
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
36
|
Reinhart B, Chaillet JR. Genomic imprinting: cis-acting sequences and regional control. INTERNATIONAL REVIEW OF CYTOLOGY 2005; 243:173-213. [PMID: 15797460 DOI: 10.1016/s0074-7696(05)43003-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review explores the features of imprinted loci that have been uncovered by genetic experiments in the mouse. Imprinted genes are expressed from one parental allele and often contain parent-specific differences in DNA methylation within genomic regions known as differentially methylated domains (DMDs). The precise erasure, establishment, and propagation of methylation on the alleles of imprinted genes during development suggest that parental differences in methylation at DMD sequences are a fundamental distinguishing feature of imprinted loci. Furthermore, targeted mutations of many DMDs have shown that they are essential for the imprinting of single genes or large gene clusters. An essential role of DNA methylation in genomic imprinting is also shown by studies of methyltransferase-deficient embryos. Many of the DMDs known to be required for imprinting contain imprinted promoters, tandem repeats, and CpG-rich regions that may be important for regulating parent-specific gene expression.
Collapse
Affiliation(s)
- Bonnie Reinhart
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15208, USA
| | | |
Collapse
|
37
|
Abstract
The kinship theory of genomic imprinting proposes that parent-specific gene expression evolves at a locus because a gene's level of expression in one individual has fitness effects on other individuals who have different probabilities of carrying the maternal and paternal alleles of the individual in which the gene is expressed. Therefore, natural selection favors different levels of expression depending on an allele's sex-of-origin in the previous generation. This review considers the strength of evidence in support of this hypothesis for imprinted genes in four "clusters," associated with the imprinted loci Igf2, Igf2r, callipyge, and Gnas. The clusters associated with Igf2 and Igf2r both contain paternally expressed transcripts that act as enhancers of prenatal growth and maternally expressed transcripts that act as inhibitors of prenatal growth. This is consistent with predictions of the kinship theory. However, the clusters also contain imprinted genes whose phenotypes as yet remain unexplained by the theory. The principal effects of imprinted genes in the callipyge and Gnas clusters appear to involve lipid and energy metabolism. The kinship theory predicts that maternally expressed transcripts will favor higher levels of nonshivering thermogenesis (NST) in brown adipose tissue (BAT) of animals that huddle for warmth as offspring. The phenotypes of reciprocal heterozygotes for Gnas knockouts provide provisional support for this hypothesis, as does some evidence from other imprinted genes (albeit more tentatively). The diverse effects of imprinted genes on the development of white adipose tissue (WAT) have so far defied a unifying hypothesis in terms of the kinship theory.
Collapse
Affiliation(s)
- David Haig
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| |
Collapse
|
38
|
Tsai TF, Bressler J, Jiang YH, Beaudet AL. Disruption of the genomic imprint in trans with homologous recombination at Snrpn in ES cells. Genesis 2004; 37:151-61. [PMID: 14666508 DOI: 10.1002/gene.10237] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In gene targeting studies of the Prader-Willi syndrome (PWS)/Angelman syndrome (AS) domain in mouse ES cells, we recovered only recombinants with the paternal allele for constructs at exons 2 or 3 of the imprinted, maternally silenced Snurf-Snrpn gene. These sites lie close to the imprinting center (IC) for this domain. In contrast, recombinants for Ube3a within the same imprinted domain were recovered with equal frequency on the maternal and paternal alleles. In addition, gene targeting of the paternal allele for Snurf-Snrpn resulted in partial or complete demethylation in trans with activation of expression for the previously silenced maternal allele. The imprint switching of the maternal allele in trans is not readily explained by competition for trans-acting factors and adds to a growing body of evidence indicating homologous association of oppositely imprinted chromatin domains in somatic mammalian cells.
Collapse
Affiliation(s)
- Ting-Fen Tsai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | |
Collapse
|
39
|
Ferguson-Smith AC, Lin SP, Youngson N. Regulation of gene activity and repression: a consideration of unifying themes. Curr Top Dev Biol 2004; 60:197-213. [PMID: 15094299 DOI: 10.1016/s0070-2153(04)60006-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
40
|
Pant V, Kurukuti S, Pugacheva E, Shamsuddin S, Mariano P, Renkawitz R, Klenova E, Lobanenkov V, Ohlsson R. Mutation of a single CTCF target site within the H19 imprinting control region leads to loss of Igf2 imprinting and complex patterns of de novo methylation upon maternal inheritance. Mol Cell Biol 2004; 24:3497-504. [PMID: 15060168 PMCID: PMC381662 DOI: 10.1128/mcb.24.8.3497-3504.2004] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The differentially methylated imprinting control region (ICR) region upstream of the H19 gene regulates allelic Igf2 expression by means of a methylation-sensitive chromatin insulator function. We have previously shown that maternal inheritance of mutated (three of the four) target sites for the 11-zinc finger protein CTCF leads to loss of Igf2 imprinting. Here we show that a mutation in only CTCF site 4 also leads to robust activation of the maternal Igf2 allele despite a noticeably weaker interaction in vitro of site 4 DNA with CTCF compared to other ICR sites, sites 1 and 3. Moreover, maternally inherited sites 1 to 3 become de novo methylated in complex patterns in subpopulations of liver and heart cells with a mutated site 4, suggesting that the methylation privilege status of the maternal H19 ICR allele requires an interdependence between all four CTCF sites. In support of this conclusion, we show that CTCF molecules bind to each other both in vivo and in vitro, and we demonstrate strong interaction between two CTCF-DNA complexes, preassembled in vitro with sites 3 and 4. We propose that the CTCF sites may cooperate to jointly maintain both methylation-free status and insulator properties of the maternal H19 ICR allele. Considering many other CTCF targets, we propose that site-specific interactions between various DNA-bound CTCF molecules may provide general focal points in the organization of looped chromatin domains involved in gene regulation.
Collapse
Affiliation(s)
- Vinod Pant
- Department of Development and Genetics, Evolution Biology Centre, Uppsala University, S-752 36 Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Yamamoto Y, Nishikawa Y, Tokairin T, Omori Y, Enomoto K. Increased expression of H19 non-coding mRNA follows hepatocyte proliferation in the rat and mouse. J Hepatol 2004; 40:808-14. [PMID: 15094229 DOI: 10.1016/j.jhep.2004.01.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2003] [Revised: 01/12/2004] [Accepted: 01/28/2004] [Indexed: 01/04/2023]
Abstract
BACKGROUND/AIMS H19 is a paternally imprinted gene that is believed to function as non-coding mRNA. While H19 is only faintly expressed in the normal adult liver, it is abundantly expressed during the fetal period. We explored the possibility that H19 might participate in the regulation of hepatocyte proliferation. METHODS Adult male rats and mice were subjected to a two-thirds partial hepatectomy, and after various time periods, hepatocytes were isolated and analyzed for H19 gene expression. The expression was also examined in cultured rat hepatocytes. RESULTS The expression of H19 was dramatically increased after 2 days (rat) and 4 days (mouse), peaked at 3 days (rat) and 6 days (mouse), and then gradually declined. In both species, the increase in H19 gene expression was preceded by the induction of proliferating cell nuclear antigen and DNA synthesis. An allele-specific RT-PCR analysis in the mouse showed that the paternally imprinted status of the gene was maintained after a partial hepatectomy. H19 was strongly induced in spheroid cultures after transient hepatocyte proliferation, but not in conventional monolayer cultures, in which persistent proliferation occurred. CONCLUSIONS Our results demonstrated that H19 gene expression was dynamically regulated in adult hepatocytes in close association with their proliferation.
Collapse
Affiliation(s)
- Youhei Yamamoto
- Department of Pathology, Akita University School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | | | | | | | | |
Collapse
|
42
|
Abstract
An intriguing characteristic of imprinted genes is that they often cluster in large chromosomal domains, raising the possibility that gene-specific and domain-specific mechanisms regulate imprinting. Several common features emerged from comparative analysis of four imprinted domains in mice and humans: (a) Certain genes appear to be imprinted by secondary events, possibly indicating a lack of gene-specific imprinting marks; (b) some genes appear to resist silencing, predicting the presence of cis-elements that oppose domain-specific imprinting control; (c) the nature of the imprinting mark remains incompletely understood. In addition, common silencing mechanisms are employed by the various imprinting domains, including silencer elements that nucleate and propagate a silent chromatin state, insulator elements that prevent promoter-enhancer interactions when hypomethylated on one parental allele, and antisense RNAs that function in silencing the overlapping sense gene and more distantly located genes. These commonalities are reminiscent of the behavior of genes subjected to, and the mechanisms employed in, dosage compensation.
Collapse
Affiliation(s)
- Raluca I Verona
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148, USA.
| | | | | |
Collapse
|
43
|
Abstract
Deregulation of imprinted genes has been observed in a number of human diseases such as Beckwith-Wiedemann syndrome, Prader-Willi/Angelman syndromes and cancer. Imprinting diseases are characterised by complex patterns of mutations and associated phenotypes affecting pre- and postnatal growth and neurological functions. Regulation of imprinted gene expression is mediated by allele-specific epigenetic modifications of DNA and chromatin. These modifications preferentially affect central regulatory elements that control in cis over long distances allele-specific expression of several neighbouring genes. Investigations of imprinting diseases have a strong impact on biomedical research and provide interesting models for function and mechanisms of epigenetic gene control.
Collapse
Affiliation(s)
- Jörn Walter
- FR 8.2 Genetik, Universität des Saarlandes, Postfach 151150, 66041 Saarbrücken, Germany.
| | | |
Collapse
|
44
|
Abstract
Genomic imprinting, whereby certain genes are expressed dependent on whether they are maternally or paternally inherited, is restricted to mammals and angiosperm plants. This unusual mode of gene regulation results from the complex interplay between cis-regulatory elements, leading to parent-of-origin-dependent epigenetic modifications and tissue-specific patterns of imprinted gene expression. Many studies of imprinting and imprinted genes have focused on epigenetic effects, such as DNA methylation and chromatin structure. However, it is equally important to explore the interconnected role of regulatory elements at imprinted domains by genetic experiments, including the use of transgenes and deletions.
Collapse
Affiliation(s)
- Katharine L Arney
- Wellcome Trust/Cancer Research UK Institute of Cancer and Developmental Biology, Tennis Court Road, CB2 1QR, Cambridge, UK.
| |
Collapse
|
45
|
Engel N, Bartolomei MS. Mechanisms of Insulator Function in Gene Regulation and Genomic Imprinting. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 232:89-127. [PMID: 14711117 DOI: 10.1016/s0074-7696(03)32003-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Correct temporal and spatial patterns of gene expression are required to establish unique cell types. Several levels of genome organization are involved in achieving this intricate regulatory feat. Insulators are elements that modulate interactions between other cis-acting sequences and separate chromatin domains with distinct condensation states. Thus, they are proposed to play an important role in the partitioning of the genome into discrete realms of expression. This review focuses on the roles that insulators have in vivo and reviews models of insulator mechanisms in the light of current understanding of gene regulation.
Collapse
Affiliation(s)
- Nora Engel
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
46
|
Abstract
Genomic imprinting in gametogenesis marks a subset of mammalian genes for parent-of-origin-dependent monoallelic expression in the offspring. Embryological and classical genetic experiments in mice that uncovered the existence of genomic imprinting nearly two decades ago produced abnormalities of growth or behavior, without severe developmental malformations. Since then, the identification and manipulation of individual imprinted genes has continued to suggest that the diverse products of these genes are largely devoted to controlling pre- and post-natal growth, as well as brain function and behavior. Here, we review this evidence, and link our discussion to a website (http://www.otago.ac.nz/IGC) containing a comprehensive database of imprinted genes. Ultimately, these data will answer the long-debated question of whether there is a coherent biological rationale for imprinting.
Collapse
Affiliation(s)
- Benjamin Tycko
- Institute for Cancer Genetics, Columbia University, New York, New York, USA.
| | | |
Collapse
|
47
|
Abstract
In mammals, the maternal and paternal genomes are both required for normal embryonic and postnatal development. As a consequence, the majority of genes possess a bi-allelic pattern of expression, with the exception of certain loci where transcription is strictly dependent on parental origin. This alternative, termed genomic imprinting, is an epigenetic form of gene regulation that allows controlled expression of one parental allele. Experimental evidence supports the idea that chromatin organization, DNA methylation, replication timing, genomic domain organization, and more recently methylation-dependent boundary function are key components of imprinting mechanisms. Imprinted genes are mainly required during embryogenesis and development, but loss of controlled imprinting has direct consequences in carcinogenesis. For example, imprinted tumor suppressor genes and proto-oncogenes are highly susceptible to allelic inactivation or in contrast to activation that induces tumorigenic processes. Therefore, genomic imprinting represents one of the more challenging and interesting scientific and medical topics, and especially because a large combinatorial set of possibilities for gene regulation arises from the increasing number of imprinted loci identified.
Collapse
Affiliation(s)
- Félix Recillas-Targa
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.
| |
Collapse
|
48
|
Hori N, Nakano H, Takeuchi T, Kato H, Hamaguchi S, Oshimura M, Sato K. A dyad oct-binding sequence functions as a maintenance sequence for the unmethylated state within the H19/Igf2-imprinted control region. J Biol Chem 2002; 277:27960-7. [PMID: 12029086 DOI: 10.1074/jbc.m202280200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
DNA methylation of an imprinted control region (ICR) directs the allele-specific and reciprocal expression of the mouse H19 and the insulin-like growth factor 2 (Igf2) genes, mediated by controlling enhancer access. The ICR shows enhancer blocking activity through CTCF binding to an unmethylated sequence. The unmethylated state of the maternal ICR is maintained throughout development after establishment in the germ line; however, little is known of the molecular mechanisms that regulate DNA methylation. Hence, in this study we show that a dyad Oct-binding sequence (DOS) in the ICR mediates the demethylation of low-density methylation but not hypermethylation and is required to maintain the unmethylated state against the tendency for de novo methylation within the ICR in the embryonic carcinoma cell line P19. Furthermore, we also reveal that the unmethylated state of at least one CTCF-binding site within the ICR is under the control of DOS. Our results suggest that the ICR, as a CTCF-dependent insulator, requires DOS as well as CTCF-binding sites and that DOS maintains the maternal specific unmethylated state of the ICR at postimplantation stages.
Collapse
Affiliation(s)
- Naohiro Hori
- Department of Molecular Biology, School of Life Science, Faculty of Medicine, Tottori University, Tottori 683-0853, Japan.
| | | | | | | | | | | | | |
Collapse
|
49
|
Thorvaldsen JL, Mann MRW, Nwoko O, Duran KL, Bartolomei MS. Analysis of sequence upstream of the endogenous H19 gene reveals elements both essential and dispensable for imprinting. Mol Cell Biol 2002; 22:2450-62. [PMID: 11909940 PMCID: PMC133727 DOI: 10.1128/mcb.22.8.2450-2462.2002] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Imprinting of the linked and oppositely expressed mouse H19 and Igf2 genes requires a 2-kb differentially methylated domain (DMD) that is located 2 kb upstream of H19. This element is postulated to function as a methylation-sensitive insulator. Here we test whether an additional sequence 5' of H19 is required for H19 and Igf2 imprinting. Because repetitive elements have been suggested to be important for genomic imprinting, the requirement of a G-rich repetitive element that is located immediately 3' to the DMD was first tested in two targeted deletions: a 2.9-kb deletion (Delta D MD Delta G) that removes the DMD and G-rich repeat and a 1.3-kb deletion (Delta G) removing only the latter. There are also four 21-bp GC-rich repetitive elements within the DMD that bind the insulator-associated CTCF (CCCTC-binding factor) protein and are implicated in mediating methylation-sensitive insulator activity. As three of the four repeats of the 2-kb DMD were deleted in the initial 1.6-kb Delta DMD allele, we analyzed a 3.8-kb targeted allele (Delta 3.8kb-5'H19), which deletes the entire DMD, to test the function of the fourth repeat. Comparative analysis of the 5' deletion alleles reveals that (i) the G-rich repeat element is dispensable for imprinting, (ii) the Delta DMD and Delta DMD Delta G alleles exhibit slightly more methylation upon paternal transmission, (iii) removal of the 5' CTCF site does not further perturb H19 and Igf2 imprinting, suggesting that one CTCF-binding site is insufficient to generate insulator activity in vivo, (iv) the DMD sequence is required for full activation of H19 and Igf2, and (v) deletion of the DMD disrupts H19 and Igf2 expression in a tissue-specific manner.
Collapse
Affiliation(s)
- Joanne L Thorvaldsen
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
50
|
Kono T, Sotomaru Y, Katsuzawa Y, Dandolo L. Mouse parthenogenetic embryos with monoallelic H19 expression can develop to day 17.5 of gestation. Dev Biol 2002; 243:294-300. [PMID: 11884038 DOI: 10.1006/dbio.2001.0561] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In mammals, both maternal and paternal genomes are required for a fetus to develop normally to term. This requirement is due to the epigenetic modification of genomes during gametogenesis, which leads to an unequivalent expression of imprinted genes between parental alleles. Parthenogenetic mouse embryos that contain genomes from nongrowing (ng) and fully grown (fg) oocytes can develop into 13.5-day-old fetuses, in which paternally and maternally expressed imprinted genes are expressed and repressed, respectively, from the ng oocyte allele. The H19 gene, however, is biallelically expressed with the silent status Igf2 in such parthenotes. In this study, we examined whether the regulation of H19 monoallelic expression enhances the survival of parthenogenetic embryos. The results clearly show that the ng(H19-KO)/fg(wt) parthenogenetic embryos carrying the ng-oocyte genome that had been deleted by the H19 transcription unit successfully developed as live fetuses for 17.5 gestation days. Control experiments revealed that this unique phenomenon occurs irrespective of the genetic background effect. Quantitative gene expression analysis showed that day 12.5 ng(H19-KO)/fg(wt) parthenogenetic fetuses expressed Igf2 and H19 genes at <2 and 82% of the levels in the controls. Histological analysis demonstrated that the placenta of ng(H19-KO)/fg(wt) parthenotes was afflicted with atrophia with severe necrosis and other anomalies. The present results suggest that the cessation of H19 gene expression from the ng-allele causes extended development of the fetus and that functional defects in the placenta could be fatal for the ontogeny.
Collapse
Affiliation(s)
- Tomohiro Kono
- Department of BioScience, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan.
| | | | | | | |
Collapse
|