1
|
Ghosh S, Srinivasan R, Ghanim M. A C2H2 zinc finger transcription factor of the whitefly Bemisia tabaci interacts with the capsid proteins of begomoviruses and inhibits virus retention. INSECT MOLECULAR BIOLOGY 2023; 32:240-250. [PMID: 36571165 DOI: 10.1111/imb.12827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/19/2022] [Indexed: 05/15/2023]
Abstract
Begomoviruses are a group of ssDNA viruses exclusively transmitted by the whitefly Bemisia tabaci and constrain vegetable production in the old and new worlds. Although multiple molecular determinants governing the transmission of begomoviruses by whiteflies have been unravelled, factors critical for transmission majorly remain unknown. In this study, a whitefly C2H2 zinc finger (ZF) protein, 100% identical to the vascular endothelial ZF-like gene (vezf) protein was confirmed to interact with the CP of both old- and new-world begomoviruses. This was achieved by a yeast two-hybrid (Y2H) system screening of a whitefly cDNA library using capsid protein (CP) of TYLCV as a bait. In silico annotation of vezf protein revealed that it contains a N-terminal ZF-associated domain (ZAD) alongside multiple C2H2 ZF domains on the C-terminal end. ZAD-ZF proteins form the most abundant class of transcription factors within insects. Herein, we validated the interaction of vezf with four diverse begomoviruses and its functional role in begomovirus transmission. Silencing of the vezf gene of B. tabaci led to increased retention of three diverse begomoviruses tested. Vezf is the first insect transcription factor identified to interact with plant viruses and can be crucial to understand the possible mechanisms by which plant viruses modulate transcription of their insect vectors during transmission.
Collapse
Affiliation(s)
- Saptarshi Ghosh
- Department of Entomology, Volcani Center, Rishon Lezion, Israel
- Department of Entomology, University of Georgia, Griffin, Georgia, USA
| | | | - Murad Ghanim
- Department of Entomology, Volcani Center, Rishon Lezion, Israel
| |
Collapse
|
2
|
Li C, Zhang H, Gao R, Zuo W, Liu Y, Hu H, Luan Y, Lu C, Tong X, Dai F. Identification and effect of Zf-AD-containing C2H2 zinc finger genes on BmNPV replication in the silkworm (Bombyx mori). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 170:104678. [PMID: 32980066 DOI: 10.1016/j.pestbp.2020.104678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/31/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Zf-AD-containing C2H2 zinc -finger genes (ZAD) are uniquely present and have lineage-specific expansion in arthropods. Arthropods are also the hosts of Baculoviruses. We studied the possible relationship between the lineage-specific expansion of ZAD genes and arthropod-Baculovirus co-evolution. We used the silkworm (Bombyx mori) as a model. We identified 73 ZAD genes (BmZAD) in the silkworm. Sequence-based similarity analysis showed that nine clusters involving 28 BmZADs may have undergone species-specific expansion in the silkworm. Expression pattern analysis showed that the BmZADs were divided into five groups. Group I comprised 10 genes with high expression in multiple tissues, suggesting that BmZADs may play roles in the development of various tissues. We identified six BmZADs that could be induced by the Nucleopolyhedrovirus (BmNPV). Among them, BmZAD69 expression is capable of responding to BmNPV infection, and the ZAD domain is indispensable for the function of BmZAD69 in BmNPV replication. We also detected a 3 bp deletion at 1.7 kb upstream of BmZAD69, which may make it more sensitive to BmNPV infection, and thus elevate the BmNPV resistance in Qiufeng_N, a strain with strong virus resistance. These data suggest that BmZADs may be involved in BmNPV infection and that ZAD genes may play a role in arthropod-Baculovirus co-evolution.
Collapse
Affiliation(s)
- Chunlin Li
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Hao Zhang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Rui Gao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Weidong Zuo
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Yanyu Liu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Hai Hu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Yue Luan
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Xiaoling Tong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
3
|
Wu S, Tong X, Li C, Lu K, Tan D, Hu H, Liu H, Dai F. Genome-wide identification and expression profiling of the C2H2-type zinc finger protein genes in the silkworm Bombyx mori. PeerJ 2019; 7:e7222. [PMID: 31316872 PMCID: PMC6613534 DOI: 10.7717/peerj.7222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 05/30/2019] [Indexed: 12/29/2022] Open
Abstract
Cys2-His2 zinc finger (C2H2-ZF) proteins comprise the largest class of putative eukaryotic transcription factors. The zinc finger motif array is highly divergent, indicating that most proteins will have distinctive binding sites and perform different functions. However, the binding sites and functions of the majority of C2H2-ZF proteins remain unknown. In this study, we identified 327 C2H2-ZF protein genes in the silkworm, 290 in the monarch butterfly, 243 in the fruit fly, 107 in elegans, 673 in mouse, and 1,082 in human. The C2H2-ZF protein genes of the silkworm were classified into three main grouping clades according to a phylogenetic classification, and 312 of these genes could be mapped onto 27 chromosomes. Most silkworm C2H2-ZF protein genes exhibited specific expression in larval tissues. Furthermore, several C2H2-ZF protein genes had sex-specific expression during metamorphosis. In addition, we found that some C2H2-ZF protein genes are involved in metamorphosis and female reproduction by using expression clustering and gene annotation analysis. Among them, five genes were selected, BGIBMGA002091 (CTCF), BGIBMGA006492 (fru), BGIBMGA006230 (wor), BGIBMGA004640 (lola), and BIGBMGA004569, for quantitative real-time PCR analysis from larvae to adult ovaries. The results showed that the five genes had different expression patterns in ovaries, among which BGIBMGA002091 (CTCF) gene expression level was the highest, and its expression level increased rapidly in late pupae and adult stages. These findings provide a basis for further investigation of the functions of C2H2-ZF protein genes in the silkworm, and the results offer clues for further research into the development of metamorphosis and female reproduction in the silkworm.
Collapse
Affiliation(s)
- SongYuan Wu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chong Qing, China.,College of Plant Protection, Southwest University, Chong Qing, China
| | - Xiaoling Tong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chong Qing, China
| | - ChunLin Li
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chong Qing, China
| | - KunPeng Lu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chong Qing, China
| | - Duan Tan
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chong Qing, China
| | - Hai Hu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chong Qing, China
| | - Huai Liu
- College of Plant Protection, Southwest University, Chong Qing, China
| | - FangYin Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chong Qing, China
| |
Collapse
|
4
|
Nazario-Yepiz NO, Riesgo-Escovar JR. piragua encodes a zinc finger protein required for development in Drosophila. Mech Dev 2016; 144:171-181. [PMID: 28011160 DOI: 10.1016/j.mod.2016.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 11/07/2016] [Accepted: 12/19/2016] [Indexed: 02/06/2023]
Abstract
We isolated and characterized embryonic lethal mutations in piragua (prg). The prg locus encodes a protein with an amino terminus Zinc Finger-Associated-Domain (ZAD) and nine C2H2 zinc fingers (ZF). prg mRNA and protein expression during embryogenesis is dynamic with widespread maternal contribution, and subsequent expression in epithelial precursors. About a quarter of prg mutant embryos do not develop cuticle, and from those that do a small fraction have cuticular defects. Roughly half of prg mutants die during embryogenesis. prg mutants have an extended phenocritical period encompassing embryogenesis and first instar larval stage, since the other half of prg mutants die as first or second instar larvae. During dorsal closure, time-lapse high-resolution imaging shows defects arising out of sluggishness in closure, resolving at times in failures of closure. prg is expressed in imaginal discs, and is required for imaginal development. prg was identified in imaginal tissue in a cell super competition screen, together with other genes, like flower. We find that flower mutations are also embryonic lethal with a similar phenocritical period and strong embryonic mutant phenotypes (head involution defects, primarily). The two loci interact genetically in the embryo, as they increase embryonic mortality to close to 90% with the same embryonic phenotypes (dorsal closure and head involution defects, plus lack of cuticle). Mutant prg clones generated in developing dorsal thorax and eye imaginal tissue have strong developmental defects (lack of bristles and ommatidial malformations). prg is required in several developmental morphogenetic processes.
Collapse
Affiliation(s)
- Nestor O Nazario-Yepiz
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM, Campus UNAM Juriquilla, Boulevard Juriquilla 3001, Querétaro, Querétaro c.p. 76230, Mexico
| | - Juan R Riesgo-Escovar
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM, Campus UNAM Juriquilla, Boulevard Juriquilla 3001, Querétaro, Querétaro c.p. 76230, Mexico.
| |
Collapse
|
5
|
The Drosophila prage Gene, Required for Maternal Transcript Destabilization in Embryos, Encodes a Predicted RNA Exonuclease. G3-GENES GENOMES GENETICS 2016; 6:1687-93. [PMID: 27172196 PMCID: PMC4889664 DOI: 10.1534/g3.116.028415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Egg activation, the transition of mature oocytes into developing embryos, is critical for the initiation of embryogenesis. This process is characterized by resumption of meiosis, changes in the egg's coverings and by alterations in the transcriptome and proteome of the egg; all of these occur in the absence of new transcription. Activation of the egg is prompted by ionic changes in the cytoplasm (usually a rise in cytosolic calcium levels) that are triggered by fertilization in some animals and by mechanosensitive cues in others. The egg's transcriptome is dramatically altered during the process, including by the removal of many maternal mRNAs that are not needed for embryogenesis. However, the mechanisms and regulators of this selective RNA degradation are not yet fully known. Forward genetic approaches in Drosophila have identified maternal-effect genes whose mutations prevent the transcriptome changes. One of these genes, prage (prg), was identified by Tadros et al. in a screen for mutants that fail to destabilize maternal transcripts. We identified the molecular nature of the prg gene through a combination of deficiency mapping, complementation analysis, and DNA sequencing of both extant prg mutant alleles. We find that prg encodes a ubiquitously expressed predicted exonuclease, consistent with its role in maternal mRNA destabilization during egg activation.
Collapse
|
6
|
Zolotarev N, Fedotova A, Kyrchanova O, Bonchuk A, Penin AA, Lando AS, Eliseeva IA, Kulakovskiy IV, Maksimenko O, Georgiev P. Architectural proteins Pita, Zw5,and ZIPIC contain homodimerization domain and support specific long-range interactions in Drosophila. Nucleic Acids Res 2016; 44:7228-41. [PMID: 27137890 PMCID: PMC5009728 DOI: 10.1093/nar/gkw371] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/23/2016] [Indexed: 12/18/2022] Open
Abstract
According to recent models, as yet poorly studied architectural proteins appear to be required for local regulation of enhancer-promoter interactions, as well as for global chromosome organization. Transcription factors ZIPIC, Pita and Zw5 belong to the class of chromatin insulator proteins and preferentially bind to promoters near the TSS and extensively colocalize with cohesin and condensin complexes. ZIPIC, Pita and Zw5 are structurally similar in containing the N-terminal zinc finger-associated domain (ZAD) and different numbers of C2H2-type zinc fingers at the C-terminus. Here we have shown that the ZAD domains of ZIPIC, Pita and Zw5 form homodimers. In Drosophila transgenic lines, these proteins are able to support long-distance interaction between GAL4 activator and the reporter gene promoter. However, no functional interaction between binding sites for different proteins has been revealed, suggesting that such interactions are highly specific. ZIPIC facilitates long-distance stimulation of the reporter gene by GAL4 activator in yeast model system. Many of the genomic binding sites of ZIPIC, Pita and Zw5 are located at the boundaries of topologically associated domains (TADs). Thus, ZAD-containing zinc-finger proteins can be attributed to the class of architectural proteins.
Collapse
Affiliation(s)
- Nikolay Zolotarev
- Institute of Gene Biology, Russian Academy of Sciences, Vavilova str. 34/5, Moscow 119334, Russia
| | - Anna Fedotova
- Institute of Gene Biology, Russian Academy of Sciences, Vavilova str. 34/5, Moscow 119334, Russia
| | - Olga Kyrchanova
- Institute of Gene Biology, Russian Academy of Sciences, Vavilova str. 34/5, Moscow 119334, Russia
| | - Artem Bonchuk
- Institute of Gene Biology, Russian Academy of Sciences, Vavilova str. 34/5, Moscow 119334, Russia
| | - Aleksey A Penin
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia; Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127051 Russia; Department of Genetics, Faculty of Biology, Moscow State University, Moscow 119991, Russia
| | - Andrey S Lando
- Moscow Institute of Physics and Technology (State University), Institutskiy per. 9, Dolgoprudny, Moscow Region 141700, Russia Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina str. 3, Moscow, GSP-1, 119991, Russia
| | - Irina A Eliseeva
- Group of Protein Biosynthesis Regulation, Institute of Protein Research, Institutskaya str. 4, Pushchino 142290, Russia
| | - Ivan V Kulakovskiy
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina str. 3, Moscow, GSP-1, 119991, Russia Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova str. 32, Moscow, GSP-1, 119991, Russia
| | - Oksana Maksimenko
- Institute of Gene Biology, Russian Academy of Sciences, Vavilova str. 34/5, Moscow 119334, Russia
| | - Pavel Georgiev
- Institute of Gene Biology, Russian Academy of Sciences, Vavilova str. 34/5, Moscow 119334, Russia
| |
Collapse
|
7
|
Pinto SB, Stainton K, Harris S, Kambris Z, Sutton ER, Bonsall MB, Parkhill J, Sinkins SP. Transcriptional regulation of Culex pipiens mosquitoes by Wolbachia influences cytoplasmic incompatibility. PLoS Pathog 2013; 9:e1003647. [PMID: 24204251 PMCID: PMC3814344 DOI: 10.1371/journal.ppat.1003647] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 08/06/2013] [Indexed: 11/23/2022] Open
Abstract
Cytoplasmic incompatibility (CI) induced by the endosymbiont Wolbachia pipientis causes complex patterns of crossing sterility between populations of the Culex pipiens group of mosquitoes. The molecular basis of the phenotype is yet to be defined. In order to investigate what host changes may underlie CI at the molecular level, we examined the transcription of a homolog of the Drosophila melanogaster gene grauzone that encodes a zinc finger protein and acts as a regulator of female meiosis, in which mutations can cause sterility. Upregulation was observed in Wolbachia-infected C. pipiens group individuals relative to Wolbachia-cured lines and the level of upregulation differed between lines that were reproductively incompatible. Knockdown analysis of this gene using RNAi showed an effect on hatch rates in a Wolbachia infected Culex molestus line. Furthermore, in later stages of development an effect on developmental progression in CI embryos occurs in bidirectionally incompatible crosses. The genome of a wPip Wolbachia strain variant from Culex molestus was sequenced and compared with the genome of a wPip variant with which it was incompatible. Three genes in inserted or deleted regions were newly identified in the C. molestus wPip genome, one of which is a transcriptional regulator labelled wtrM. When this gene was transfected into adult Culex mosquitoes, upregulation of the grauzone homolog was observed. These data suggest that Wolbachia-mediated regulation of host gene expression is a component of the mechanism of cytoplasmic incompatibility. Wolbachia are maternally inherited bacteria that manipulate invertebrate reproduction. Cytoplasmic incompatibility is embryo death that occurs when males carrying Wolbachia mate with females that do not, or that carry a different Wolbachia variant; its mechanism is poorly understood. In Culex mosquitoes, in the presence of Wolbachia a gene related to a Drosophila melanogaster gene, grauzone, which has been shown to act as a regulator of the meiotic cell cycle, showed an elevated level of expression. When lower levels of expression were achieved through RNA interference, embryo hatch rates were affected and the stage of development at which embryo death occurs was altered. To find Wolbachia genes that influence cytoplasmic incompatibility, we compared the genomes of two variants of Wolbachia from Culex that produce cytoplasmic incompatibility with one another. Although most segments of these genomes were very similar, one newly identified gene is predicted to be a regulator of gene transcription. We cloned this gene into a plasmid, expressed it in adult mosquitoes and found higher levels of expression of the Culex grauzone homolog. This suggests that the Wolbachia transcriptional regulator may play an important role in manipulating the host in order to induce cytoplasmic incompatibility.
Collapse
Affiliation(s)
- Sofia B. Pinto
- Peter Medawar Building for Pathogen Research and Nuffield Department of Medicine (NDM), University of Oxford, Oxford, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Kirsty Stainton
- Peter Medawar Building for Pathogen Research and Nuffield Department of Medicine (NDM), University of Oxford, Oxford, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Simon Harris
- Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Zakaria Kambris
- Peter Medawar Building for Pathogen Research and Nuffield Department of Medicine (NDM), University of Oxford, Oxford, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Elizabeth R. Sutton
- Peter Medawar Building for Pathogen Research and Nuffield Department of Medicine (NDM), University of Oxford, Oxford, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | | | - Julian Parkhill
- Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Steven P. Sinkins
- Peter Medawar Building for Pathogen Research and Nuffield Department of Medicine (NDM), University of Oxford, Oxford, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
8
|
Pesin JA, Orr-Weaver TL. Developmental role and regulation of cortex, a meiosis-specific anaphase-promoting complex/cyclosome activator. PLoS Genet 2008; 3:e202. [PMID: 18020708 PMCID: PMC2077894 DOI: 10.1371/journal.pgen.0030202] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 09/28/2007] [Indexed: 11/18/2022] Open
Abstract
During oogenesis in metazoans, the meiotic divisions must be coordinated with development of the oocyte to ensure successful fertilization and subsequent embryogenesis. The ways in which the mitotic machinery is specialized for meiosis are not fully understood. cortex, which encodes a putative female meiosis-specific anaphase-promoting complex/cyclosome (APC/C) activator, is required for proper meiosis in Drosophila. We demonstrate that CORT physically associates with core subunits of the APC/C in ovaries. APC/C(CORT) targets Cyclin A for degradation prior to the metaphase I arrest, while Cyclins B and B3 are not targeted until after egg activation. We investigate the regulation of CORT and find that CORT protein is specifically expressed during the meiotic divisions in the oocyte. Polyadenylation of cort mRNA is correlated with appearance of CORT protein at oocyte maturation, while deadenylation of cort mRNA occurs in the early embryo. CORT protein is targeted for degradation by the APC/C following egg activation, and this degradation is dependent on an intact D-box in the C terminus of CORT. Our studies reveal the mechanism for developmental regulation of an APC/C activator and suggest it is one strategy for control of the female meiotic cell cycle in a multicellular organism.
Collapse
Affiliation(s)
- Jillian A Pesin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Whitehead Institute, Cambridge, Massachusetts, United States of America
| | - Terry L Orr-Weaver
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Whitehead Institute, Cambridge, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
9
|
Chung HR, Löhr U, Jäckle H. Lineage-specific expansion of the zinc finger associated domain ZAD. Mol Biol Evol 2007; 24:1934-43. [PMID: 17569752 DOI: 10.1093/molbev/msm121] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The zinc finger associated domain (ZAD), present in almost 100 distinct proteins, characterizes the largest subgroup of C2H2 zinc finger proteins in Drosophila melanogaster and was initially found to be encoded by arthropod genomes only. Here, we report that the ZAD was also present in the last common ancestor of arthropods and vertebrates, and that vertebrate genomes contain a single conserved gene that codes for a ZAD-like peptide. Comparison of the ZAD proteomes of several arthropod species revealed an extensive and species-specific expansion of ZAD-coding genes in higher holometabolous insects, and shows that only few ZAD-coding genes with essential functions in Drosophila melanogaster are conserved. Furthermore, at least 50% of the ZAD-coding genes of Drosophila melanogaster are expressed in the female germline, suggesting a function in oocyte development and/or a requirement during early embryogenesis. Since the majority of the essential ZAD coding genes of Drosophila melanogaster were not conserved during arthropod or at least during insect evolution, we propose that the LSE of ZAD-coding genes shown here may provide the raw material for the evolution of new functions that allow organisms to pursue novel evolutionary paths.
Collapse
Affiliation(s)
- Ho-Ryun Chung
- Max-Planck-Institut für biophysikalische Chemie, Abteilung Molekulare Entwicklungsbiologie, Am Fassberg 11, 37077 Göttingen, Germany.
| | | | | |
Collapse
|
10
|
Takeo S, Tsuda M, Akahori S, Matsuo T, Aigaki T. The Calcineurin Regulator Sra Plays an Essential Role in Female Meiosis in Drosophila. Curr Biol 2006; 16:1435-40. [PMID: 16860743 DOI: 10.1016/j.cub.2006.05.058] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Revised: 05/20/2006] [Accepted: 05/22/2006] [Indexed: 11/30/2022]
Abstract
Modulatory calcineurin-interacting proteins (MCIPs)--also termed regulators of calcineurin (RCNs), calcipressins, or DSCR1 (Down's syndrome critical region 1)--are highly conserved regulators of calcineurin, a Ca(2+)/calmodulin-dependent protein phosphatase . Although overexpression experiments in several organisms have revealed that MCIPs inhibit calcineurin activity , their in vivo functions remain unclear. Here, we show that the Drosophila MCIP sarah (sra) is essential for meiotic progression in oocytes. Eggs from sra null mothers are arrested at anaphase of meiosis I. This phenotype was due to loss of function of sra specifically in the female germline. Sra is physically associated with the catalytic subunit of calcineurin, and its overexpression suppresses the phenotypes caused by constitutively activated calcineurin, such as rough eye or loss of wing veins. Hyperactivation of calcineurin signaling in the germline cells resulted in a meiotic-arrest phenotype, which can also be suppressed by overexpression of Sra. All these results support the hypothesis that Sra regulates female meiosis by controlling calcineurin activity in the germline. To our knowledge, this is the first unambiguous demonstration that the regulation of calcineurin signaling by MCIPs plays a critical role in a defined biological process.
Collapse
Affiliation(s)
- Satomi Takeo
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji-shi, Japan
| | | | | | | | | |
Collapse
|
11
|
Mukai M, Kitadate Y, Arita K, Shigenobu S, Kobayashi S. Expression of meiotic genes in the germline progenitors of Drosophila embryos. Gene Expr Patterns 2006; 6:256-66. [PMID: 16412701 DOI: 10.1016/j.modgep.2005.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Revised: 07/29/2005] [Accepted: 08/05/2005] [Indexed: 11/19/2022]
Abstract
Meiosis is one of the fundamental characteristics of germ cells. In Drosophila, genetic screens have identified many genes required for meiotic division. However, it remains elusive as to when and how these meiotic genes are activated during germline development. To obtain insights into their regulatory mechanisms, we examined the expression of 38 meiotic genes in the germline progenitors, pole cells, during embryogenesis. We found that the transcripts of 12 meiotic genes were enriched in pole cells within the embryonic gonads. Among them, bag of marbles (bam), benign gonial cell neoplasia (bgcn), deadhead (dhd), matotopetli (topi) and twine (twe) were activated only in pole cells within the gonads, whereas the transcripts from grapes (grp), Kinesin-like protein at 3A (Klp3A), pavarotti (pav), lesswright (lwr), mei-P26, Topoisomerase 2 (Top2) and out at first (oaf) were distributed ubiquitously in early embryos and then became restricted to pole cells and to a subset of somatic tissues at later embryonic stages. The remaining meiotic genes were either expressed ubiquitously in the embryos (15 genes) or were undetectable in pole cells within the gonads (11 genes). These observations suggest that pole cells have already acquired the potential to express several meiotic genes. Our data will thus provide a useful basis for analyzing how the germline acquires a potential to execute meiosis.
Collapse
Affiliation(s)
- Masanori Mukai
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, Higashiyama, Myodaiji, Okazaki 444-8787, Japan.
| | | | | | | | | |
Collapse
|
12
|
Tadros W, Lipshitz HD. Setting the stage for development: mRNA translation and stability during oocyte maturation and egg activation in Drosophila. Dev Dyn 2005; 232:593-608. [PMID: 15704150 DOI: 10.1002/dvdy.20297] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Early animal development is controlled by maternally encoded RNAs and proteins, which are loaded into the egg during oogenesis. Oocyte maturation and egg activation trigger changes in the translational status and the stability of specific maternal mRNAs. Whereas both maturation and activation have been studied in depth in amphibians and echinoderms, only recently have these processes begun to be dissected using the powerful genetic and molecular tools available in Drosophila. This review focuses on the mechanisms and functions of regulated maternal mRNA translation and stability in Drosophila--and compares these mechanisms with those elucidated in other animal models, particularly Xenopus--beginning late in oogenesis and continuing to the mid-blastula transition, when developmental control is transferred to zygotically synthesized transcripts.
Collapse
Affiliation(s)
- Wael Tadros
- Program in Developmental Biology, Research Institute, The Hospital for Sick Children & Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
13
|
Jauch R, Bourenkov GP, Chung HR, Urlaub H, Reidt U, Jäckle H, Wahl MC. The zinc finger-associated domain of the Drosophila transcription factor grauzone is a novel zinc-coordinating protein-protein interaction module. Structure 2004; 11:1393-402. [PMID: 14604529 DOI: 10.1016/j.str.2003.09.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
About one-third of the more than 300 C2H2 zinc finger proteins of Drosophila contain a conserved sequence motif, the zinc finger-associated domain (ZAD). Genes that encode ZAD proteins are specific for and expanded in the genomes of insects. Only three ZAD-encoding gene functions are established, and the role of ZAD is unknown. Here we present the crystal structure of the ZAD of Grauzone (ZAD(Grau)), a Drosophila transcription factor that specifically controls the maternal Cdc20-like APC subunit Cortex. ZAD forms an atypical treble-clef-like zinc-coordinating fold. Head-to-tail arrangement of two ZAD(Grau) molecules in the crystals suggests dimer formation, an observation supported by crosslinking and dynamic light scattering. The results indicate that ZAD provides a novel protein-protein interaction module that characterizes a large family of insect transcription factors.
Collapse
Affiliation(s)
- Ralf Jauch
- Max-Planck Institut für biophysikalische Chemie, Abteilung Molekulare Entwicklungsbiologie, Röntgenkristallographie, Am Fassberg 11, D-37077 Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
14
|
Pellettieri J, Reinke V, Kim SK, Seydoux G. Coordinate activation of maternal protein degradation during the egg-to-embryo transition in C. elegans. Dev Cell 2003; 5:451-62. [PMID: 12967564 DOI: 10.1016/s1534-5807(03)00231-4] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The transition from egg to embryo occurs in the absence of transcription yet requires significant changes in gene activity. Here, we show that the C. elegans DYRK family kinase MBK-2 coordinates the degradation of several maternal proteins, and is essential for zygotes to complete cytokinesis and pattern the first embryonic axis. In mbk-2 mutants, the meiosis-specific katanin subunits MEI-1 and MEI-2 persist during mitosis and the first mitotic division fails. mbk-2 is also required for posterior enrichment of the germ plasm before the first cleavage, and degradation of germ plasm components in anterior cells after cleavage. MBK-2 distribution changes dramatically after fertilization during the meiotic divisions, and this change correlates with activation of mbk-2-dependent processes. We propose that MBK-2 functions as a temporal regulator of protein stability, and that coordinate activation of maternal protein degradation is one of the mechanisms that drives the transition from symmetric egg to patterned embryo.
Collapse
Affiliation(s)
- Jason Pellettieri
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
15
|
Marcus JM. Female site-specific transposase-induced recombination: a high-efficiency method for fine mapping mutations on the X chromosome in Drosophila. Genetics 2003; 163:591-7. [PMID: 12618398 PMCID: PMC1462465 DOI: 10.1093/genetics/163.2.591] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
P-element transposons in the Drosophila germline mobilize only in the presence of the appropriate transposase enzyme. Sometimes, instead of mobilizing completely, P elements will undergo site-specific recombination with the homologous chromosome. Site-specific recombination is the basis for male recombination mapping, since the male germline does not normally undergo recombination. Site-specific recombination also takes place in females, but this has been difficult to study because of the obscuring effects of meiotic recombination. Using map functions, I demonstrate that it is possible to employ female site-specific transposase-induced recombination (FaSSTIR) to map loci on the X chromosome and predict that FaSSTIR mapping should be more efficient than meiotic mapping over short genetic intervals. Both FaSSTIR mapping and meiotic mapping were used to fine map the crossveinless locus on the X chromosome. Both techniques identified the same 10-kb interval as the probable location of the crossveinless mutation. Over short intervals (< approximately 7.6 cM), FaSSTIR produces more informative recombination events than does meiotic recombination. Over longer intervals, FaSSTIR is not always more efficient than meiotic mapping, but it produces the correct gene order. FaSSTIR matches the expectations suggested by the map functions and promises to be a useful technique, particularly for mapping X-linked loci.
Collapse
Affiliation(s)
- Jeffrey M Marcus
- Department of Biology, Duke University, Durham, North Carolina 27708, USA.
| |
Collapse
|
16
|
Chung HR, Schäfer U, Jäckle H, Böhm S. Genomic expansion and clustering of ZAD-containing C2H2 zinc-finger genes in Drosophila. EMBO Rep 2002; 3:1158-62. [PMID: 12446571 PMCID: PMC1308319 DOI: 10.1093/embo-reports/kvf243] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2002] [Revised: 09/27/2002] [Accepted: 10/18/2002] [Indexed: 11/14/2022] Open
Abstract
C2H2 zinc-finger proteins (ZFPs) constitute the largest family of nucleic acid binding factors in higher eukaryotes. In silico analysis identified a total of 326 putative ZFP genes in the Drosophila genome, corresponding to approximately 2.3% of the annotated genes. Approximately 29% of the Drosophila ZFPs are evolutionary conserved in humans and/or Caenorhabditis elegans. In addition, approximately 28% of the ZFPs contain an N-terminal zinc-finger-associated C4DM domain (ZAD) consisting of approximately 75 amino acid residues. The ZAD is restricted to ZFPs of dipteran and closely related insects. The evolutionary restriction, an expansion of ZAD-containing ZFP genes in the Drosophila genome and their clustering at few chromosomal sites are features reminiscent of vertebrate KRAB-ZFPs. ZADs are likely to represent protein-protein interaction domains. We propose that ZAD-containing ZFP genes participate in transcriptional regulation either directly or through site-specific modification and/or regulation of chromatin.
Collapse
Affiliation(s)
- Ho-Ryun Chung
- Abteilung Molekulare Entwicklungsbiologie, Max-Planck-Institut für biophysikalische Chemie, Am Fassberg, D-37077 Göttingen, Germany
| | | | | | | |
Collapse
|
17
|
Yu J, Garfinkel AB, Wolfner MF. Interaction of the essential Drosophila nuclear protein YA with P0/AP3 in the cytoplasm and in vitro: implications for developmental regulation of YA's subcellular location. Dev Biol 2002; 244:429-41. [PMID: 11944949 DOI: 10.1006/dbio.2002.0601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Drosophila nuclear lamina protein YA is essential for the transition from female meiosis to embryo mitosis. Its localization and, hence, function is under developmental and cell cycle controls. YA protein is hyperphosphorylated and cytoplasmic in ovaries. Upon egg activation, YA is partially dephosphorylated and acquires the ability to enter nuclei. Its function is first detected at this time. To investigate the cytoplasmic retention machinery that keeps YA from entering nuclei, we used affinity chromatography and blot overlay assays to identify cytoplasmic proteins that associate with YA. Drosophila P0/AP3, a ribosomal protein that is also an apurinic/apyrimidinic endonuclease, binds to YA in ovary and embryo cytoplasms. P0 and YA bind specifically and directly in vitro and are present in a 20S complex in the cytoplasmic extracts. YA protein can be phosphorylated by MAPK, but not by p34(Cdc2) kinase, in vitro. This phosphorylation increases YA's binding to P0. We propose that the P0-containing 20S cytoplasmic complex retains hyperphosphorylated ovarian YA in the cytoplasm. In response to egg activation, YA is partially dephosphorylated and its binding to the 20S complex is reduced. Hence, some YA dissociates from the complex and enters nuclei. Consistent with this model, decreasing P0 levels partially suppress a hypomorphic Ya mutant allele.
Collapse
Affiliation(s)
- Jing Yu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850-2703, USA
| | | | | |
Collapse
|
18
|
Abstract
Translational control is a prevalent means of gene regulation during Drosophila oogenesis and embryogenesis. Multiple maternal mRNAs are localized within the oocyte, and this localization is often coupled to their translational regulation. Subsequently, translational control allows maternally deposited mRNAs to direct the early stages of embryonic development. In this review we outline some general mechanisms of translational regulation and mRNA localization that have been uncovered in various model systems. Then we focus on the posttranscriptional regulation of four maternal transcripts in Drosophila that are localized during oogenesis and are critical for embryonic patterning: bicoid (bcd), nanos (nos), oskar (osk), and gurken (grk). Cis- and trans-acting factors required for the localization and translational control of these mRNAs are discussed along with potential mechanisms for their regulation.
Collapse
Affiliation(s)
- O Johnstone
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montréal, Québec, H3A 1B1 Canada.
| | | |
Collapse
|
19
|
Bosco G, Orr-Weaver TL. The cell cycle during oogenesis and early embryogenesis in Drosophila. GENE EXPRESSION AT THE BEGINNING OF ANIMAL DEVELOPMENT 2002. [DOI: 10.1016/s1569-1799(02)12026-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
20
|
Chu T, Henrion G, Haegeli V, Strickland S. Cortex, a Drosophila gene required to complete oocyte meiosis, is a member of the Cdc20/fizzy protein family. Genesis 2001; 29:141-52. [PMID: 11252055 DOI: 10.1002/gene.1017] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mutations in cortex and grauzone cause abnormal arrest in Drosophila female meiosis. cortex was mapped to a 14 kb interval in 26F-27A by the male recombination mapping method. While these experiments mapped the gene accurately, they also illustrated some complexities of this method. Rescue results showed that a 2.8 kb genomic fragment from this interval was able to fully rescue the cortex phenotype. The 2.8 kb rescuing fragment contains a single open reading frame. The predicted amino acid sequence indicates that cortex encodes a WD-repeat protein and is a distant member of the Cdc20 protein family. Results from a developmental Northern analysis showed that the cortex transcript is expressed at high levels during oogenesis and early embryogenesis. Interestingly, the meiotic metaphase-anaphase II arrest defect in embryos laid by cortex homozygous females resembles the mitotic metaphase-anaphase defects observed in yeast cdc20 mutants. The predicted nature of the Cortex protein, together with the observed meiotic phenotype in cortex mutants, suggest that a similar pathway to the cdc20 dependent APC-mediated proteolysis pathway, which governs the metaphase-anaphase transition in mitosis, is also important in regulating oocyte meiosis.
Collapse
Affiliation(s)
- T Chu
- Department of Pharmacology, Program in Molecular Biology and Biochemistry, University at Stony Brook, Stony Brook, New York, USA
| | | | | | | |
Collapse
|
21
|
Abstract
Transcript localization and translational regulation are two post-transcriptional mechanisms for the spatial and temporal regulation of protein production. During the past year, two transcript localization mechanisms have been elaborated in some detail. Where localization involves directional transport on cytoskeletal tracks, links between the transcripts and the cytoskeletal molecular motors have been elaborated. In the case of localization by generalized transcript degradation combined with localized protection, trans-acting pathways and cis-acting elements for degradation and protection have been identified. A third transcript localization mechanism, vectorial transport out of the nucleus into a particular cytoplasmic domain, was initially thought to localize pair-rule transcripts in Drosophila. However, these have now been shown to be localized by directional transport in the cytoplasm. Transcript localization and translational regulation can be intimately linked in that, for certain messenger RNAs, only the localized fraction of transcripts is translated whereas unlocalized transcripts are translationally repressed. Cis-acting sequences and trans-acting factors that function in translational repression have been identified along with factors involved in relief of translational repression at the site of localization.
Collapse
Affiliation(s)
- H D Lipshitz
- Program in Developmental Biology, Research Institute, The Hospital for Sick Children, 555 University Avenue, Ontario M5G 1X8, Toronto, Canada.
| | | |
Collapse
|
22
|
Harms E, Chu T, Henrion G, Strickland S. The only function of Grauzone required for Drosophila oocyte meiosis is transcriptional activation of the cortex gene. Genetics 2000; 155:1831-9. [PMID: 10924478 PMCID: PMC1461205 DOI: 10.1093/genetics/155.4.1831] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The grauzone and cortex genes are required for the completion of meiosis in Drosophila oocytes. The grauzone gene encodes a C2H2-type zinc-finger transcription factor that binds to the cortex promoter and is necessary for high-level activation of cortex transcription. Here we define the region of the cortex promoter to which Grauzone binds and show that the binding occurs through the C-terminal, zinc-finger-rich region of the protein. Mutations in two out of the five grauzone alleles result in single amino acid changes within different zinc-finger motifs. Both of these mutations result in the inability of Grauzone to bind DNA effectively. To determine the mechanism by which Grauzone regulates meiosis, transgenic flies were produced with an extra copy of the cortex gene in homozygous grauzone females. This transgene rescued the meiosis arrest of embryos from these mutants and allowed their complete development, indicating that activation of cortex transcription is the primary role of Grauzone during Drosophila oogenesis. These experiments further define a new transcriptional pathway that controls the meiotic cell cycle in Drosophila oocytes.
Collapse
Affiliation(s)
- E Harms
- Department of Pharmacology, Programs in Genetics and Molecular and Cellular Biology, State University of New York, Stony Brook, New York 11794-8651, USA
| | | | | | | |
Collapse
|