1
|
Ruan ZR, Yu Z, Xing C, Chen EH. Inter-organ steroid hormone signaling promotes myoblast fusion via direct transcriptional regulation of a single key effector gene. Curr Biol 2024; 34:1438-1452.e6. [PMID: 38513654 PMCID: PMC11003854 DOI: 10.1016/j.cub.2024.02.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 12/24/2023] [Accepted: 02/23/2024] [Indexed: 03/23/2024]
Abstract
Steroid hormones regulate tissue development and physiology by modulating the transcription of a broad spectrum of genes. In insects, the principal steroid hormones, ecdysteroids, trigger the expression of thousands of genes through a cascade of transcription factors (TFs) to coordinate developmental transitions such as larval molting and metamorphosis. However, whether ecdysteroid signaling can bypass transcriptional hierarchies to exert its function in individual developmental processes is unclear. Here, we report that a single non-TF effector gene mediates the transcriptional output of ecdysteroid signaling in Drosophila myoblast fusion, a critical step in muscle development and differentiation. Specifically, we show that the 20-hydroxyecdysone (commonly referred to as "ecdysone") secreted from an extraembryonic tissue, amnioserosa, acts on embryonic muscle cells to directly activate the expression of antisocial (ants), which encodes an essential scaffold protein enriched at the fusogenic synapse. Not only is ants transcription directly regulated by the heterodimeric ecdysone receptor complex composed of ecdysone receptor (EcR) and ultraspiracle (USP) via ecdysone-response elements but also more strikingly, expression of ants alone is sufficient to rescue the myoblast fusion defect in ecdysone signaling-deficient mutants. We further show that EcR/USP and a muscle-specific TF Twist synergistically activate ants expression in vitro and in vivo. Taken together, our study provides the first example of a steroid hormone directly activating the expression of a single key non-TF effector gene to regulate a developmental process via inter-organ signaling and provides a new paradigm for understanding steroid hormone signaling in other developmental and physiological processes.
Collapse
Affiliation(s)
- Zhi-Rong Ruan
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ze Yu
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chao Xing
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Elizabeth H Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
2
|
Luo Z, Shi J, Pandey P, Ruan ZR, Sevdali M, Bu Y, Lu Y, Du S, Chen EH. The cellular architecture and molecular determinants of the zebrafish fusogenic synapse. Dev Cell 2022; 57:1582-1597.e6. [PMID: 35709765 PMCID: PMC10180866 DOI: 10.1016/j.devcel.2022.05.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 04/04/2022] [Accepted: 05/20/2022] [Indexed: 11/03/2022]
Abstract
Myoblast fusion is an indispensable process in skeletal muscle development and regeneration. Studies in Drosophila led to the discovery of the asymmetric fusogenic synapse, in which one cell invades its fusion partner with actin-propelled membrane protrusions to promote fusion. However, the timing and sites of vertebrate myoblast fusion remain elusive. Here, we show that fusion between zebrafish fast muscle cells is mediated by an F-actin-enriched invasive structure. Two cell adhesion molecules, Jam2a and Jam3b, are associated with the actin structure, with Jam2a being the major organizer. The Arp2/3 actin nucleation-promoting factors, WAVE and WASP-but not the bipartite fusogenic proteins, Myomaker or Myomixer-promote the formation of the invasive structure. Moreover, the convergence of fusogen-containing microdomains and the invasive protrusions is a prerequisite for cell membrane fusion. Thus, our study provides unprecedented insights into the cellular architecture and molecular determinants of the asymmetric fusogenic synapse in an intact vertebrate animal.
Collapse
Affiliation(s)
- Zhou Luo
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jun Shi
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Pratima Pandey
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhi-Rong Ruan
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Maria Sevdali
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ye Bu
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yue Lu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shaojun Du
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Elizabeth H Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
3
|
Dow JAT, Simons M, Romero MF. Drosophila melanogaster: a simple genetic model of kidney structure, function and disease. Nat Rev Nephrol 2022; 18:417-434. [PMID: 35411063 DOI: 10.1038/s41581-022-00561-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 12/27/2022]
Abstract
Although the genetic basis of many kidney diseases is being rapidly elucidated, their experimental study remains problematic owing to the lack of suitable models. The fruitfly Drosophila melanogaster provides a rapid, ethical and cost-effective model system of the kidney. The unique advantages of D. melanogaster include ease and low cost of maintenance, comprehensive availability of genetic mutants and powerful transgenic technologies, and less onerous regulation, as compared with mammalian systems. Renal and excretory functions in D. melanogaster reside in three main tissues - the transporting renal (Malpighian) tubules, the reabsorptive hindgut and the endocytic nephrocytes. Tubules contain multiple cell types and regions and generate a primary urine by transcellular transport rather than filtration, which is then subjected to selective reabsorption in the hindgut. By contrast, the nephrocytes are specialized for uptake of macromolecules and equipped with a filtering slit diaphragm resembling that of podocytes. Many genes with key roles in the human kidney have D. melanogaster orthologues that are enriched and functionally relevant in fly renal tissues. This similarity has allowed investigations of epithelial transport, kidney stone formation and podocyte and proximal tubule function. Furthermore, a range of unique quantitative phenotypes are available to measure function in both wild type and disease-modelling flies.
Collapse
Affiliation(s)
- Julian A T Dow
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| | - Matias Simons
- INSERM UMR1163, Laboratory of Epithelial Biology and Disease, Imagine Institute, Université de Paris, Hôpital Necker-Enfants Malades, Paris, France
- Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael F Romero
- Department of Physiology and Biomedical Engineering, Division of Nephrology and Hypertension, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| |
Collapse
|
4
|
Millay DP. Regulation of the myoblast fusion reaction for muscle development, regeneration, and adaptations. Exp Cell Res 2022; 415:113134. [PMID: 35367215 PMCID: PMC9058940 DOI: 10.1016/j.yexcr.2022.113134] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/23/2022] [Accepted: 03/28/2022] [Indexed: 12/27/2022]
Abstract
Fusion of plasma membranes is essential for skeletal muscle development, regeneration, exercise-induced adaptations, and results in a cell that contains hundreds to thousands of nuclei within a shared cytoplasm. The differentiation process in myocytes culminates in their fusion to form a new myofiber or fusion to an existing myofiber thereby contributing more synthetic material to the syncytium. The choice for two cells to fuse and become one could be a dangerous event if the two cells are not committed to an allied function. Thus, fusion events are highly regulated with positive and negative factors to fine-tune the process, and requires muscle-specific fusogens (Myomaker and Myomerger) as well as general cellular machinery to achieve the union of membranes. While a unified vertebrate myoblast fusion pathway is not yet established, recent discoveries should make this pursuit attainable. Not only does myocyte fusion impact the normal biology of skeletal muscle, but new evidence indicates dysregulation of the process impacts pathologies of skeletal muscle. Here, I will highlight the molecular players and biochemical mechanisms that drive fusion events in muscle, and discuss how this key myogenic process impacts skeletal muscle diseases.
Collapse
Affiliation(s)
- Douglas P Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
| |
Collapse
|
5
|
Aase-Remedios ME, Coll-Lladó C, Ferrier DEK. Amphioxus muscle transcriptomes reveal vertebrate-like myoblast fusion genes and a highly conserved role of insulin signalling in the metabolism of muscle. BMC Genomics 2022; 23:93. [PMID: 35105312 PMCID: PMC8805411 DOI: 10.1186/s12864-021-08222-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/25/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The formation and functioning of muscles are fundamental aspects of animal biology, and the evolution of 'muscle genes' is central to our understanding of this tissue. Feeding-fasting-refeeding experiments have been widely used to assess muscle cellular and metabolic responses to nutrition. Though these studies have focused on vertebrate models and only a few invertebrate systems, they have found similar processes are involved in muscle degradation and maintenance. Motivation for these studies stems from interest in diseases whose pathologies involve muscle atrophy, a symptom also triggered by fasting, as well as commercial interest in the muscle mass of animals kept for consumption. Experimentally modelling atrophy by manipulating nutritional state causes muscle mass to be depleted during starvation and replenished with refeeding so that the genetic mechanisms controlling muscle growth and degradation can be understood. RESULTS Using amphioxus, the earliest branching chordate lineage, we address the gap in previous work stemming from comparisons between distantly related vertebrate and invertebrate models. Our amphioxus feeding-fasting-refeeding muscle transcriptomes reveal a highly conserved myogenic program and that the pro-orthologues of many vertebrate myoblast fusion genes were present in the ancestral chordate, despite these invertebrate chordates having unfused mononucleate myocytes. We found that genes differentially expressed between fed and fasted amphioxus were orthologous to the genes that respond to nutritional state in vertebrates. This response is driven in a large part by the highly conserved IGF/Akt/FOXO pathway, where depleted nutrient levels result in activation of FOXO, a transcription factor with many autophagy-related gene targets. CONCLUSION Reconstruction of these gene networks and pathways in amphioxus muscle provides a key point of comparison between the distantly related groups assessed thus far, significantly refining the reconstruction of the ancestral state for chordate myoblast fusion genes and identifying the extensive role of duplicated genes in the IGF/Akt/FOXO pathway across animals. Our study elucidates the evolutionary trajectory of muscle genes as they relate to the increased complexity of vertebrate muscles and muscle development.
Collapse
Affiliation(s)
- Madeleine E Aase-Remedios
- The Scottish Oceans Institute, Gatty Marine Laboratory, School of Biology, University of St Andrews, St Andrews, Fife, KY16 8LB, UK
| | - Clara Coll-Lladó
- The Scottish Oceans Institute, Gatty Marine Laboratory, School of Biology, University of St Andrews, St Andrews, Fife, KY16 8LB, UK
| | - David E K Ferrier
- The Scottish Oceans Institute, Gatty Marine Laboratory, School of Biology, University of St Andrews, St Andrews, Fife, KY16 8LB, UK.
| |
Collapse
|
6
|
Drosophila melanogaster: A Model System to Study Distinct Genetic Programs in Myoblast Fusion. Cells 2022; 11:cells11030321. [PMID: 35159130 PMCID: PMC8834112 DOI: 10.3390/cells11030321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 11/25/2022] Open
Abstract
Muscle fibers are multinucleated cells that arise during embryogenesis through the fusion of mononucleated myoblasts. Myoblast fusion is a lifelong process that is crucial for the growth and regeneration of muscles. Understanding the molecular mechanism of myoblast fusion may open the way for novel therapies in muscle wasting and weakness. Recent reports in Drosophila and mammals have provided new mechanistic insights into myoblast fusion. In Drosophila, muscle formation occurs twice: during embryogenesis and metamorphosis. A fundamental feature is the formation of a cell–cell communication structure that brings the apposing membranes into close proximity and recruits possible fusogenic proteins. However, genetic studies suggest that myoblast fusion in Drosophila is not a uniform process. The complexity of the players involved in myoblast fusion can be modulated depending on the type of muscle that is formed. In this review, we introduce the different types of multinucleated muscles that form during Drosophila development and provide an overview in advances that have been made to understand the mechanism of myoblast fusion. Finally, we will discuss conceptual frameworks in cell–cell fusion in Drosophila and mammals.
Collapse
|
7
|
Valer FB, Spegiorim GC, Espreafico EM, Ramos RGP. The IRM cell adhesion molecules Hibris, Kin of irre and Roughest control egg morphology by modulating ovarian muscle contraction in Drosophila. JOURNAL OF INSECT PHYSIOLOGY 2022; 136:104344. [PMID: 34896373 DOI: 10.1016/j.jinsphys.2021.104344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
The Irre Cell Recognition Module (IRM) is an evolutionarily conserved group of transmembrane glycoproteins required for cell-cell recognition and adhesion in metazoan development. In Drosophila melanogaster ovaries, four members of this group - Roughest (Rst), Kin of irre (Kirre), Hibris (Hbs) and Sticks and stones (Sns) - play important roles in germ cell encapsulation and muscle sheath organization during early pupal stages, as well as in the progression to late oogenesis in the adult. Females carrying some of the mutant rst alleles are viable but sterile, and previous work from our laboratory had identified defects in the organization of the peritoneal and epithelial muscle sheaths of these mutants that could underlie their sterile phenotype. In this study, besides further characterizing the sterility phenotype associated with rst mutants, we investigated the role of the IRM molecules Rst, Kirre and Hbs in maintaining the functionality of the ovarian muscle sheaths. We found that knocking down any of the three genes in these structures, either individually or in double heterozygous combinations, not only decreases contraction frequency but also irregularly increases contraction amplitude. Furthermore, these alterations can significantly impact the morphology of eggs laid by IRM-depleted females demonstrating a hitherto unknown role of IRM molecules in egg morphogenesis.
Collapse
Affiliation(s)
- Felipe Berti Valer
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Giulia Covolo Spegiorim
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Enilza Maria Espreafico
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | |
Collapse
|
8
|
Sengupta T, Koonce NL, Vázquez-Martínez N, Moyle MW, Duncan LH, Emerson SE, Han X, Shao L, Wu Y, Santella A, Fan L, Bao Z, Mohler W, Shroff H, Colón-Ramos DA. Differential adhesion regulates neurite placement via a retrograde zippering mechanism. eLife 2021; 10:71171. [PMID: 34783657 PMCID: PMC8843091 DOI: 10.7554/elife.71171] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
During development, neurites and synapses segregate into specific neighborhoods or layers within nerve bundles. The developmental programs guiding placement of neurites in specific layers, and hence their incorporation into specific circuits, are not well understood. We implement novel imaging methods and quantitative models to document the embryonic development of the C. elegans brain neuropil, and discover that differential adhesion mechanisms control precise placement of single neurites onto specific layers. Differential adhesion is orchestrated via developmentally-regulated expression of the IgCAM SYG-1, and its partner ligand SYG-2. Changes in SYG-1 expression across neuropil layers result in changes in adhesive forces, which sort SYG-2-expressing neurons. Sorting to layers occurs, not via outgrowth from the neurite tip, but via an alternate mechanism of retrograde zippering, involving interactions between neurite shafts. Our study indicates that biophysical principles from differential adhesion govern neurite placement and synaptic specificity in vivo in developing neuropil bundles.
Collapse
Affiliation(s)
- Titas Sengupta
- Yale University School of Medicine, New Haven, United States
| | - Noelle L Koonce
- Yale University School of Medicine, New Haven, United States
| | | | - Mark W Moyle
- Yale University School of Medicine, New Haven, United States
| | | | - Sarah E Emerson
- Yale University School of Medicine, New Haven, United States
| | - Xiaofei Han
- National Institutes of Health, Bethesda, United States
| | - Lin Shao
- Yale University School of Medicine, New Haven, United States
| | - Yicong Wu
- National Institutes of Health, Bethesda, United States
| | - Anthony Santella
- Developmental Biology Program, Molecular Cytology Core, Sloan-Kettering Institute, New York, United States
| | - Li Fan
- Helen and Robert Appel Alzheimer's Disease Institute, Weill Cornell Medicine, New York, United States
| | - Zhirong Bao
- Developmental Biology Program, Sloan-Kettering Institute, New York, United States
| | - William Mohler
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, United States
| | - Hari Shroff
- National Institutes of Health, Bethesda, United States
| | | |
Collapse
|
9
|
DeAngelis MW, Coolon JD, Johnson RI. Comparative transcriptome analyses of the Drosophila pupal eye. G3-GENES GENOMES GENETICS 2021; 11:5995320. [PMID: 33561221 PMCID: PMC8043229 DOI: 10.1093/g3journal/jkaa003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/08/2020] [Indexed: 12/04/2022]
Abstract
Tissue function is dependent on correct cellular organization and behavior. As a result, the identification and study of genes that contribute to tissue morphogenesis is of paramount importance to the fields of cell and developmental biology. Many of the genes required for tissue patterning and organization are highly conserved between phyla. This has led to the emergence of several model organisms and developmental systems that are used to study tissue morphogenesis. One such model is the Drosophila melanogaster pupal eye that has a highly stereotyped arrangement of cells. In addition, the pupal eye is postmitotic that allows for the study of tissue morphogenesis independent from any effects of proliferation. While the changes in cell morphology and organization that occur throughout pupal eye development are well documented, less is known about the corresponding transcriptional changes that choreograph these processes. To identify these transcriptional changes, we dissected wild-type Canton S pupal eyes and performed RNA-sequencing. Our analyses identified differential expression of many loci that are documented regulators of pupal eye morphogenesis and contribute to multiple biological processes including signaling, axon projection, adhesion, and cell survival. We also identified differential expression of genes not previously implicated in pupal eye morphogenesis such as components of the Toll pathway, several non-classical cadherins, and components of the muscle sarcomere, which could suggest these loci function as novel patterning factors.
Collapse
Affiliation(s)
- Miles W DeAngelis
- Department of Biology, Wesleyan University, 52 Lawn Avenue, Middletown, CT 06459, USA
| | - Joseph D Coolon
- Department of Biology, Wesleyan University, 52 Lawn Avenue, Middletown, CT 06459, USA
| | - Ruth I Johnson
- Department of Biology, Wesleyan University, 52 Lawn Avenue, Middletown, CT 06459, USA
| |
Collapse
|
10
|
Abstract
Cell-cell fusion is indispensable for creating life and building syncytial tissues and organs. Ever since the discovery of cell-cell fusion, how cells join together to form zygotes and multinucleated syncytia has remained a fundamental question in cell and developmental biology. In the past two decades, Drosophila myoblast fusion has been used as a powerful genetic model to unravel mechanisms underlying cell-cell fusion in vivo. Many evolutionarily conserved fusion-promoting factors have been identified and so has a surprising and conserved cellular mechanism. In this review, we revisit key findings in Drosophila myoblast fusion and highlight the critical roles of cellular invasion and resistance in driving cell membrane fusion.
Collapse
Affiliation(s)
- Donghoon M Lee
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
| | - Elizabeth H Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
11
|
Naa15 knockdown enhances c2c12 myoblast fusion and induces defects in zebrafish myotome morphogenesis. Comp Biochem Physiol B Biochem Mol Biol 2018; 228:61-67. [PMID: 30502388 DOI: 10.1016/j.cbpb.2018.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/16/2018] [Accepted: 11/21/2018] [Indexed: 11/21/2022]
Abstract
The understanding of muscle tissue formation and regeneration is essential for the development of therapeutic approaches to treat muscle diseases or loss of muscle mass and strength during ageing or cancer. One of the critical steps in muscle formation is the fusion of muscle cells to form or regenerate muscle fibres. To identify new genes controlling myoblast fusion, we performed a siRNA screen in c2c12 myoblasts. The genes identified during this screen were then studied in vivo by knockdown in zebrafish using morpholino. We found that N-alpha-acetyltransferase 15 (Naa15) knockdown enhanced c2c12 myoblast fusion, suggesting that Naa15 negatively regulates myogenic cell fusion. We identified two Naa15 orthologous genes in the zebrafish genome: Naa15a and Naa15b. These two orthologs were expressed in the myogenic domain of the somite. Knockdown of zebrafish Naa15a and Naa15b genes induced a "U"-shaped segmentation of the myotome and alteration of myotome boundaries, resulting in the formation of abnormally long myofibres spanning adjacent somites. Taken together, these results show that Naa15 regulates myotome formation and myogenesis in fish.
Collapse
|
12
|
Valer FB, Machado MCR, Silva-Junior RMP, Ramos RGP. Expression of Hbs, Kirre, and Rst during Drosophila ovarian development. Genesis 2018; 56:e23242. [PMID: 30114331 DOI: 10.1002/dvg.23242] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 07/22/2018] [Accepted: 07/23/2018] [Indexed: 12/16/2022]
Abstract
The Irre cell-recognition module (IRM) is a group of evolutionarily conserved and structurally related transmembrane glycoproteins of the immunoglobulin superfamily. In Drosophila melanogaster, it comprises the products of the genes roughest (rst; also known as irreC-rst), kin-of-irre (kirre; also known as duf), sticks-and-stones (sns), and hibris (hbs). In this model organism, the behavior of this group of proteins as a partly redundant functional unit mediating selective cell recognition was demonstrated in a variety of developmental contexts, but their possible involvement in ovarian development and oogenesis has not been investigated, notwithstanding the fact that some rst mutant alleles are also female sterile. Here, we show that IRM genes are dynamically and, to some extent, coordinately transcribed in both pupal and adult ovaries. Additionally, the spatial distribution of Hbs, Kirre, and Rst proteins indicates that they perform cooperative, although largely nonredundant, functions. Finally, phenotypical characterization of three different female sterile rst alleles uncovered two temporally separated and functionally distinct requirements for this locus in ovarian development: one in pupa, essential for the organization of peritoneal and epithelial sheaths that maintain the structural integrity of the adult organ and another, in mature ovarioles, needed for the progression of oogenesis beyond stage 10.
Collapse
Affiliation(s)
- Felipe Berti Valer
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Maiaro Cabral Rosa Machado
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | | |
Collapse
|
13
|
Machado MCR, Valer FB, Couto-Lima CA, Ramos RGP. Transcriptional cross-regulation of Irre Cell Recognition Module (IRM) members in the Drosophila pupal retina. Mech Dev 2018; 154:193-202. [PMID: 30030087 DOI: 10.1016/j.mod.2018.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/26/2018] [Accepted: 07/16/2018] [Indexed: 12/13/2022]
Abstract
Cell adhesion molecules play a central role in morphogenesis, as they mediate the complex range of interactions between different cell types that result in their arrangement in multicellular organs and tissues. How their coordinated dynamic expression in space and time - an essential requirement for their function - is regulated at the genomic and transcriptional levels constitutes an important, albeit still little understood question. The Irre Cell Recognition Module (IRM) is a highly conserved phylogenetically group of structurally related single pass transmembrane glycoproteins belonging to the immunoglobulin superfamily that in Drosophila melanogaster are encoded by the genes roughest (rst), kin-of-irre (kirre), sticks-and-stones (sns) and hibris (hbs). Their cooperative and often partly redundant action are crucial to major developmental processes such axonal pathfinding, myoblast fusion and patterning of the pupal retina. In this latter system rst and kirre display a tightly regulated complementary transcriptional pattern so that lowering rst mRNA levels leads to a concomitant increase in kirre mRNA concentration. Here we investigated whether other IRM components are similarly co-regulated and the extent changes in their mRNA levels affect each other as well as their collective function in retinal patterning. Our results demonstrate that silencing any of the four IRM genes in 24% APF retinae changes the levels all other group members although only kirre and hbs mRNA levels are increased. Furthermore, expression, in a rst null background, of truncated versions of rst cDNA in which the portion encoding the intracellular domain has been partially or completely removed not only can still induce changes in mRNA levels of other IRM members but also result in Kirre mislocalization. Taken together, our data point to the presence of a highly precise and fine-tuned control mechanism coordinating IRM expression that may be crucial to the functional redundancy shown by its components during the patterning of the pupal retina.
Collapse
Affiliation(s)
- Maiaro Cabral Rosa Machado
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Felipe Berti Valer
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Carlos Antonio Couto-Lima
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | |
Collapse
|
14
|
Tsuboi A, Umetsu D, Kuranaga E, Fujimoto K. Inference of Cell Mechanics in Heterogeneous Epithelial Tissue Based on Multivariate Clone Shape Quantification. Front Cell Dev Biol 2017; 5:68. [PMID: 28824908 PMCID: PMC5540905 DOI: 10.3389/fcell.2017.00068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/05/2017] [Indexed: 12/16/2022] Open
Abstract
Cell populations in multicellular organisms show genetic and non-genetic heterogeneity, even in undifferentiated tissues of multipotent cells during development and tumorigenesis. The heterogeneity causes difference of mechanical properties, such as, cell bond tension or adhesion, at the cell–cell interface, which determine the shape of clonal population boundaries via cell sorting or mixing. The boundary shape could alter the degree of cell–cell contacts and thus influence the physiological consequences of sorting or mixing at the boundary (e.g., tumor suppression or progression), suggesting that the cell mechanics could help clarify the physiology of heterogeneous tissues. While precise inference of mechanical tension loaded at each cell–cell contacts has been extensively developed, there has been little progress on how to distinguish the population-boundary geometry and identify the cause of geometry in heterogeneous tissues. We developed a pipeline by combining multivariate analysis of clone shape with tissue mechanical simulations. We examined clones with four different genotypes within Drosophila wing imaginal discs: wild-type, tartan (trn) overexpression, hibris (hbs) overexpression, and Eph RNAi. Although the clones were previously known to exhibit smoothed or convoluted morphologies, their mechanical properties were unknown. By applying a multivariate analysis to multiple criteria used to quantify the clone shapes based on individual cell shapes, we found the optimal criteria to distinguish not only among the four genotypes, but also non-genetic heterogeneity from genetic one. The efficient segregation of clone shape enabled us to quantitatively compare experimental data with tissue mechanical simulations. As a result, we identified the mechanical basis contributed to clone shape of distinct genotypes. The present pipeline will promote the understanding of the functions of mechanical interactions in heterogeneous tissue in a non-invasive manner.
Collapse
Affiliation(s)
- Alice Tsuboi
- Laboratory of Theoretical Biology, Department of Biological Sciences, Osaka UniversityToyonaka, Japan
| | - Daiki Umetsu
- Laboratory of Histogenetic Dynamics, Graduate School of Life Sciences, Tohoku UniversitySendai, Japan
| | - Erina Kuranaga
- Laboratory of Histogenetic Dynamics, Graduate School of Life Sciences, Tohoku UniversitySendai, Japan
| | - Koichi Fujimoto
- Laboratory of Theoretical Biology, Department of Biological Sciences, Osaka UniversityToyonaka, Japan
| |
Collapse
|
15
|
Gautam NK, Verma P, Tapadia MG. Drosophila Malpighian Tubules: A Model for Understanding Kidney Development, Function, and Disease. Results Probl Cell Differ 2017; 60:3-25. [PMID: 28409340 DOI: 10.1007/978-3-319-51436-9_1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The Malpighian tubules of insects are structurally simple but functionally important organs, and their integrity is important for the normal excretory process. They are functional analogs of human kidneys which are important physiological organs as they maintain water and electrolyte balance in the blood and simultaneously help the body to get rid of waste and toxic products after various metabolic activities. In addition, it receives early indications of insults to the body such as immune challenge and other toxic components and is essential for sustaining life. According to National Vital Statistics Reports 2016, renal dysfunction has been ranked as the ninth most abundant cause of death in the USA. This chapter provides detailed descriptions of Drosophila Malpighian tubule development, physiology, immune function and also presents evidences that Malpighian tubules can be used as a model organ system to address the fundamental questions in developmental and functional disorders of the kidney.
Collapse
Affiliation(s)
- Naveen Kumar Gautam
- Embryotoxicology Laboratory, Environmental Toxicology Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Puja Verma
- Department of Zoology, Cytogenetics Laboratory, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Madhu G Tapadia
- Department of Zoology, Cytogenetics Laboratory, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
16
|
Ni J, Bao S, Johnson RI, Zhu B, Li J, Vadaparampil J, Smith CM, Campbell KN, Grahammer F, Huber TB, He JC, D'Agati VD, Chan A, Kaufman L. MAGI-1 Interacts with Nephrin to Maintain Slit Diaphragm Structure through Enhanced Rap1 Activation in Podocytes. J Biol Chem 2016; 291:24406-24417. [PMID: 27707879 PMCID: PMC5114397 DOI: 10.1074/jbc.m116.745026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/05/2016] [Indexed: 12/15/2022] Open
Abstract
MAGI-1 is a multidomain cytosolic scaffolding protein that in the kidney is specifically located at the podocyte slit diaphragm, a specialized junction that is universally injured in proteinuric diseases. There it interacts with several essential molecules, including nephrin and neph1, which are required for slit diaphragm formation and as an intracellular signaling hub. Here, we show that diminished MAGI-1 expression in cultured podocytes reduced nephrin and neph1 membrane localization and weakened tight junction integrity. Global magi1 knock-out mice, however, demonstrated normal glomerular histology and function into adulthood. We hypothesized that a second mild but complementary genetic insult might induce glomerular disease susceptibility in these mice. To identify such a gene, we utilized the developing fly eye to test for functional complementation between MAGI and its binding partners. In this way, we identified diminished expression of fly Hibris (nephrin) or Roughest (neph1) as dramatically exacerbating the effects of MAGI depletion. Indeed, when these combinations were studied in mice, the addition of nephrin, but not neph1, heterozygosity to homozygous deletion of MAGI-1 resulted in spontaneous glomerulosclerosis. In cultured podocytes, MAGI-1 depletion reduced intercellular contact-induced Rap1 activation, a pathway critical for proper podocyte function. Similarly, magi1 knock-out mice showed diminished glomerular Rap1 activation, an effect dramatically enhanced by concomitant nephrin haploinsufficiency. Finally, combined overexpression of MAGI-1 and nephrin increased Rap1 activation, but not when substituting a mutant MAGI-1 that cannot bind nephrin. We conclude that the interaction between nephrin and MAGI-1 regulates Rap1 activation in podocytes to maintain long term slit diaphragm structure.
Collapse
Affiliation(s)
- Jie Ni
- From the Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York 10029,; the Division of Nephrology, First Affiliated Hospital of Harbin Medical University, Harbin, China 150001
| | - Sujin Bao
- the Saint James School of Medicine, Saint Vincent and the Grenadines
| | - Ruth I Johnson
- the Biology Department, Wesleyan University, Middletown, Connecticut, 06459
| | - Bingbing Zhu
- From the Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York 10029,; the Department of Nephrology, Laboratory of Renal Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China 200062
| | - Jianhua Li
- From the Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Justin Vadaparampil
- From the Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Christopher M Smith
- From the Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Kirk N Campbell
- From the Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Florian Grahammer
- the Department of Medicine IV, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Tobias B Huber
- the Department of Medicine IV, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany,; the BIOSS Center for Biological Signaling Studies, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany,; FRIAS, Freiburg Institute for Advanced Studies and Center for Systems Biology (ZBSA), Albert-Ludwigs-University, 79104 Freiburg, Germany
| | - John C He
- From the Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Vivette D D'Agati
- the Department of Pathology, Columbia University Medical Center, New York, New York 10032, and
| | - Andrew Chan
- the School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Lewis Kaufman
- From the Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York 10029,.
| |
Collapse
|
17
|
Hamp J, Löwer A, Dottermusch-Heidel C, Beck L, Moussian B, Flötenmeyer M, Önel SF. Drosophila Kette coordinates myoblast junction dissolution and the ratio of Scar-to-WASp during myoblast fusion. J Cell Sci 2016; 129:3426-36. [PMID: 27521427 PMCID: PMC5047678 DOI: 10.1242/jcs.175638] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 07/25/2016] [Indexed: 12/31/2022] Open
Abstract
The fusion of founder cells and fusion-competent myoblasts (FCMs) is crucial for muscle formation in Drosophila. Characteristic events of myoblast fusion include the recognition and adhesion of myoblasts, and the formation of branched F-actin by the Arp2/3 complex at the site of cell–cell contact. At the ultrastructural level, these events are reflected by the appearance of finger-like protrusions and electron-dense plaques that appear prior to fusion. Severe defects in myoblast fusion are caused by the loss of Kette (a homolog of Nap1 and Hem-2, also known as NCKAP1 and NCKAP1L, respectively), a member of the regulatory complex formed by Scar or WAVE proteins (represented by the single protein, Scar, in flies). kette mutants form finger-like protrusions, but the electron-dense plaques are extended. Here, we show that the electron-dense plaques in wild-type and kette mutant myoblasts resemble other electron-dense structures that are known to function as cellular junctions. Furthermore, analysis of double mutants and attempts to rescue the kette mutant phenotype with N-cadherin, wasp and genes of members of the regulatory Scar complex revealed that Kette has two functions during myoblast fusion. First, Kette controls the dissolution of electron-dense plaques. Second, Kette controls the ratio of the Arp2/3 activators Scar and WASp in FCMs. Summary: The Drosophila protein Kette is essential for myoblast fusion. It controls the dissolution of electron-dense plaques and the ratio of Scar and WASp proteins in fusion-competent myoblasts during fusion pore formation.
Collapse
Affiliation(s)
- Julia Hamp
- Philipps-Universität Marburg, FB Biologie, Entwicklungsbiologie, Karl-von-Frisch Str. 8, Marburg 35043, Germany
| | - Andreas Löwer
- Philipps-Universität Marburg, FB Biologie, Entwicklungsbiologie, Karl-von-Frisch Str. 8, Marburg 35043, Germany
| | | | - Lothar Beck
- Fachbereich Biologie, Spezielle Zoologie, Philipps-Universität Marburg, Karl-von-Frisch Str. 8, Marburg 35043, Germany
| | - Bernard Moussian
- Interfaculty Institute for Cell Biology, Section Animal Genetics, University of Tübingen, Tübingen 72076, Germany
| | - Matthias Flötenmeyer
- Max Planck Institute for Developmental Biology, Section Electron Microscopy, Tübingen 72076, Germany
| | - Susanne-Filiz Önel
- Philipps-Universität Marburg, FB Biologie, Entwicklungsbiologie, Karl-von-Frisch Str. 8, Marburg 35043, Germany
| |
Collapse
|
18
|
Burghardt T, Hochapfel F, Salecker B, Meese C, Gröne HJ, Rachel R, Wanner G, Krahn MP, Witzgall R. Advanced electron microscopic techniques provide a deeper insight into the peculiar features of podocytes. Am J Physiol Renal Physiol 2015; 309:F1082-9. [DOI: 10.1152/ajprenal.00338.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/17/2015] [Indexed: 11/22/2022] Open
Abstract
Podocytes constitute the outer layer of the glomerular filtration barrier, where they form an intricate network of interdigitating foot processes which are connected by slit diaphragms. A hitherto unanswered puzzle concerns the question of whether slit diaphragms are established between foot processes of the same podocyte or between foot processes of different podocytes. By employing focused ion beam-scanning electron microscopy (FIB-SEM), we provide unequivocal evidence that slit diaphragms are formed between foot processes of different podocytes. We extended our investigations of the filtration slit by using dual-axis electron tomography of human and mouse podocytes as well as of Drosophila melanogaster nephrocytes. Using this technique, we not only find a single slit diaphragm which spans the filtration slit around the whole periphery of the foot processes but additional punctate filamentous contacts between adjacent foot processes. Future work will be necessary to determine the proteins constituting the two types of cell-cell contacts.
Collapse
Affiliation(s)
- Tillmann Burghardt
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
| | - Florian Hochapfel
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
| | - Benjamin Salecker
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
| | - Christine Meese
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
| | - Hermann-Josef Gröne
- Division of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Reinhard Rachel
- Center of Electron Microscopy, Faculty of Biology and Preclinical Medicine, University of Regensburg, Regensburg, Germany; and
| | - Gerhard Wanner
- Department of Botany, Ludwig Maximilians-Universität, Munich, Germany
| | - Michael P. Krahn
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
| | - Ralph Witzgall
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
| |
Collapse
|
19
|
Kuckwa J, Fritzen K, Buttgereit D, Rothenbusch-Fender S, Renkawitz-Pohl R. A new level of plasticity: Drosophila smooth-like testes muscles compensate failure of myoblast fusion. Development 2015; 143:329-38. [PMID: 26657767 PMCID: PMC4725342 DOI: 10.1242/dev.126730] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 11/28/2015] [Indexed: 12/26/2022]
Abstract
The testis of Drosophila resembles an individual testis tubule of mammals. Both are surrounded by a sheath of smooth muscles, which in Drosophila are multinuclear and originate from a pool of myoblasts that are set aside in the embryo and accumulate on the genital disc later in development. These muscle stem cells start to differentiate early during metamorphosis and give rise to all muscles of the inner male reproductive system. Shortly before the genital disc and the developing testes connect, multinuclear nascent myotubes appear on the anterior tips of the seminal vesicles. Here, we show that adhesion molecules are distinctly localized on the seminal vesicles; founder cell (FC)-like myoblasts express Dumbfounded (Duf) and Roughest (Rst), and fusion-competent myoblast (FCM)-like cells mainly express Sticks and stones (Sns). The smooth but multinuclear myotubes of the testes arose by myoblast fusion. RNAi-mediated attenuation of Sns or both Duf and Rst severely reduced the number of nuclei in the testes muscles. Duf and Rst probably act independently in this context. Despite reduced fusion in all of these RNAi-treated animals, myotubes migrated onto the testes, testes were shaped and coiled, muscle filaments were arranged as in the wild type and spermatogenesis proceeded normally. Hence, the testes muscles compensate for fusion defects so that the myofibres encircling the adult testes are indistinguishable from those of the wild type and male fertility is guaranteed. Summary:Drosophila testes muscles arise from stem cells and can compensate for fusion defects to safeguard fertility; this plasticity may compensate for the observed lack of satellite cells in Drosophila.
Collapse
Affiliation(s)
- Jessica Kuckwa
- Philipps-Universität Marburg, Fachbereich Biologie, Entwicklungsbiologie, Karl-von-Frisch Strasse 8, Marburg 35043, Germany
| | - Katharina Fritzen
- Philipps-Universität Marburg, Fachbereich Biologie, Entwicklungsbiologie, Karl-von-Frisch Strasse 8, Marburg 35043, Germany
| | - Detlev Buttgereit
- Philipps-Universität Marburg, Fachbereich Biologie, Entwicklungsbiologie, Karl-von-Frisch Strasse 8, Marburg 35043, Germany
| | - Silke Rothenbusch-Fender
- Philipps-Universität Marburg, Fachbereich Biologie, Entwicklungsbiologie, Karl-von-Frisch Strasse 8, Marburg 35043, Germany
| | - Renate Renkawitz-Pohl
- Philipps-Universität Marburg, Fachbereich Biologie, Entwicklungsbiologie, Karl-von-Frisch Strasse 8, Marburg 35043, Germany
| |
Collapse
|
20
|
Functional Conservation of the Glide/Gcm Regulatory Network Controlling Glia, Hemocyte, and Tendon Cell Differentiation in Drosophila. Genetics 2015; 202:191-219. [PMID: 26567182 PMCID: PMC4701085 DOI: 10.1534/genetics.115.182154] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/03/2015] [Indexed: 12/21/2022] Open
Abstract
High-throughput screens allow us to understand how transcription factors trigger developmental processes, including cell specification. A major challenge is identification of their binding sites because feedback loops and homeostatic interactions may mask the direct impact of those factors in transcriptome analyses. Moreover, this approach dissects the downstream signaling cascades and facilitates identification of conserved transcriptional programs. Here we show the results and the validation of a DNA adenine methyltransferase identification (DamID) genome-wide screen that identifies the direct targets of Glide/Gcm, a potent transcription factor that controls glia, hemocyte, and tendon cell differentiation in Drosophila. The screen identifies many genes that had not been previously associated with Glide/Gcm and highlights three major signaling pathways interacting with Glide/Gcm: Notch, Hedgehog, and JAK/STAT, which all involve feedback loops. Furthermore, the screen identifies effector molecules that are necessary for cell-cell interactions during late developmental processes and/or in ontogeny. Typically, immunoglobulin (Ig) domain-containing proteins control cell adhesion and axonal navigation. This shows that early and transiently expressed fate determinants not only control other transcription factors that, in turn, implement a specific developmental program but also directly affect late developmental events and cell function. Finally, while the mammalian genome contains two orthologous Gcm genes, their function has been demonstrated in vertebrate-specific tissues, placenta, and parathyroid glands, begging questions on the evolutionary conservation of the Gcm cascade in higher organisms. Here we provide the first evidence for the conservation of Gcm direct targets in humans. In sum, this work uncovers novel aspects of cell specification and sets the basis for further understanding of the role of conserved Gcm gene regulatory cascades.
Collapse
|
21
|
Demonbreun AR, Biersmith BH, McNally EM. Membrane fusion in muscle development and repair. Semin Cell Dev Biol 2015; 45:48-56. [PMID: 26537430 PMCID: PMC4679555 DOI: 10.1016/j.semcdb.2015.10.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/15/2015] [Indexed: 12/16/2022]
Abstract
Mature skeletal muscle forms from the fusion of skeletal muscle precursor cells, myoblasts. Myoblasts fuse to other myoblasts to generate multinucleate myotubes during myogenesis, and myoblasts also fuse to other myotubes during muscle growth and repair. Proteins within myoblasts and myotubes regulate complex processes such as elongation, migration, cell adherence, cytoskeletal reorganization, membrane coalescence, and ultimately fusion. Recent studies have identified cell surface proteins, intracellular proteins, and extracellular signaling molecules required for the proper fusion of muscle. Many proteins that actively participate in myoblast fusion also coordinate membrane repair. Here we will review mammalian membrane fusion with specific attention to proteins that mediate myoblast fusion and muscle repair.
Collapse
|
22
|
Buffolo M, Batista Possidonio AC, Mermelstein C, Araujo H. A conserved role for calpains during myoblast fusion. Genesis 2015; 53:417-30. [DOI: 10.1002/dvg.22870] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 06/17/2015] [Accepted: 06/25/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Marcio Buffolo
- Laboratório de Diferenciação Muscular e Citoesqueleto, Instituto De Ciências Biomédicas, Universidade Federal Do Rio De Janeiro; Rio De Janeiro Brazil
- Laboratório de Biologia Molecular do Desenvolvimento, Instituto De Ciências Biomédicas, Universidade Federal Do Rio De Janeiro; Rio De Janeiro Brazil
| | - Ana Claudia Batista Possidonio
- Laboratório de Diferenciação Muscular e Citoesqueleto, Instituto De Ciências Biomédicas, Universidade Federal Do Rio De Janeiro; Rio De Janeiro Brazil
| | - Claudia Mermelstein
- Laboratório de Diferenciação Muscular e Citoesqueleto, Instituto De Ciências Biomédicas, Universidade Federal Do Rio De Janeiro; Rio De Janeiro Brazil
| | - Helena Araujo
- Laboratório de Biologia Molecular do Desenvolvimento, Instituto De Ciências Biomédicas, Universidade Federal Do Rio De Janeiro; Rio De Janeiro Brazil
| |
Collapse
|
23
|
Linneweber GA, Winking M, Fischbach KF. The Cell Adhesion Molecules Roughest, Hibris, Kin of Irre and Sticks and Stones Are Required for Long Range Spacing of the Drosophila Wing Disc Sensory Sensilla. PLoS One 2015; 10:e0128490. [PMID: 26053791 PMCID: PMC4459997 DOI: 10.1371/journal.pone.0128490] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 04/27/2015] [Indexed: 12/18/2022] Open
Abstract
Most animal tissues and organ systems are comprised of highly ordered arrays of varying cell types. The development of external sensory organs requires complex cell-cell communication in order to give each cell a specific identity and to ensure a regular distributed pattern of the sensory bristles. This involves both long and short range signaling mediated by either diffusible or cell anchored factors. In a variety of processes the heterophilic Irre Cell Recognition Module, consisting of the Neph-like proteins: Roughest, Kin of irre and of the Nephrin-like proteins: Sticks and Stones, Hibris, plays key roles in the recognition events of different cell types throughout development. In the present study these proteins are apically expressed in the adhesive belt of epithelial cells participating in sense organ development in a partially exclusive and asymmetric manner. Using mutant analysis the GAL4/UAS system, RNAi and gain of function we found an involvement of all four Irre Cell Recognition Module-proteins in the development of a highly structured array of sensory organs in the wing disc. The proteins secure the regular spacing of sensory organs showing partial redundancy and may function in early lateral inhibition events as well as in cell sorting processes. Comparisons with other systems suggest that the Irre Cell Recognition module is a key organizer of highly repetitive structures.
Collapse
Affiliation(s)
- Gerit Arne Linneweber
- Department of Neurobiology, Albert-Ludwigs-University Freiburg, Schänzlestr. 1, D-79104, Freiburg, Germany
| | - Mathis Winking
- Department of Neurobiology, Albert-Ludwigs-University Freiburg, Schänzlestr. 1, D-79104, Freiburg, Germany
| | - Karl-Friedrich Fischbach
- Department of Neurobiology, Albert-Ludwigs-University Freiburg, Schänzlestr. 1, D-79104, Freiburg, Germany
| |
Collapse
|
24
|
Kim JH, Jin P, Duan R, Chen EH. Mechanisms of myoblast fusion during muscle development. Curr Opin Genet Dev 2015; 32:162-70. [PMID: 25989064 DOI: 10.1016/j.gde.2015.03.006] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/13/2015] [Accepted: 03/17/2015] [Indexed: 01/24/2023]
Abstract
The development and regeneration of skeletal muscle require the fusion of mononucleated muscle cells to form multinucleated, contractile muscle fibers. Studies using a simple genetic model, Drosophila melanogaster, have discovered many evolutionarily conserved fusion-promoting factors in vivo. Recent work in zebrafish and mouse also identified several vertebrate-specific factors required for myoblast fusion. Here, we integrate progress in multiple in vivo systems and highlight conceptual advance in understanding how muscle cell membranes are brought together for fusion. We focus on the molecular machinery at the fusogenic synapse and present a three-step model to describe the molecular and cellular events leading to fusion pore formation.
Collapse
Affiliation(s)
- Ji Hoon Kim
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Peng Jin
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Rui Duan
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Elizabeth H Chen
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States.
| |
Collapse
|
25
|
Haralalka S, Abmayr SM. Tracing myoblast fusion in Drosophila embryos by fluorescent actin probes. Methods Mol Biol 2015; 1313:149-64. [PMID: 25947663 DOI: 10.1007/978-1-4939-2703-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Myoblast fusion in the Drosophila embryo is a highly elaborate process that is initiated by Founder Cells and Fusion-Competent Myoblasts (FCMs). It occurs through an asymmetric event in which actin foci assemble in the FCMs at points of cell-cell contact and direct the formation of membrane protrusions that drive fusion. Herein, we describe the approach that we have used to image in living embryos the highly dynamic actin foci and actin-rich projections that precede myoblast fusion. We discuss resources currently available for imaging actin and myogenesis, and our experience with these resources if available. This technical report is not intended to be comprehensive on providing instruction on standard microscopy practices or software utilization. However, we discuss microscope parameters that we have used in data collection, and our experience with image processing tools in data analysis.
Collapse
Affiliation(s)
- Shruti Haralalka
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO, 64110, USA
| | | |
Collapse
|
26
|
Kim JH, Ren Y, Ng WP, Li S, Son S, Kee YS, Zhang S, Zhang G, Fletcher DA, Robinson DN, Chen EH. Mechanical tension drives cell membrane fusion. Dev Cell 2015; 32:561-73. [PMID: 25684354 DOI: 10.1016/j.devcel.2015.01.005] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 11/14/2014] [Accepted: 01/10/2015] [Indexed: 01/05/2023]
Abstract
Membrane fusion is an energy-consuming process that requires tight juxtaposition of two lipid bilayers. Little is known about how cells overcome energy barriers to bring their membranes together for fusion. Previously, we have shown that cell-cell fusion is an asymmetric process in which an "attacking" cell drills finger-like protrusions into the "receiving" cell to promote cell fusion. Here, we show that the receiving cell mounts a Myosin II (MyoII)-mediated mechanosensory response to its invasive fusion partner. MyoII acts as a mechanosensor, which directs its force-induced recruitment to the fusion site, and the mechanosensory response of MyoII is amplified by chemical signaling initiated by cell adhesion molecules. The accumulated MyoII, in turn, increases cortical tension and promotes fusion pore formation. We propose that the protrusive and resisting forces from fusion partners put the fusogenic synapse under high mechanical tension, which helps to overcome energy barriers for membrane apposition and drives cell membrane fusion.
Collapse
Affiliation(s)
- Ji Hoon Kim
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yixin Ren
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Win Pin Ng
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Shuo Li
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sungmin Son
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yee-Seir Kee
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shiliang Zhang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Guofeng Zhang
- Laboratory of Bioengineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD 20892, USA
| | - Daniel A Fletcher
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Douglas N Robinson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elizabeth H Chen
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
27
|
Nakamura T, Takagi S, Matsumoto M, Tashiro F, Sakai T, Ichimura K. Expression of Nephrin Homologue in the Freshwater Planarian, Dugesia japonica. Acta Histochem Cytochem 2014; 47:303-10. [PMID: 25859064 PMCID: PMC4387267 DOI: 10.1267/ahc.14044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/04/2014] [Indexed: 12/20/2022] Open
Abstract
Excretory organs contain epithelial cells that form a filtration membrane specialized for ultrafiltration to produce primary urine. In vertebrates, the filtration membrane is made up of slit diaphragm (SD) formed by glomerular podocytes. Basal metazoans such as flatworms are also known have filtration epithelial cells, called flame cells, which exhibit SD-like structures. The molecular components of podocyte SD have been studied in detail, while those of the SD-like structures in basal metazoans including flatworms remain to be clarified. To determine whether the SD-like structures in flatworms have molecular components common to the SD in vertebrate podocytes, we examined the expression of gene homologue for mammalian nephrin, which encodes an essential transmembrane protein that participates in the formation of the SD, in a species of flatworms, planarian (Dugesia japonica). Flame cells were distributed throughout the entire body of the planarian, but the nephrin-expressing cells identified by in situ hybridization were mainly detected at body periphery excluding head region. The distribution pattern of nephrin-expressing cells was similar to that of proliferating cell nuclear antigen-expressing neoblasts, which are pluripotent stem cells characteristic to planarians. These findings indicated that the SD-like structures can be formed without the Nephrin protein in planarian flame cells.
Collapse
Affiliation(s)
- Tomomi Nakamura
- Department of Biological Science and Technology, Graduate School of Industrial Science and Technology, Tokyo University of Science
- Department of Anatomy and Life Structure, Juntendo University School of Medicine
| | - Sota Takagi
- Department of Biological Sciences and Informatics, Keio University
| | - Midori Matsumoto
- Department of Biological Sciences and Informatics, Keio University
| | - Fumio Tashiro
- Department of Biological Science and Technology, Graduate School of Industrial Science and Technology, Tokyo University of Science
| | - Tatsuo Sakai
- Department of Anatomy and Life Structure, Juntendo University School of Medicine
| | - Koichiro Ichimura
- Department of Anatomy and Life Structure, Juntendo University School of Medicine
| |
Collapse
|
28
|
Haralalka S, Shelton C, Cartwright HN, Guo F, Trimble R, Kumar RP, Abmayr SM. Live imaging provides new insights on dynamic F-actin filopodia and differential endocytosis during myoblast fusion in Drosophila. PLoS One 2014; 9:e114126. [PMID: 25474591 PMCID: PMC4256407 DOI: 10.1371/journal.pone.0114126] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 10/28/2014] [Indexed: 11/29/2022] Open
Abstract
The process of myogenesis includes the recognition, adhesion, and fusion of committed myoblasts into multinucleate syncytia. In the larval body wall muscles of Drosophila, this elaborate process is initiated by Founder Cells and Fusion-Competent Myoblasts (FCMs), and cell adhesion molecules Kin-of-IrreC (Kirre) and Sticks-and-stones (Sns) on their respective surfaces. The FCMs appear to provide the driving force for fusion, via the assembly of protrusions associated with branched F-actin and the WASp, SCAR and Arp2/3 pathways. In the present study, we utilize the dorsal pharyngeal musculature that forms in the Drosophila embryo as a model to explore myoblast fusion and visualize the fusion process in live embryos. These muscles rely on the same cell types and genes as the body wall muscles, but are amenable to live imaging since they do not undergo extensive morphogenetic movement during formation. Time-lapse imaging with F-actin and membrane markers revealed dynamic FCM-associated actin-enriched protrusions that rapidly extend and retract into the myotube from different sites within the actin focus. Ultrastructural analysis of this actin-enriched area showed that they have two morphologically distinct structures: wider invasions and/or narrow filopodia that contain long linear filaments. Consistent with this, formin Diaphanous (Dia) and branched actin nucleator, Arp3, are found decorating the filopodia or enriched at the actin focus, respectively, indicating that linear actin is present along with branched actin at sites of fusion in the FCM. Gain-of-function Dia and loss-of-function Arp3 both lead to fusion defects, a decrease of F-actin foci and prominent filopodia from the FCMs. We also observed differential endocytosis of cell surface components at sites of fusion, with actin reorganizing factors, WASp and SCAR, and Kirre remaining on the myotube surface and Sns preferentially taken up with other membrane proteins into early endosomes and lysosomes in the myotube.
Collapse
Affiliation(s)
- Shruti Haralalka
- Stowers Institute for Medical Research, Kansas City, Missouri, 64110, United States of America
| | - Claude Shelton
- Stowers Institute for Medical Research, Kansas City, Missouri, 64110, United States of America
| | - Heather N. Cartwright
- Stowers Institute for Medical Research, Kansas City, Missouri, 64110, United States of America
| | - Fengli Guo
- Stowers Institute for Medical Research, Kansas City, Missouri, 64110, United States of America
| | - Rhonda Trimble
- Stowers Institute for Medical Research, Kansas City, Missouri, 64110, United States of America
| | - Ram P. Kumar
- Stowers Institute for Medical Research, Kansas City, Missouri, 64110, United States of America
| | - Susan M. Abmayr
- Stowers Institute for Medical Research, Kansas City, Missouri, 64110, United States of America
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas, 66160, United States of America
- * E-mail:
| |
Collapse
|
29
|
Önel SF, Rust MB, Jacob R, Renkawitz-Pohl R. Tethering membrane fusion: common and different players in myoblasts and at the synapse. J Neurogenet 2014; 28:302-15. [PMID: 24957080 PMCID: PMC4245166 DOI: 10.3109/01677063.2014.936014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Drosophila Membrane fusion is essential for the communication of membrane-defined compartments, development of multicellular organisms and tissue homeostasis. Although membrane fusion has been studied extensively, still little is known about the molecular mechanisms. Especially the intercellular fusion of cells during development and tissue homeostasis is poorly understood. Somatic muscle formation in Drosophila depends on the intercellular fusion of myoblasts. In this process, myoblasts recognize each other and adhere, thereby triggering a protein machinery that leads to electron-dense plaques, vesicles and F-actin formation at apposing membranes. Two models of how local membrane stress is achieved to induce the merging of the myoblast membranes have been proposed: the electron-dense vesicles transport and release a fusogen and F-actin bends the plasma membrane. In this review, we highlight cell-adhesion molecules and intracellular proteins known to be involved in myoblast fusion. The cell-adhesion proteins also mediate the recognition and adhesion of other cell types, such as neurons that communicate with each other via special intercellular junctions, termed chemical synapses. At these synapses, neurotransmitters are released through the intracellular fusion of synaptic vesicles with the plasma membrane. As the targeting of electron-dense vesicles in myoblasts shares some similarities with the targeting of synaptic vesicle fusion, we compare molecules required for synaptic vesicle fusion to recently identified molecules involved in myoblast fusion.
Collapse
Affiliation(s)
- Susanne Filiz Önel
- Developmental Biology, Philipps University of Marburg , 35043 Marburg , Germany
| | | | | | | |
Collapse
|
30
|
Abstract
The description of the Rst protein by Karl-Friedrich Fischbach and colleagues was a milestone in the discovery of the irre cell recognition module (IRM). IRM proteins represent a family of immunoglobulin superfamily cell adhesion proteins that orchestrate intercellular adhesion and signaling events necessary for the development of various tissues. This review briefly summarizes the fundamental role of IRM proteins for neuronal wiring and filtration in organisms spanning the evolutionary distance from Drosophila (nephrocyte diaphragm) to humans (slit diaphragm).
Collapse
|
31
|
Costa MSA, Machado MCR, Vieceli FM, Amistá L, Baroneza JE, Yan CYI, Ramos RGP. The Rst-Neph family of cell adhesion molecules in Gallus gallus. J Neurogenet 2014; 28:270-81. [PMID: 24914768 DOI: 10.3109/01677063.2014.933220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The Rst-Neph family comprises an evolutionarily conserved group of single-pass transmembrane glycoproteins that belong to the immunoglobulin superfamily and participate in a wide range of cell adhesion and recognition events in both vertebrates and invertebrates. In mammals and fish, three Rst-Neph members, named Neph1-3, are present. Besides being widely expressed in the embryo, particularly in the developing nervous system, they also contribute to the formation and integrity of the urine filtration apparatus in the slit diaphragm of kidney glomerular podocytes, where they form homodimers, as well as heterodimers with Nephrin, another immunoglobulin-like cell adhesion molecule. In mice, absence of Neph1 causes severe proteinuria, podocyte effacement and perinatal death, while in humans, a mutated form of Nephrin leads to congenital nephrotic syndrome of the Finnish type. Intriguingly, neither Nephrin nor Neph3 are present in birds, which nevertheless have typical vertebrate kidneys with mammalian-like slit diaphragms. These characteristics make, in principle, avian systems very helpful for understanding the evolution and functional significance of the complex interactions displayed by Rst-Neph proteins. To this end we have started a systematic study of chicken Neph embryonic and post-embryonic expression, both at mRNA and protein level. RT-qPCR mRNA quantification of the two Neph paralogues in adult tissues showed that both are expressed in heart, brain, and retina. Neph1 is additionally present in kidney, liver, pancreas, lungs, and testicles, while Neph2 mRNA is barely detected in kidney, testicles, pancreas and absent in liver and lungs. In embryos, mRNA from both genes can already be detected at as early as stage HH14, and remain expressed until at least HH28. Finally, we used a specific antibody to examine the spatial dynamics and subcellular distribution of ggNeph2 between stages HH20-28, particularly in the mesonephros, dermomyotomes, developing heart, and retina.
Collapse
Affiliation(s)
- Mara Silvia A Costa
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo , Ribeirão Preto , Brazil
| | | | | | | | | | | | | |
Collapse
|
32
|
Özkan E, Chia PH, Wang RR, Goriatcheva N, Borek D, Otwinowski Z, Walz T, Shen K, Garcia KC. Extracellular architecture of the SYG-1/SYG-2 adhesion complex instructs synaptogenesis. Cell 2014; 156:482-94. [PMID: 24485456 PMCID: PMC3962013 DOI: 10.1016/j.cell.2014.01.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 09/04/2013] [Accepted: 01/06/2014] [Indexed: 01/29/2023]
Abstract
SYG-1 and SYG-2 are multipurpose cell adhesion molecules (CAMs) that have evolved across all major animal taxa to participate in diverse physiological functions, ranging from synapse formation to formation of the kidney filtration barrier. In the crystal structures of several SYG-1 and SYG-2 orthologs and their complexes, we find that SYG-1 orthologs homodimerize through a common, bispecific interface that similarly mediates an unusual orthogonal docking geometry in the heterophilic SYG-1/SYG-2 complex. C. elegans SYG-1's specification of proper synapse formation in vivo closely correlates with the heterophilic complex affinity, which appears to be tuned for optimal function. Furthermore, replacement of the interacting domains of SYG-1 and SYG-2 with those from CAM complexes that assume alternative docking geometries or the introduction of segmental flexibility compromised synaptic function. These results suggest that SYG extracellular complexes do not simply act as "molecular velcro" and that their distinct structural features are important in instructing synaptogenesis. PAPERFLICK:
Collapse
Affiliation(s)
- Engin Özkan
- Department of Molecular and Cellular Physiology and Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Poh Hui Chia
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Ruiqi Rachel Wang
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Natalia Goriatcheva
- Department of Molecular and Cellular Physiology and Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dominika Borek
- Departments of Biochemistry and Biophysics, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Zbyszek Otwinowski
- Departments of Biochemistry and Biophysics, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Thomas Walz
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Kang Shen
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology and Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
33
|
Functions of the podocyte proteins nephrin and Neph3 and the transcriptional regulation of their genes. Clin Sci (Lond) 2013; 126:315-28. [DOI: 10.1042/cs20130258] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nephrin and Neph-family proteins [Neph1–3 (nephrin-like 1–3)] belong to the immunoglobulin superfamily of cell-adhesion receptors and are expressed in the glomerular podocytes. Both nephrin and Neph-family members function in cell adhesion and signalling, and thus regulate the structure and function of podocytes and maintain normal glomerular ultrafiltration. The expression of nephrin and Neph3 is altered in human proteinuric diseases emphasizing the importance of studying the transcriptional regulation of the nephrin and Neph3 genes NPHS1 (nephrosis 1, congenital, Finnish type) and KIRREL2 (kin of IRRE-like 2) respectively. The nephrin and Neph3 genes form a bidirectional gene pair, and they share transcriptional regulatory mechanisms. In the present review, we summarize the current knowledge of the functions of nephrin and Neph-family proteins and transcription factors and agents that control nephrin and Neph3 gene expression.
Collapse
|
34
|
Shilagardi K, Li S, Luo F, Marikar F, Duan R, Jin P, Kim JH, Murnen K, Chen EH. Actin-propelled invasive membrane protrusions promote fusogenic protein engagement during cell-cell fusion. Science 2013; 340:359-63. [PMID: 23470732 DOI: 10.1126/science.1234781] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cell-cell fusion is critical for the conception, development, and physiology of multicellular organisms. Although cellular fusogenic proteins and the actin cytoskeleton are implicated in cell-cell fusion, it remains unclear whether and how they coordinate to promote plasma membrane fusion. We reconstituted a high-efficiency, inducible cell fusion culture system in the normally nonfusing Drosophila S2R+ cells. Both fusogenic proteins and actin cytoskeletal rearrangements were necessary for cell fusion, and in combination they were sufficient to impart fusion competence. Localized actin polymerization triggered by specific cell-cell or cell-matrix adhesion molecules propelled invasive cell membrane protrusions, which in turn promoted fusogenic protein engagement and plasma membrane fusion. This de novo cell fusion culture system reveals a general role for actin-propelled invasive membrane protrusions in driving fusogenic protein engagement during cell-cell fusion.
Collapse
Affiliation(s)
- Khurts Shilagardi
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Manning L, Heckscher ES, Purice MD, Roberts J, Bennett AL, Kroll JR, Pollard JL, Strader ME, Lupton JR, Dyukareva AV, Doan PN, Bauer DM, Wilbur AN, Tanner S, Kelly JJ, Lai SL, Tran KD, Kohwi M, Laverty TR, Pearson JC, Crews ST, Rubin GM, Doe CQ. A resource for manipulating gene expression and analyzing cis-regulatory modules in the Drosophila CNS. Cell Rep 2012; 2:1002-13. [PMID: 23063363 PMCID: PMC3523218 DOI: 10.1016/j.celrep.2012.09.009] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 09/11/2012] [Accepted: 09/17/2012] [Indexed: 01/03/2023] Open
Abstract
Here, we describe the embryonic central nervous system expression of 5,000 GAL4 lines made using molecularly defined cis-regulatory DNA inserted into a single attP genomic location. We document and annotate the patterns in early embryos when neurogenesis is at its peak, and in older embryos where there is maximal neuronal diversity and the first neural circuits are established. We note expression in other tissues, such as the lateral body wall (muscle, sensory neurons, and trachea) and viscera. Companion papers report on the adult brain and larval imaginal discs, and the integrated data sets are available online (http://www.janelia.org/gal4-gen1). This collection of embryonically expressed GAL4 lines will be valuable for determining neuronal morphology and function. The 1,862 lines expressed in small subsets of neurons (<20/segment) will be especially valuable for characterizing interneuronal diversity and function, because although interneurons comprise the majority of all central nervous system neurons, their gene expression profile and function remain virtually unexplored.
Collapse
Affiliation(s)
- Laurina Manning
- Institutes of Neuroscience and Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403
| | - Ellie S. Heckscher
- Institutes of Neuroscience and Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403
| | - Maria D. Purice
- Institutes of Neuroscience and Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403
| | - Jourdain Roberts
- Institutes of Neuroscience and Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403
| | - Alysha L. Bennett
- Institutes of Neuroscience and Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403
| | - Jason R. Kroll
- Institutes of Neuroscience and Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403
| | - Jill L. Pollard
- Institutes of Neuroscience and Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403
| | - Marie E. Strader
- Institutes of Neuroscience and Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403
| | - Josh R. Lupton
- Institutes of Neuroscience and Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403
| | - Anna V. Dyukareva
- Institutes of Neuroscience and Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403
| | - Phuong Nam Doan
- Institutes of Neuroscience and Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403
| | - David M. Bauer
- Institutes of Neuroscience and Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403
| | - Allison N. Wilbur
- Institutes of Neuroscience and Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403
| | - Stephanie Tanner
- Institutes of Neuroscience and Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403
| | - Jimmy J. Kelly
- Institutes of Neuroscience and Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403
| | - Sen-Lin Lai
- Institutes of Neuroscience and Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403
| | - Khoa D. Tran
- Institutes of Neuroscience and Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403
| | - Minoree Kohwi
- Institutes of Neuroscience and Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403
| | - Todd R. Laverty
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn VA 20147
| | - Joseph C. Pearson
- Program in Molecular Biology and Biophysics, Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Stephen T. Crews
- Program in Molecular Biology and Biophysics, Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Gerald M. Rubin
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn VA 20147
| | - Chris Q. Doe
- Institutes of Neuroscience and Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403
| |
Collapse
|
36
|
Singh J, Mlodzik M. Hibris, a Drosophila nephrin homolog, is required for presenilin-mediated Notch and APP-like cleavages. Dev Cell 2012; 23:82-96. [PMID: 22814602 DOI: 10.1016/j.devcel.2012.04.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 03/13/2012] [Accepted: 04/30/2012] [Indexed: 01/12/2023]
Abstract
Drosophila Hibris (Hbs), a member of the Nephrin Immunoglobulin Super Family, has been implicated in myogenesis and eye patterning. Here, we uncover a role of Hbs in Notch (N) signaling and γ-secretase processing. Loss of hbs results in classical N-signaling-associated phenotypes in Drosophila, including eye patterning, wing margin, and sensory organ specification defects. In particular, hbs mutant larvae display altered γ-secretase-dependent Notch proteolytic processing. Hbs also interacts molecularly and genetically with Presenilin (Psn) and other components of the γ-secretase complex. This Hbs function appears conserved, as mammalian Nephrin also promotes N signaling in mammalian cells. Our data suggest that Hbs is required for Psn maturation. Consistent with its role in Psn processing, Hbs genetically interacts with the Drosophila β-amyloid protein precursor-like (Appl) protein, the homolog of mammalian APP, the cleavage of which is associated with Alzheimer's disease. Thus, Hbs/Nephrin appear to share a general requirement in Psn/γ-secretase regulation and associated processes.
Collapse
Affiliation(s)
- Jaskirat Singh
- Department of Developmental & Regenerative Biology, Mount Sinai School of Medicine and Graduate School of Biological Sciences, One Gustave L. Levy Place, New York, NY 10029, USA
| | | |
Collapse
|
37
|
Duan R, Jin P, Luo F, Zhang G, Anderson N, Chen EH. Group I PAKs function downstream of Rac to promote podosome invasion during myoblast fusion in vivo. ACTA ACUST UNITED AC 2012; 199:169-85. [PMID: 23007650 PMCID: PMC3461515 DOI: 10.1083/jcb.201204065] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Group I p21-activated kinases organize actin filaments in myoblasts into dense foci, which promote podosome invasion and subsequent myoblast fusion. The p21-activated kinases (PAKs) play essential roles in diverse cellular processes and are required for cell proliferation, apoptosis, polarity establishment, migration, and cell shape changes. Here, we have identified a novel function for the group I PAKs in cell–cell fusion. We show that the two Drosophila group I PAKs, DPak3 and DPak1, have partially redundant functions in myoblast fusion in vivo, with DPak3 playing a major role. DPak3 is enriched at the site of fusion colocalizing with the F-actin focus within a podosome-like structure (PLS), and promotes actin filament assembly during PLS invasion. Although the small GTPase Rac is involved in DPak3 activation and recruitment to the PLS, the kinase activity of DPak3 is required for effective PLS invasion. We propose a model whereby group I PAKs act downstream of Rac to organize the actin filaments within the PLS into a dense focus, which in turn promotes PLS invasion and fusion pore initiation during myoblast fusion.
Collapse
Affiliation(s)
- Rui Duan
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
38
|
Kaipa BR, Shao H, Schäfer G, Trinkewitz T, Groth V, Liu J, Beck L, Bogdan S, Abmayr SM, Önel SF. Dock mediates Scar- and WASp-dependent actin polymerization through interaction with cell adhesion molecules in founder cells and fusion-competent myoblasts. J Cell Sci 2012; 126:360-72. [PMID: 22992459 DOI: 10.1242/jcs.113860] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The formation of the larval body wall musculature of Drosophila depends on the asymmetric fusion of two myoblast types, founder cells (FCs) and fusion-competent myoblasts (FCMs). Recent studies have established an essential function of Arp2/3-based actin polymerization during myoblast fusion, formation of a dense actin focus at the site of fusion in FCMs, and a thin sheath of actin in FCs and/or growing muscles. The formation of these actin structures depends on recognition and adhesion of myoblasts that is mediated by cell surface receptors of the immunoglobulin superfamily. However, the connection of the cell surface receptors with Arp2/3-based actin polymerization is poorly understood. To date only the SH2-SH3 adaptor protein Crk has been suggested to link cell adhesion with Arp2/3-based actin polymerization in FCMs. Here, we propose that the SH2-SH3 adaptor protein Dock, like Crk, links cell adhesion with actin polymerization. We show that Dock is expressed in FCs and FCMs and colocalizes with the cell adhesion proteins Sns and Duf at cell-cell contact points. Biochemical data in this study indicate that different domains of Dock are involved in binding the cell adhesion molecules Duf, Rst, Sns and Hbs. We emphasize the importance of these interactions by quantifying the enhanced myoblast fusion defects in duf dock, sns dock and hbs dock double mutants. Additionally, we show that Dock interacts biochemically and genetically with Drosophila Scar, Vrp1 and WASp. Based on these data, we propose that Dock links cell adhesion in FCs and FCMs with either Scar- or Vrp1-WASp-dependent Arp2/3 activation.
Collapse
Affiliation(s)
- Balasankara Reddy Kaipa
- Fachbereich Biologie, Entwicklungsbiologie, Philipps-Universität Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
The Arf-GEF Schizo/Loner regulates N-cadherin to induce fusion competence of Drosophila myoblasts. Dev Biol 2012; 368:18-27. [DOI: 10.1016/j.ydbio.2012.04.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 03/30/2012] [Accepted: 04/27/2012] [Indexed: 01/19/2023]
|
40
|
Functional study of mammalian Neph proteins in Drosophila melanogaster. PLoS One 2012; 7:e40300. [PMID: 22792268 PMCID: PMC3391254 DOI: 10.1371/journal.pone.0040300] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 06/07/2012] [Indexed: 02/04/2023] Open
Abstract
Neph molecules are highly conserved immunoglobulin superfamily proteins (IgSF) which are essential for multiple morphogenetic processes, including glomerular development in mammals and neuronal as well as nephrocyte development in D. melanogaster. While D. melanogaster expresses two Neph-like proteins (Kirre and IrreC/Rst), three Neph proteins (Neph1–3) are expressed in the mammalian system. However, although these molecules are highly abundant, their molecular functions are still poorly understood. Here we report on a fly system in which we overexpress and replace endogenous Neph homologs with mammalian Neph1–3 proteins to identify functional Neph protein networks required for neuronal and nephrocyte development. Misexpression of Neph1, but neither Neph2 nor Neph3, phenocopies the overexpression of endogenous Neph molecules suggesting a functional diversity of mammalian Neph family proteins. Moreover, structure-function analysis identified a conserved and specific Neph1 protein motif that appears to be required for the functional replacement of Kirre. Hereby, we establish D. melanogaster as a genetic system to specifically model molecular Neph1 functions in vivo and identify a conserved amino acid motif linking Neph1 to Drosophila Kirre function.
Collapse
|
41
|
Do muscle founder cells exist in vertebrates? Trends Cell Biol 2012; 22:391-6. [PMID: 22710008 DOI: 10.1016/j.tcb.2012.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 05/17/2012] [Accepted: 05/21/2012] [Indexed: 11/21/2022]
Abstract
Skeletal muscle is formed by the iterative fusion of precursor cells (myocytes) into long multinuclear fibres. Extensive studies of fusion in Drosophila embryos have lead to a paradigm in which myoblasts are divided into two distinct subtypes - founder and fusion-competent myoblasts (FCMs) - that can fuse to each other, but not among themselves. Only founder cells can direct the formation of muscle fibres, while FCMs act as a cellular substrate. Recent studies in zebrafish and mice have demonstrated conservation of the molecules originally identified in Drosophila, but an important question remains: is vertebrate fusion regulated by specifying myocyte subtypes? Stated simply: do vertebrate founder cells exist? In light of recent findings, we argue that a different regulatory mechanism has evolved in vertebrates.
Collapse
|
42
|
Abstract
The fusion of myoblasts into multinucleate syncytia plays a fundamental role in muscle function, as it supports the formation of extended sarcomeric arrays, or myofibrils, within a large volume of cytoplasm. Principles learned from the study of myoblast fusion not only enhance our understanding of myogenesis, but also contribute to our perspectives on membrane fusion and cell-cell fusion in a wide array of model organisms and experimental systems. Recent studies have advanced our views of the cell biological processes and crucial proteins that drive myoblast fusion. Here, we provide an overview of myoblast fusion in three model systems that have contributed much to our understanding of these events: the Drosophila embryo; developing and regenerating mouse muscle; and cultured rodent muscle cells.
Collapse
Affiliation(s)
- Susan M Abmayr
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.
| | | |
Collapse
|
43
|
Garg P, Holzman LB. Podocytes: gaining a foothold. Exp Cell Res 2012; 318:955-63. [PMID: 22421512 DOI: 10.1016/j.yexcr.2012.02.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 02/24/2012] [Indexed: 01/29/2023]
Abstract
In an attempt to understand the basis of glomerular disease, significant progress has been made in understanding the mechanisms that determine podocyte development and the maintenance of podocyte health. This review examines recent advances in this area focusing on the podocyte intercellular junction, actin cytoskeletal dynamics, and determinants of podocyte cell polarity, autophagy and mTOR biology.
Collapse
Affiliation(s)
- Puneet Garg
- Division of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
44
|
Shimono Y, Rikitake Y, Mandai K, Mori M, Takai Y. Immunoglobulin superfamily receptors and adherens junctions. Subcell Biochem 2012; 60:137-170. [PMID: 22674071 DOI: 10.1007/978-94-007-4186-7_7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The immunogroblin (Ig) superfamily proteins characterized by the presence of Ig-like domains are involved in various cellular functions. The properties of the Ig-like domains to form rod-like structures and to bind specifically to other proteins make them ideal for cell surface receptors and cell adhesion molecules (CAMs). Ig-CAMs, nectins in mammals and Echinoid in Drosophila, are crucial components of cadherin-based adherens junctions in the epithelium. Nectins form cell-cell adhesion by their trans-interactions and recruit cadherins to the nectin-initiated cell-cell adhesion site to establish adherens junctions. Thereafter junction adhesion molecules, occludin, and claudins, are recruited to the apical side of adherens junctions to establish tight junctions. The recruitment of these molecules by nectins is mediated both by the direct and indirect interactions of afadin with many proteins, such as catenins, and zonula occludens proteins, and by the nectin-induced reorganization of the actin cytoskeleton. Nectins contribute to the formation of both homotypic and heterotypic types of cell-cell junctions, such as synapses in the brain, contacts between pigment and non-pigment cell layers of the ciliary epithelium in the eye, Sertoli cell-spermatid junctions in the testis, and sensory cells and supporting cells in the sensory organs. In addition, cis- and trans-interactions of nectins with various cell surface proteins, such as integrins, growth factor receptors, and nectin-like molecules (Necls) play important roles in the regulation of many cellular functions, such as cell polarization, movement, proliferation, differentiation, survival, and cell sorting. Furthermore, the Ig-CAMs are implicated in many human diseases including viral infections, ectodermal dysplasia, cancers, and Alzheimer's disease.
Collapse
Affiliation(s)
- Yohei Shimono
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 650-0017, Kobe, Japan
| | | | | | | | | |
Collapse
|
45
|
Functional and spatial analysis of C. elegans SYG-1 and SYG-2, orthologs of the Neph/nephrin cell adhesion module directing selective synaptogenesis. PLoS One 2011; 6:e23598. [PMID: 21858180 PMCID: PMC3156230 DOI: 10.1371/journal.pone.0023598] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 07/20/2011] [Indexed: 01/25/2023] Open
Abstract
The assembly of specific synaptic connections represents a prime example of cellular recognition. Members of the Ig superfamily are among the most ancient proteins represented in the genomes of both mammalian and invertebrate organisms, where they constitute a trans-synaptic adhesion system. The correct connectivity patterns of the highly conserved immunoglobulin superfamily proteins nephrin and Neph1 are crucial for the assembly of functional neuronal circuits and the formation of the kidney slit diaphragm, a synapse-like structure forming the filtration barrier. Here, we utilize the nematode C. elegans model for studying the requirements of synaptic specificity mediated by nephrin-Neph proteins. In C. elegans, the nephrin/Neph1 orthologs SYG-2 and SYG-1 form intercellular contacts strictly in trans between epithelial guidepost cells and neurons specifying the localization of synapses. We demonstrate a functional conservation between mammalian nephrin and SYG-2. Expression of nephrin effectively compensated loss of syg-2 function in C. elegans and restored defective synaptic connectivity further establishing the C. elegans system as a valuable model for slit diaphragm proteins. Next, we investigated the effect of SYG-1 and SYG-2 trans homodimerization respectively. Strikingly, synapse assembly could be induced by homophilic SYG-1 but not SYG-2 binding indicating a critical role of SYG-1 intracellular signalling for morphogenetic events and pointing toward the dynamic and stochastic nature of extra- and intracellular nephrin-Neph interactions to generate reproducible patterns of synaptic connectivity.
Collapse
|
46
|
Machado MCR, Octacilio-Silva S, Costa MSA, Ramos RGP. rst transcriptional activity influences kirre mRNA concentration in the Drosophila pupal retina during the final steps of ommatidial patterning. PLoS One 2011; 6:e22536. [PMID: 21857931 PMCID: PMC3152562 DOI: 10.1371/journal.pone.0022536] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Accepted: 06/23/2011] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Drosophila retinal architecture is laid down between 24-48 hours after puparium formation, when some of the still uncommitted interommatidial cells (IOCs) are recruited to become secondary and tertiary pigment cells while the remaining ones undergo apoptosis. This choice between survival and death requires the product of the roughest (rst) gene, an immunoglobulin superfamily transmembrane glycoprotein involved in a wide range of developmental processes. Both temporal misexpression of Rst and truncation of the protein intracytoplasmic domain, lead to severe defects in which IOCs either remain mostly undifferentiated and die late and erratically or, instead, differentiate into extra pigment cells. Intriguingly, mutants not expressing wild type protein often have normal or very mild rough eyes. METHODOLOGY/PRINCIPAL FINDINGS By using quantitative real time PCR to examine rst transcriptional dynamics in the pupal retina, both in wild type and mutant alleles we showed that tightly regulated temporal changes in rst transcriptional rate underlie its proper function during the final steps of eye patterning. Furthermore we demonstrated that the unexpected wild type eye phenotype of mutants with low or no rst expression correlates with an upregulation in the mRNA levels of the rst paralogue kin-of-irre (kirre), which seems able to substitute for rst function in this process, similarly to their role in myoblast fusion. This compensatory upregulation of kirre mRNA levels could be directly induced in wild type pupa upon RNAi-mediated silencing of rst, indicating that expression of both genes is also coordinately regulated in physiological conditions. CONCLUSIONS/SIGNIFICANCE These findings suggest a general mechanism by which rst and kirre expression could be fine tuned to optimize their redundant roles during development and provide a clearer picture of how the specification of survival and apoptotic fates by differential cell adhesion during the final steps of retinal morphogenesis in insects are controlled at the transcriptional level.
Collapse
Affiliation(s)
- Maiaro Cabral Rosa Machado
- Departmento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Shirlei Octacilio-Silva
- Departmento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Mara Silvia A. Costa
- Departmento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ricardo Guelerman P. Ramos
- Departmento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
47
|
Competition between Blown fuse and WASP for WIP binding regulates the dynamics of WASP-dependent actin polymerization in vivo. Dev Cell 2011; 20:623-38. [PMID: 21571220 DOI: 10.1016/j.devcel.2011.04.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 03/11/2011] [Accepted: 04/19/2011] [Indexed: 11/20/2022]
Abstract
Dynamic rearrangements of the actin cytoskeleton play a key role in numerous cellular processes. In Drosophila, fusion between a muscle founder cell and a fusion competent myoblast (FCM) is mediated by an invasive, F-actin-enriched podosome-like structure (PLS). Here, we show that the dynamics of the PLS is controlled by Blown fuse (Blow), a cytoplasmic protein required for myoblast fusion but whose molecular function has been elusive. We demonstrate that Blow is an FCM-specific protein that colocalizes with WASP, WIP/Solitary, and the actin focus within the PLS. Biochemically, Blow modulates the stability of the WASP-WIP complex by competing with WASP for WIP binding, leading to a rapid exchange of WASP, WIP and G-actin within the PLS, which, in turn, actively invades the adjacent founder cell to promote fusion pore formation. These studies identify a regulatory protein that modulates the actin cytoskeletal dynamics by controlling the stability of the WASP-WIP complex.
Collapse
|
48
|
Takemura M, Adachi-Yamada T. Cell death and selective adhesion reorganize the dorsoventral boundary for zigzag patterning of Drosophila wing margin hairs. Dev Biol 2011; 357:336-46. [PMID: 21781959 DOI: 10.1016/j.ydbio.2011.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Revised: 06/30/2011] [Accepted: 07/05/2011] [Indexed: 11/17/2022]
Abstract
Animal tissues and organs are comprised of several types of cells, which are often arranged in a well-ordered pattern. The posterior part of the Drosophila wing margin is covered with a double row of long hairs, which are equally and alternately derived from the dorsal and ventral sides of the wing, exhibiting a zigzag pattern in the lateral view. How this geometrically regular pattern is formed has not been fully understood. In this study, we show that this zigzag pattern is created by rearrangement of wing margin cells along the dorsoventral boundary flanked by the double row of hair cells during metamorphosis. This cell rearrangement is induced by selective apoptosis of wing margin cells that are spatially separated from hair cells. As a result of apoptosis, the remaining wing margin cells are rearranged in a well-ordered manner, which shapes corrugated lateral sides of both dorsal and ventral edges to interlock them for zigzag patterning. We further show that the corrugated topology of the wing edges is achieved by cell-type specific expression and localization of four kinds of NEPH1/nephrin family proteins through heterophilic adhesion between wing margin cells and hair cells. Homophilic E-cadherin adhesion is also required for attachment of the corrugated dorsoventral edges. Taken together, our results demonstrate that sequential coordination of apoptosis and epithelial architecture with selective adhesion creates the zigzag hair alignment. This may be a common mechanism for geometrically ordered repetitive packing of several types of cells in similarly patterned developmental fields such as the mammalian organ of Corti.
Collapse
Affiliation(s)
- Masahiko Takemura
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | | |
Collapse
|
49
|
Trans-interaction of nephrin and Neph1/Neph3 induces cell adhesion that associates with decreased tyrosine phosphorylation of nephrin. Biochem J 2011; 435:619-28. [PMID: 21306299 DOI: 10.1042/bj20101599] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Slit diaphragms are specialized junctions between glomerular epithelial cells (podocytes) that are crucial for glomerular ultrafiltration. The Ig superfamily members nephrin and Neph1 are essential components of the slit diaphragm, whereas the role of Neph1 homologue Neph3 in the slit diaphragm is unknown. In the present paper we show that Neph3 homodimerizes and heterodimerizes with nephrin and Neph1. We further investigated whether these interactions play a role in cell adhesion by using mouse L fibroblasts that lack endogenous cell-adhesion activity and found that Neph1 and Neph3 are able to induce cell adhesion alone, whereas nephrin needs to trans-interact with Neph1 or Neph3 in order to promote formation of cell-cell contacts. Tyrosine phosphorylation of nephrin was down-regulated after nephrin trans-interacted with either Neph1 or Neph3 leading to formation of cell-cell contacts. We further found that the expression of Neph3 was increased in nephrin-deficient mouse podocytes. The findings of the present paper show that nephrin and Neph1 or Neph3 trans-interactions promote cell-contact formation, suggesting that they may also function together in slit diaphragm assembly.
Collapse
|
50
|
Haralalka S, Shelton C, Cartwright HN, Katzfey E, Janzen E, Abmayr SM. Asymmetric Mbc, active Rac1 and F-actin foci in the fusion-competent myoblasts during myoblast fusion in Drosophila. Development 2011; 138:1551-62. [PMID: 21389053 DOI: 10.1242/dev.057653] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Myoblast fusion is an intricate process that is initiated by cell recognition and adhesion, and culminates in cell membrane breakdown and formation of multinucleate syncytia. In the Drosophila embryo, this process occurs asymmetrically between founder cells that pattern the musculature and fusion-competent myoblasts (FCMs) that account for the bulk of the myoblasts. The present studies clarify and amplify current models of myoblast fusion in several important ways. We demonstrate that the non-conventional guanine nucleotide exchange factor (GEF) Mbc plays a fundamental role in the FCMs, where it functions to activate Rac1, but is not required in the founder cells for fusion. Mbc, active Rac1 and F-actin foci are highly enriched in the FCMs, where they localize to the Sns:Kirre junction. Furthermore, Mbc is crucial for the integrity of the F-actin foci and the FCM cytoskeleton, presumably via its activation of Rac1 in these cells. Finally, the local asymmetric distribution of these proteins at adhesion sites is reminiscent of invasive podosomes and, consistent with this model, they are enriched at sites of membrane deformation, where the FCM protrudes into the founder cell/myotube. These data are consistent with models promoting actin polymerization as the driving force for myoblast fusion.
Collapse
Affiliation(s)
- Shruti Haralalka
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | | | | | | | | |
Collapse
|