1
|
Nunes MDS, McGregor AP. Developmental evolution in fast-forward: insect male genital diversification. Trends Genet 2025; 41:345-356. [PMID: 39578177 DOI: 10.1016/j.tig.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/24/2024]
Abstract
Insect male genitalia are among the fastest evolving structures of animals. Studying these changes among closely related species represents a powerful approach to dissect developmental processes and genetic mechanisms underlying phenotypic diversification and the underlying evolutionary drivers. Here, we review recent breakthroughs in understanding the developmental and genetic bases of the evolution of genital organs among Drosophila species and other insects. This work has helped reveal how tissue and organ size evolve and understand the appearance of morphological novelties, and how these phenotypic changes are generated through altering gene expression and redeployment of gene regulatory networks. Future studies of genital evolution in Drosophila and a wider range of insects hold great promise to help understand the specification, differentiation, and diversification of organs more generally.
Collapse
Affiliation(s)
- Maria D S Nunes
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK.
| | - Alistair P McGregor
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
2
|
Lu HN, Zhang P, Wang Y, Luo K, Yan Z, Zeng M, Lv YN, Bai S, Zeng J, Li S, Bai Y, Luan YX. The role of Hox genes in shaping embryonic external morphology of the primitive insect Thermobia domestica (Zygentoma). INSECT SCIENCE 2025. [PMID: 39973048 DOI: 10.1111/1744-7917.13504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 02/21/2025]
Abstract
Insects represent one of the most evolutionarily successful groups, with their diversity hypothesized to be related to the regulatory roles of Hox genes, a set of related genes encoding homeodomain transcription factors determining the identity of segments along the anterior-posterior axis of the embryo. However, functional insights into the roles of Hox genes in primitive ametabolous insects, which represent the critical transition from aquatic crustaceans to winged insects, have been limited. In this study, we identified complete protein-coding sequences of 10 Hox genes in the Zygentoma Thermobia domestica, and applied clustered regularly interspaced short palindromic repeats (CRISPR) / CRISPR-associated nuclease 9 (Cas 9) mediated gene knockout (KO) to decipher their functions. We found that the roles of pb, Dfd, and Scr are vital in specifying the appendages of the head in T. domestica, and these roles are relatively conserved in crustaceans and winged insects. Antp is essential for the development of the prothorax segment and the first pair of legs in T. domestica. Ubx and abd-A fully repress appendage development in the abdomen of T. domestica, which implies a functional switch from crustaceans to insects. Additionally, the role of ftz in segmenting the abdomen of T. domestica suggests it has acquired new functions in primitive insects, beyond its traditional Hox-like roles. Although KOs of lab, Hox3, and Abd-B did not result in obvious external phenotypic changes, they led to a significant decrease in hatching rates and substantial deviations in daily survival numbers compared to the negative control. These findings underscore the indispensable roles of all Hox genes during the embryonic development of T. domestica. Our study sheds new light on the functional evolution of Hox genes in ametabolous insects and enhances our understanding of the genetic underpinnings of insect development and diversification.
Collapse
Affiliation(s)
- Hu-Na Lu
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Peiyan Zhang
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yifan Wang
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Kai Luo
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ziyu Yan
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Mei Zeng
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ya-Nan Lv
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Shali Bai
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jiaming Zeng
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yu Bai
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yun-Xia Luan
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
3
|
Curt JR, Martín P, Foronda D, Hudry B, Kannan R, Shetty S, Merabet S, Saurin AJ, Graba Y, Sánchez- Herrero E. Ambivalent partnership of the Drosophila posterior class Hox protein Abdominal-B with Extradenticle and Homothorax. PLoS Genet 2025; 21:e1011355. [PMID: 39804927 PMCID: PMC11759358 DOI: 10.1371/journal.pgen.1011355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 01/24/2025] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Hox proteins, a sub-group of the homeodomain (HD) transcription factor family, provide positional information for axial patterning in development and evolution. Hox protein functional specificity is reached, at least in part, through interactions with Pbc (Extradenticle (Exd) in Drosophila) and Meis/Prep (Homothorax (Hth) in Drosophila) proteins. Most of our current knowledge of Hox protein specificity stems from the study of anterior and central Hox proteins, identifying the molecular and structural bases for Hox/Pbc/Meis-Prep cooperative action. Posterior Hox class proteins, Abdominal-B (Abd-B) in Drosophila and Hox9-13 in vertebrates, have been comparatively less studied. They strongly diverge from anterior and central class Hox proteins, with a low degree of HD sequence conservation and the absence of a core canonical Pbc interaction motif. Here we explore how Abd-B function interface with that of Exd/Hth using several developmental contexts, studying mutual expression control, functional dependency and intrinsic protein requirements. Results identify cross-regulatory interactions setting relative expression and activity levels required for proper development. They also reveal organ-specific requirement and a binary functional interplay with Exd and Hth, either antagonistic, as previously reported, or synergistic. This highlights context specific use of Exd/Hth, and a similar context specific use of Abd-B intrinsic protein requirements.
Collapse
Affiliation(s)
- Jesús R. Curt
- Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Paloma Martín
- Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - David Foronda
- Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
- Departamento de Medicina, Facultad de Ciencias Biomédicas y de la Salud, Universidad Europea de Madrid, Madrid, Spain
| | - Bruno Hudry
- Aix-Marseille Univ., CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Parc Scientifique de Luminy, Marseille, France
- Institut de Biologie Valrose, Université Nice Sophia Antipolis, Faculté des Sciences Parc Valrose, Nice, France
| | - Ramakrishnan Kannan
- Molecular Genetics lab, Neurobiology Research Center (NRC), National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Srividya Shetty
- Molecular Genetics lab, Neurobiology Research Center (NRC), National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Samir Merabet
- Aix-Marseille Univ., CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Parc Scientifique de Luminy, Marseille, France
- Institut de Génétique Fonctionnelle, UMR 5242 CNRS/ENS Lyon, Lyon, France
| | - Andrew J. Saurin
- Aix-Marseille Univ., CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Parc Scientifique de Luminy, Marseille, France
| | - Yacine Graba
- Aix-Marseille Univ., CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Parc Scientifique de Luminy, Marseille, France
| | - Ernesto Sánchez- Herrero
- Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| |
Collapse
|
4
|
Terada K, Furumoto C, Nishimura T, Hirayama A, Takami Y. The development of extremely large male genitalia under spatial limitation. Evol Dev 2024; 26:e12488. [PMID: 38927009 DOI: 10.1111/ede.12488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Extensive research in evolutionary biology has focused on the exaggeration of sexual traits; however, the developmental basis of exaggerated sexual traits has only been determined in a few cases. The evolution of exaggerated sexual traits may involve the relaxation of constraints or developmental processes mitigating constraints. Ground beetles in the subgenus Ohomopterus (genus Carabus) have species-specific genitalia that show coevolutionary divergence between the sexes. Here, we examined the morphogenesis of the remarkably enlarged male and female genitalia of Carabus uenoi by X-ray microcomputed tomography. The morphogenetic processes generating the male and female genitalia at the pupal stage were qualitatively similar to those in closely related species with standard genital sizes. Higher growth rates contributed to the exaggeration of both the male and female genital parts of C. uenoi, possibly related to a gene network commonly upregulated in both sexes. Additionally, the length of the copulatory piece (CP), the enlarged male genital part stored in the aedeagus (AD), reached close to that of the AD at the later developmental stages and thereafter decelerated to grow in parallel with the AD, suggesting a structural constraint on the CP by the outer AD. Then, unlike related species, the lengths of the CP and AD increased at eclosion, suggesting a mechanism leading to further elongation of the male genitalia. These observations suggest that a developmental process allows continuous growth of the male genitalia even under the spatial limitation. These results revealed the spatio-temporal dynamics of the development of exaggerated genital structures under structural constraints.
Collapse
Affiliation(s)
- Karen Terada
- Graduate School of Human Development and Environment, Kobe University, Nada, Kobe, Japan
| | - Chinami Furumoto
- Graduate School of Human Development and Environment, Kobe University, Nada, Kobe, Japan
| | - Taira Nishimura
- Graduate School of Human Development and Environment, Kobe University, Nada, Kobe, Japan
| | | | - Yasuoki Takami
- Graduate School of Human Development and Environment, Kobe University, Nada, Kobe, Japan
| |
Collapse
|
5
|
Hérault C, Pihl T, Hudry B. Cellular sex throughout the organism underlies somatic sexual differentiation. Nat Commun 2024; 15:6925. [PMID: 39138201 PMCID: PMC11322332 DOI: 10.1038/s41467-024-51228-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 08/01/2024] [Indexed: 08/15/2024] Open
Abstract
Sex chromosomes underlie the development of male or female sex organs across species. While systemic signals derived from sex organs prominently contribute to sex-linked differences, it is unclear whether the intrinsic presence of sex chromosomes in somatic tissues has a specific function. Here, we use genetic tools to show that cellular sex is crucial for sexual differentiation throughout the body in Drosophila melanogaster. We reveal that every somatic cell converts the intrinsic presence of sex chromosomes into the active production of a sex determinant, a female specific serine- and arginine-rich (SR) splicing factor. This discovery dismisses the mosaic model which posits that only a subset of cells has the potential to sexually differentiate. Using cell-specific sex reversals, we show that this prevalence of cellular sex drives sex differences in organ size and body weight and is essential for fecundity. These findings demonstrate that cellular sex drives differentiation programs at an organismal scale and highlight the importance of cellular sex pathways in sex trait evolution.
Collapse
Affiliation(s)
- Chloé Hérault
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Thomas Pihl
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Bruno Hudry
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France.
| |
Collapse
|
6
|
Guo H, Liu XZ, Long GJ, Gong LL, Zhang MQ, Ma YF, Hull JJ, Dewer Y, He M, He P. Functional characterization of developmentally critical genes in the white-backed planthopper: Efficacy of nanoparticle-based dsRNA sprays for pest control. PEST MANAGEMENT SCIENCE 2023; 79:1048-1061. [PMID: 36325939 DOI: 10.1002/ps.7271] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/30/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR), zinc finger homeodomain-2 (zfh-2), Abdominal-A (Abd-A), and Abdominal-B (Abd-B) regulate the growth and development of the insect abdomen. However, their potential roles in pest control have not been fully assessed. The development of insecticide resistance to multiple chemistries in the white-backed planthopper (WBPH), a major pest of rice, has prompted interest in novel pest control approaches that are ecologically friendly. Although pest management approaches based on double-stranded RNA (dsRNA)-mediated RNA interference (RNAi) have potential, their susceptibility to degradation limits large-scale field applications. These limitations, however, can be overcome with nanoparticle-dsRNA complexes that have greater environmental stability and improved cellular uptake. RESULTS In this study, at 5 days post-injection, transcripts for the four gene targets were reduced relative to controls and all of the experimental groups exhibited significant phenotypic defects and increased mortality. To evaluate the potential of these gene targets for field applications, a nanocarrier-dsRNA spray delivery system was assessed for RNAi efficacy. At 11 days post-spray, significant phenotypic defects and increased mortality were observed in all experimental groups. CONCLUSION Taken together, the results confirm the suitability of the target genes (SfEGFR, Sfzfh-2, SfAbd-A, and SfAbd-B) for pest management and demonstrate the efficacy of the nanocarrier spray system for inducing RNAi-mediated knockdown. As such, the study lays the foundation for the further development and optimization of this technology for large-scale field applications. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huan Guo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| | - Xuan-Zheng Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| | - Gui-Jun Long
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| | - Lang-Lang Gong
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| | - Meng-Qi Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| | - Yun-Feng Ma
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| | - J Joe Hull
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ, USA
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Giza, Egypt
| | - Ming He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| | - Peng He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| |
Collapse
|
7
|
Genevcius BC, Calandriello DC, Torres TT. Molecular and Developmental Signatures of Genital Size Macro-Evolution in Bugs. Mol Biol Evol 2022; 39:6742344. [PMID: 36181434 PMCID: PMC9585474 DOI: 10.1093/molbev/msac211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Our understanding of the genetic architecture of phenotypic traits has experienced drastic growth over the last years. Nevertheless, the majority of studies associating genotypes and phenotypes have been conducted at the ontogenetic level. Thus, we still have an elusive knowledge of how these genetic-developmental architectures evolve themselves and how their evolution is mirrored in the phenotypic change across evolutionary time. We tackle this gap by reconstructing the evolution of male genital size, one of the most complex traits in insects, together with its underlying genetic architecture. Using the order Hemiptera as a model, spanning over 350 million years of evolution, we estimate the correlation between genitalia and three features: development rate, body size, and rates of DNA substitution in 68 genes associated with genital development. We demonstrate that genital size macro-evolution has been largely dependent on body size and weakly influenced by development rate and phylogenetic history. We further revealed significant correlations between mutation rates and genital size for 19 genes. Interestingly, these genes have diverse functions and participate in distinct signaling pathways, suggesting that genital size is a complex trait whose fast evolution has been enabled by molecular changes associated with diverse morphogenetic processes. Our data further demonstrate that the majority of DNA evolution correlated with the genitalia has been shaped by negative selection or neutral evolution. Thus, in terms of sequence evolution, changes in genital size are predominantly facilitated by relaxation of constraints rather than positive selection, possibly due to the high pleiotropic nature of the morphogenetic genes.
Collapse
Affiliation(s)
| | - Denis C Calandriello
- Department of Genetics and Evolutionary Biology, University of Sao Paulo, Sao Paulo (SP), Brazil
| | - Tatiana T Torres
- Department of Genetics and Evolutionary Biology, University of Sao Paulo, Sao Paulo (SP), Brazil
| |
Collapse
|
8
|
Liu BP, Ding G, Miao Y, Hua BZ. The Hox gene Abdominal-B regulates the appendage development during the embryogenesis of scorpionflies. INSECT MOLECULAR BIOLOGY 2022; 31:609-619. [PMID: 35575115 DOI: 10.1111/imb.12790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The Homeotic Complex (Hox) genes encode conserved homeodomain transcription factors that specify segment identity and appendage morphology along the antero-posterior axis in bilaterian animals. The Hox gene Abdominal-B (Abd-B) is mainly expressed in the posterior segments of the abdomen and plays an important role in insect organogenesis. In Mecoptera, the potential function of this gene remains unclear yet. Here, we performed a de novo transcriptome assembly and identified an Abd-B ortholog in the scorpionfly Panorpa liui. Quantitative real-time reverse transcription PCR showed that Abd-B expression increased gradually in embryos 76 h post oviposition, and was mainly present in the more posterior abdominal segments. Embryonic RNA interference of Abd-B resulted in a set of abnormalities, including developmental arrest, malformed suckers and misspecification of posterior segment identity. These results suggest that Abd-B is required for the proper development of the posterior abdomen. Furthermore, in Abd-B RNAi embryos, the expression of the appendage marker Distal-less (Dll) was up-regulated and was additionally present on abdominal segments IX and X compared with wild embryos, suggesting that scorpionfly Abd-B may act to suppress proleg development and has gained the ability to repress Dll expression on the more posterior abdominal segments. This study provides additional information on both the functional and evolutionary roles of Abd-B across different insects.
Collapse
Affiliation(s)
- Bing-Peng Liu
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Guo Ding
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Ying Miao
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Bao-Zhen Hua
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
9
|
Chen SJ, Liu XY, Zhang JL, Yang ZN, Xu HJ. Abdominal-B contributes to abdominal identity in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). INSECT MOLECULAR BIOLOGY 2022; 31:447-456. [PMID: 35278009 DOI: 10.1111/imb.12771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/23/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
The homeotic complex gene Abdominal-B (Abd-B) is involved in regulating the development of posterior abdomens and has been extensively studied in holometabolous insects. However, the function of Abd-B in hemimetabolous insects is not fully understood. Here, we functionally characterize an Abd-B homologue in the brown planthopper (BPH), Nilaparvata lugens. The full-length cDNA of the N. lugens Abd-B homologue (NlAbd-B) is 2334 nt, with an open reading frame of 1113 bp. NlAbd-B has the highest expression level at the egg stage relative to the nymphal and adult stages and is mainly expressed in the fourth to the ninth abdominal segment of embryos. RNA interference (RNAi)-mediated knockdown of NlAbd-B in nymphs disrupted the development of genitalia both in females and males and caused a genitalia-to-leg transformation. Parental RNAi of NlAbd-B in both female and male adults caused an extra abdominal segment in offspring nymphs, while parental RNAi of the N. lugens abdominal-A homologue in both female and males adults led to embryos with leg-like appendages on the second to the eighth abdominal segment. These findings suggest that NlAbd-B plays a pivotal role in genital development and posterior abdominal patterning and thus highlight the conservational role of Abd-B in holometabolous and hemimetabolous insects.
Collapse
Affiliation(s)
- Sun-Jie Chen
- Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Xin-Yang Liu
- Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Jin-Li Zhang
- Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Zhang-Nv Yang
- Key Laboratory of Vaccine, Prevention and Control of Infectious Diseases of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Hai-Jun Xu
- Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Expression of Abdominal-B in the brine shrimp, Artemia franciscana, expands our evolutionary understanding of the crustacean abdomen. Dev Biol 2022; 489:178-184. [PMID: 35732224 DOI: 10.1016/j.ydbio.2022.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 04/19/2022] [Accepted: 06/16/2022] [Indexed: 11/03/2022]
Abstract
The brine shrimp, Artemia franciscana, has a body plan composed of 11 thoracic segments, followed by 2 genital segments, and then 6 additional abdominal segments. Previous studies of Artemia reported that expression of the posterior-most Hox gene, Abdominal-B (Abd-B), is restricted to the genital segments and is not observed posteriorly in the abdomen at any developmental stage. This report was remarkable because it suggested that the Artemia abdomen posterior to the genital segments was a novel body region of 6 segments that bore no homology to any region in other crustaceans and was unique amongst arthropods in being a Hox-free segmented domain outside of the head. In this study, we used RT-PCR, antibody staining, and in situ hybridization on various stages of Artemia nauplii to show that Abd-B mRNA and protein are in fact expressed throughout the abdominal segments during Artemia development, but this expression later retracts to the two genital segments (G1, G2) and the T11 appendages. This suggests that Abd-B does play a role in specifying abdominal segment identity in all crustaceans that have been examined and suggests a common evolutionary origin for the crustacean abdomen.
Collapse
|
11
|
McQueen EW, Afkhami M, Atallah J, Belote JM, Gompel N, Heifetz Y, Kamimura Y, Kornhauser SC, Masly JP, O’Grady P, Peláez J, Rebeiz M, Rice G, Sánchez-Herrero E, Santos Nunes MD, Santos Rampasso A, Schnakenberg SL, Siegal ML, Takahashi A, Tanaka KM, Turetzek N, Zelinger E, Courtier-Orgogozo V, Toda MJ, Wolfner MF, Yassin A. A standardized nomenclature and atlas of the female terminalia of Drosophila melanogaster. Fly (Austin) 2022; 16:128-151. [PMID: 35575031 PMCID: PMC9116418 DOI: 10.1080/19336934.2022.2058309] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The model organism Drosophila melanogaster has become a focal system for investigations of rapidly evolving genital morphology as well as the development and functions of insect reproductive structures. To follow up on a previous paper outlining unifying terminology for the structures of the male terminalia in this species, we offer here a detailed description of the female terminalia of D. melanogaster. Informative diagrams and micrographs are presented to provide a comprehensive overview of the external and internal reproductive structures of females. We propose a collection of terms and definitions to standardize the terminology associated with the female terminalia in D. melanogaster and we provide a correspondence table with the terms previously used. Unifying terminology for both males and females in this species will help to facilitate communication between various disciplines, as well as aid in synthesizing research across publications within a discipline that has historically focused principally on male features. Our efforts to refine and standardize the terminology should expand the utility of this important model system for addressing questions related to the development and evolution of animal genitalia, and morphology in general.
Collapse
Affiliation(s)
- Eden W. McQueen
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Mehrnaz Afkhami
- Department of Biology, University of Oklahoma, Norman, OK, USA
| | - Joel Atallah
- Department of Biological Sciences, University of New Orleans, New Orleans, LA, USA
| | - John M. Belote
- Department of Biology, Syracuse University, Syracuse, NY, USA
| | - Nicolas Gompel
- Evolutionary Ecology, Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Planegg-Martinsried, Germany
| | - Yael Heifetz
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | - Shani C. Kornhauser
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
- Biozentrum, University of Basel, Basel, Switzerland
| | - John P. Masly
- Department of Biology, University of Oklahoma, Norman, OK, USA
| | - Patrick O’Grady
- Department of Entomology, Cornell University, Ithaca, NY, USA
| | - Julianne Peláez
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gavin Rice
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ernesto Sánchez-Herrero
- Centro de Biología Molecular Severo Ochoa (C.S.I.C.-U.A.M.), Universidad Autónoma de Madrid, Cantoblanco, Spain
| | | | | | - Sandra L. Schnakenberg
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
- Sema4, Stamford, CT, USA
| | - Mark L. Siegal
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Aya Takahashi
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
- Research Center for Genomics and Bioinformatics, Tokyo Metropolitan University, Hachioji, Japan
| | - Kentaro M. Tanaka
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Natascha Turetzek
- Evolutionary Ecology, Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Planegg-Martinsried, Germany
| | - Einat Zelinger
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
- Center for Scientific Imaging, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | | | - Mariana F. Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Amir Yassin
- Laboratoire Evolution, Génomes, Comportement, Ecologie (EGCE), UMR 9191, CNRS, IRD, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| |
Collapse
|
12
|
Fu SJ, Zhang JL, Xu HJ. A genome-wide identification and analysis of the homeobox genes in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 108:e21833. [PMID: 34288091 DOI: 10.1002/arch.21833] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/18/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
The homeobox family is a large and diverse superclass of genes, many of which act as transcription factors that play important roles in tissue differentiation and embryogenesis in animals. The brown planthopper (BPH), Nilaparvata lugens, is the most destructive pest of rice in Asia, and high fecundity contributes significantly to its ecological success in natural and agricultural habits. Here, we identified 94 homeobox genes in BPH, which could be divided into 75 gene families and 9 classes. This number is comparable to the number of homeobox genes found in the honeybee Apis mellifera, but is slightly less than in Drosophila or the red flour beetle Tribolium castaneum. A spatio-temporal analysis indicated that most BPH homeobox genes were expressed in a development and tissue-specific manner, of which 21 genes were highly expressed in ovaries. RNA interference (RNAi)-mediated functional assay showed that 22 homeobox genes were important for nymph development and the nymph to adult transition, whereas 67 genes were dispensable during this process. Fecundity assay showed that knockdown of 13 ovary-biased genes (zfh1, schlank, abd-A, Lim3_2, Lmxb, Prop, ap_1, Not, lab, Hmx, vis, Pknox, and C15) led to the reproductive defect. This is the first comprehensive investigation into homeobox genes in a hemipteran insect and thus helps us to understand the functional significance of homeobox genes in insect reproduction.
Collapse
Affiliation(s)
- Sheng-Jie Fu
- Department of Agriculture and Biotechnology, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jin-Li Zhang
- Department of Agriculture and Biotechnology, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hai-Jun Xu
- Department of Agriculture and Biotechnology, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Agriculture and Biotechnology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Agriculture and Biotechnology, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Kumari J, Sinha P. Developmental expression patterns of toolkit genes in male accessory gland of Drosophila parallels those of mammalian prostate. Biol Open 2021; 10:271156. [PMID: 34342345 PMCID: PMC8419479 DOI: 10.1242/bio.058722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/23/2021] [Indexed: 11/20/2022] Open
Abstract
Conservation of genetic toolkits in disparate phyla may help reveal commonalities in organ designs transcending their extreme anatomical disparities. A male accessory sexual organ in mammals, the prostate, for instance, is anatomically disparate from its analogous, phylogenetically distant counterpart – the male accessory gland (MAG) – in insects like Drosophila. It has not been ascertained if the anatomically disparate Drosophila MAG shares developmental parallels with those of the mammalian prostate. Here we show that the development of Drosophila mesoderm-derived MAG entails recruitment of similar genetic toolkits of tubular organs like that seen in endoderm-derived mammalian prostate. For instance, like mammalian prostate, Drosophila MAG morphogenesis is marked by recruitment of fibroblast growth factor receptor (FGFR) – a signalling pathway often seen recruited for tubulogenesis – starting early during its adepithelial genesis. A specialisation of the individual domains of the developing MAG tube, on the other hand, is marked by the expression of a posterior Hox gene transcription factor, Abd-B, while Hh-Dpp signalling marks its growth. Drosophila MAG, therefore, reveals the developmental design of a unitary bud-derived tube that appears to have been co-opted for the development of male accessory sexual organs across distant phylogeny and embryonic lineages. This article has an associated First Person interview with the first author of the paper. Summary: We show genetic toolkit conservation between Drosophila MAG and mammalian prostate may suggest a common modular developmental design.
Collapse
Affiliation(s)
- Jaya Kumari
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Pradip Sinha
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
14
|
Cooperation of axial and sex specific information controls Drosophila female genitalia growth by regulating the Decapentaplegic pathway. Dev Biol 2019; 454:145-155. [DOI: 10.1016/j.ydbio.2019.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 01/18/2023]
|
15
|
Rice G, David JR, Kamimura Y, Masly JP, Mcgregor AP, Nagy O, Noselli S, Nunes MDS, O’Grady P, Sánchez-Herrero E, Siegal ML, Toda MJ, Rebeiz M, Courtier-Orgogozo V, Yassin A. A standardized nomenclature and atlas of the male terminalia of Drosophila melanogaster. Fly (Austin) 2019; 13:51-64. [PMID: 31401934 PMCID: PMC6988887 DOI: 10.1080/19336934.2019.1653733] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/26/2019] [Accepted: 08/04/2019] [Indexed: 10/26/2022] Open
Abstract
Animal terminalia represent some of the most diverse and rapidly evolving structures in the animal kingdom, and for this reason have been a mainstay in the taxonomic description of species. The terminalia of Drosophila melanogaster, with its wide range of experimental tools, have recently become the focus of increased interest in the fields of development, evolution, and behavior. However, studies from different disciplines have often used discrepant terminologies for the same anatomical structures. Consequently, the terminology of genital parts has become a barrier to integrating results from different fields, rendering it difficult to determine what parts are being referenced. We formed a consortium of researchers studying the genitalia of D. melanogaster to help establish a set of naming conventions. Here, we present a detailed visual anatomy of male genital parts, including a list of synonymous terms, and suggest practices to avoid confusion when referring to anatomical parts in future studies. The goal of this effort is to facilitate interdisciplinary communication and help newcomers orient themselves within the exciting field of Drosophila genitalia.
Collapse
Affiliation(s)
- Gavin Rice
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jean R. David
- Laboratoire Evolution, Génomes, Comportement, Ecologie (EGCE), UMR 9191, CNRS,IRD, Univ.Paris-Sud, Université Paris-Saclay, cedex, France
| | | | - John P. Masly
- Department of Biology, University of Oklahoma, Norman, OK, USA
| | - Alistair P. Mcgregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Olga Nagy
- CNRS UMR7592, Institut Jacques Monod, Université de Paris, Paris, France
| | | | | | - Patrick O’Grady
- Department of Entomology, Cornell University, Ithaca, NY, USA
| | - Ernesto Sánchez-Herrero
- Centro de Biología Molecular Severo Ochoa (C.S.I.C.-U.A.M.), Universidad Autónoma de Madrid, Cantoblanco, Spain
| | - Mark L. Siegal
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | | | - Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Amir Yassin
- Institut de Systématique, Evolution et Biodiversité, UMR7205, Centre National de la Recherche Scientifique, MNHN, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| |
Collapse
|
16
|
Nagy O, Nuez I, Savisaar R, Peluffo AE, Yassin A, Lang M, Stern DL, Matute DR, David JR, Courtier-Orgogozo V. Correlated Evolution of Two Copulatory Organs via a Single cis-Regulatory Nucleotide Change. Curr Biol 2018; 28:3450-3457.e13. [PMID: 30344115 DOI: 10.1016/j.cub.2018.08.047] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/12/2018] [Accepted: 08/21/2018] [Indexed: 01/25/2023]
Abstract
Diverse traits often covary between species [1-3]. The possibility that a single mutation could contribute to the evolution of several characters between species [3] is rarely investigated as relatively few cases are dissected at the nucleotide level. Drosophila santomea has evolved additional sex comb sensory teeth on its legs and has lost two sensory bristles on its genitalia. We present evidence that a single nucleotide substitution in an enhancer of the scute gene contributes to both changes. The mutation alters a binding site for the Hox protein Abdominal-B in the developing genitalia, leading to bristle loss, and for another factor in the developing leg, leading to bristle gain. Our study suggests that morphological evolution between species can occur through a single nucleotide change affecting several sexually dimorphic traits. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Olga Nagy
- Institut Jacques Monod, CNRS UMR7592, Université Paris-Diderot, 75013 Paris, France
| | - Isabelle Nuez
- Institut Jacques Monod, CNRS UMR7592, Université Paris-Diderot, 75013 Paris, France
| | - Rosina Savisaar
- Institut Jacques Monod, CNRS UMR7592, Université Paris-Diderot, 75013 Paris, France
| | - Alexandre E Peluffo
- Institut Jacques Monod, CNRS UMR7592, Université Paris-Diderot, 75013 Paris, France
| | - Amir Yassin
- Institut Systématique Évolution Biodiversité (ISYEB), Centre National de Recherche Scientifique, MNHN, Sorbonne Université, EPHE, 57 rue Cuvier, CP 50, 75005 Paris, France
| | - Michael Lang
- Institut Jacques Monod, CNRS UMR7592, Université Paris-Diderot, 75013 Paris, France
| | - David L Stern
- Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Daniel R Matute
- Biology Department, University of North Carolina, Chapel Hill, NC, USA
| | - Jean R David
- Institut Systématique Évolution Biodiversité (ISYEB), Centre National de Recherche Scientifique, MNHN, Sorbonne Université, EPHE, 57 rue Cuvier, CP 50, 75005 Paris, France; Laboratoire Evolution, Génomes, Comportement, Biodiversité (EGCE), CNRS, IRD, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | | |
Collapse
|
17
|
Wang H, Tong X, Liu M, Hu H, Li Z, Xiang Z, Dai F, Lu C. Fine Mapping of a Degenerated Abdominal Legs Mutant (Edl) in Silkworm, Bombyx mori. PLoS One 2017; 12:e0169224. [PMID: 28081147 PMCID: PMC5231277 DOI: 10.1371/journal.pone.0169224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/13/2016] [Indexed: 12/05/2022] Open
Abstract
In insects, abdominal appendages, also called prolegs, vary due to adaptive evolution. Mutations on prolegs within species provide insights to better understand the mechanisms underlying appendage development and diversity. In silkworm Bombyx mori, extra-crescents and degenerated abdominal legs (Edl) mutant, belonging to the E pseudoallele group, is a spontaneous mutation that adds crescents and degenerates prolegs on the third abdominal segment (A3). This mutation may be a homeotic transformation of A3 to A2. In this study, the Edl locus was mapped within approximately a 211 Kb region that is 10 Kb upstream of Bmabdominal-A (Bmabd-A). RT-quantitative PCR (RT-qPCR) and Western blot analysis of Bmabd-A expression showed a slight but significant decrease, while the expression of BmUltrabithorax (BmUbx) was up-regulated in the Edl mutant compared to wildtype (Dazao). Moreover, we also found that BmDistal-less (BmDll), which regulated the development of distal proleg structures, was missing at the tips of the A3 prolegs in the Edl mutant compared to BmDll expression in normally developed prolegs in both the wildtype and mutant. Collectively, we identified approximately a 211 Kb region in the Edl locus that regulates BmUbx and Bmabd-A expression and found that changes in BmUbx and Bmabd-A expression may lead to the loss of distal proleg structures in B. mori.
Collapse
Affiliation(s)
- Honglei Wang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - Xiaoling Tong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - Meijing Liu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - Hai Hu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - Zhiquan Li
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - Zhonghuai Xiang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
- * E-mail: (FD); (CL)
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
- * E-mail: (FD); (CL)
| |
Collapse
|
18
|
The elimination of an adult segment by the Hox gene Abdominal-B. Mech Dev 2015; 138 Pt 2:210-217. [DOI: 10.1016/j.mod.2015.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 07/31/2015] [Accepted: 08/01/2015] [Indexed: 11/19/2022]
|
19
|
Glassford WJ, Johnson WC, Dall NR, Smith SJ, Liu Y, Boll W, Noll M, Rebeiz M. Co-option of an Ancestral Hox-Regulated Network Underlies a Recently Evolved Morphological Novelty. Dev Cell 2015; 34:520-31. [PMID: 26343453 DOI: 10.1016/j.devcel.2015.08.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 07/23/2015] [Accepted: 08/10/2015] [Indexed: 12/29/2022]
Abstract
The evolutionary origins of complex morphological structures such as the vertebrate eye or insect wing remain one of the greatest mysteries of biology. Recent comparative studies of gene expression imply that new structures are not built from scratch, but rather form by co-opting preexisting gene networks. A key prediction of this model is that upstream factors within the network will activate their preexisting targets (i.e., enhancers) to form novel anatomies. Here, we show how a recently derived morphological novelty present in the genitalia of D. melanogaster employs an ancestral Hox-regulated network deployed in the embryo to generate the larval posterior spiracle. We demonstrate how transcriptional enhancers and constituent transcription factor binding sites are used in both ancestral and novel contexts. These results illustrate network co-option at the level of individual connections between regulatory genes and highlight how morphological novelty may originate through the co-option of networks controlling seemingly unrelated structures.
Collapse
Affiliation(s)
- William J Glassford
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Winslow C Johnson
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Natalie R Dall
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Sarah Jacquelyn Smith
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Yang Liu
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Werner Boll
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Markus Noll
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA.
| |
Collapse
|
20
|
Stansbury MS, Moczek AP. The function of Hox and appendage-patterning genes in the development of an evolutionary novelty, the Photuris firefly lantern. Proc Biol Sci 2014; 281:20133333. [PMID: 24648226 PMCID: PMC3973271 DOI: 10.1098/rspb.2013.3333] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 02/20/2014] [Indexed: 02/04/2023] Open
Abstract
Uncovering the mechanisms underlying the evolution of novel traits is a central challenge in biology. The lanterns of fireflies are complex traits that lack even remote homology to structures outside luminescent beetle families. Representing unambiguous novelties by the strictest definition, their developmental underpinnings may provide clues to their origin and offer insights into the mechanisms of innovation in developmental evolution. Lanterns develop within the context of abdominal Hox expression domains, and we hypothesized that lantern formation may be instructed in part by these highly conserved transcription factors. We show that transcript depletion of Abdominal-B in Photuris fireflies results in extensive disruption of the adult lantern, suggesting that the evolution of adult lanterns involved the acquisition of a novel regulatory role for this Hox gene. Using the same approach, we show that the Hox gene abdominal-A may control important secondary aspects of lantern development. Lastly, we hypothesized that lantern evolution may have involved the recruitment of dormant abdominal appendage-patterning domains; however, transcript depletion of two genes, Distal-less and dachshund, suggests that they do not contribute to lantern development. Our results suggest that complex novelties can arise within the confines of ancestral regulatory landscapes through acquisition of novel targets without compromising ancestral functions.
Collapse
Affiliation(s)
- Matthew S. Stansbury
- Center for Insect Science, University of Arizona, 1007 East Lowell Street, PO Box 210106, Tucson, AZ 85721-0106, USA
- Department of Biology, Indiana University, 1001 East 3rd St., Jordan Hall 142, Bloomington, IN 47405-7005, USA
| | - Armin P. Moczek
- Department of Biology, Indiana University, 1001 East 3rd St., Jordan Hall 142, Bloomington, IN 47405-7005, USA
| |
Collapse
|
21
|
Prin F, Serpente P, Itasaki N, Gould AP. Hox proteins drive cell segregation and non-autonomous apical remodelling during hindbrain segmentation. Development 2014; 141:1492-502. [PMID: 24574009 PMCID: PMC3957373 DOI: 10.1242/dev.098954] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 01/22/2014] [Indexed: 01/26/2023]
Abstract
Hox genes encode a conserved family of homeodomain transcription factors regulating development along the major body axis. During embryogenesis, Hox proteins are expressed in segment-specific patterns and control numerous different segment-specific cell fates. It has been unclear, however, whether Hox proteins drive the epithelial cell segregation mechanism that is thought to initiate the segmentation process. Here, we investigate the role of vertebrate Hox proteins during the partitioning of the developing hindbrain into lineage-restricted units called rhombomeres. Loss-of-function mutants and ectopic expression assays reveal that Hoxb4 and its paralogue Hoxd4 are necessary and sufficient for cell segregation, and for the most caudal rhombomere boundary (r6/r7). Hox4 proteins regulate Eph/ephrins and other cell-surface proteins, and can function in a non-cell-autonomous manner to induce apical cell enlargement on both sides of their expression border. Similarly, other Hox proteins expressed at more rostral rhombomere interfaces can also regulate Eph/ephrins, induce apical remodelling and drive cell segregation in ectopic expression assays. However, Krox20, a key segmentation factor expressed in odd rhombomeres (r3 and r5), can largely override Hox proteins at the level of regulation of a cell surface target, Epha4. This study suggests that most, if not all, Hox proteins share a common potential to induce cell segregation but in some contexts this is masked or modulated by other transcription factors.
Collapse
Affiliation(s)
- Fabrice Prin
- Division of Physiology and Metabolism, Medical Research Council, National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | - Patricia Serpente
- Division of Physiology and Metabolism, Medical Research Council, National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | - Nobue Itasaki
- Division of Developmental Neurobiology, Medical Research Council, National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | - Alex P. Gould
- Division of Physiology and Metabolism, Medical Research Council, National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| |
Collapse
|
22
|
Sánchez-Herrero E. Hox targets and cellular functions. SCIENTIFICA 2013; 2013:738257. [PMID: 24490109 PMCID: PMC3892749 DOI: 10.1155/2013/738257] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/20/2013] [Indexed: 06/03/2023]
Abstract
Hox genes are a group of genes that specify structures along the anteroposterior axis in bilaterians. Although in many cases they do so by modifying a homologous structure with a different (or no) Hox input, there are also examples of Hox genes constructing new organs with no homology in other regions of the body. Hox genes determine structures though the regulation of targets implementing cellular functions and by coordinating cell behavior. The genetic organization to construct or modify a certain organ involves both a genetic cascade through intermediate transcription factors and a direct regulation of targets carrying out cellular functions. In this review I discuss new data from genome-wide techniques, as well as previous genetic and developmental information, to describe some examples of Hox regulation of different cell functions. I also discuss the organization of genetic cascades leading to the development of new organs, mainly using Drosophila melanogaster as the model to analyze Hox function.
Collapse
Affiliation(s)
- Ernesto Sánchez-Herrero
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
23
|
Sambrani N, Hudry B, Maurel-Zaffran C, Zouaz A, Mishra R, Merabet S, Graba Y. Distinct molecular strategies for Hox-mediated limb suppression in Drosophila: from cooperativity to dispensability/antagonism in TALE partnership. PLoS Genet 2013; 9:e1003307. [PMID: 23505377 PMCID: PMC3591290 DOI: 10.1371/journal.pgen.1003307] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 12/18/2012] [Indexed: 11/19/2022] Open
Abstract
The emergence following gene duplication of a large repertoire of Hox paralogue proteins underlies the importance taken by Hox proteins in controlling animal body plans in development and evolution. Sequence divergence of paralogous proteins accounts for functional specialization, promoting axial morphological diversification in bilaterian animals. Yet functionally specialized paralogous Hox proteins also continue performing ancient common functions. In this study, we investigate how highly divergent Hox proteins perform an identical function. This was achieved by comparing in Drosophila the mode of limb suppression by the central (Ultrabithorax and AbdominalA) and posterior class (AbdominalB) Hox proteins. Results highlight that Hox-mediated limb suppression relies on distinct modes of DNA binding and a distinct use of TALE cofactors. Control of common functions by divergent Hox proteins, at least in the case studied, relies on evolving novel molecular properties. Thus, changes in protein sequences not only provide the driving force for functional specialization of Hox paralogue proteins, but also provide means to perform common ancient functions in distinct ways.
Collapse
Affiliation(s)
- Nagraj Sambrani
- Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université (AMU), Institut de Biologie du Développement de Marseille Luminy (IBDML, UMR 7288), Parc Scientifique de Luminy, Marseille, France
| | - Bruno Hudry
- Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université (AMU), Institut de Biologie du Développement de Marseille Luminy (IBDML, UMR 7288), Parc Scientifique de Luminy, Marseille, France
| | - Corinne Maurel-Zaffran
- Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université (AMU), Institut de Biologie du Développement de Marseille Luminy (IBDML, UMR 7288), Parc Scientifique de Luminy, Marseille, France
| | - Amel Zouaz
- Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université (AMU), Institut de Biologie du Développement de Marseille Luminy (IBDML, UMR 7288), Parc Scientifique de Luminy, Marseille, France
| | - Rakesh Mishra
- Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
| | - Samir Merabet
- Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université (AMU), Institut de Biologie du Développement de Marseille Luminy (IBDML, UMR 7288), Parc Scientifique de Luminy, Marseille, France
| | - Yacine Graba
- Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université (AMU), Institut de Biologie du Développement de Marseille Luminy (IBDML, UMR 7288), Parc Scientifique de Luminy, Marseille, France
- * E-mail:
| |
Collapse
|
24
|
Curt JR, de Navas LF, Sánchez-Herrero E. Differential activity of Drosophila Hox genes induces myosin expression and can maintain compartment boundaries. PLoS One 2013; 8:e57159. [PMID: 23451173 PMCID: PMC3581558 DOI: 10.1371/journal.pone.0057159] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 01/17/2013] [Indexed: 01/20/2023] Open
Abstract
Compartments are units of cell lineage that subdivide territories with different developmental potential. In Drosophila, the wing and haltere discs are subdivided into anterior and posterior (A/P) compartments, which require the activity of Hedgehog, and into dorsal and ventral (D/V) compartments, needing Notch signaling. There is enrichment in actomyosin proteins at the compartment boundaries, suggesting a role for these proteins in their maintenance. Compartments also develop in the mouse hindbrain rhombomeres, which are characterized by the expression of different Hox genes, a group of genes specifying different structures along their main axis of bilaterians. We show here that the Drosophila Hox gene Ultrabithorax can maintain the A/P and D/V compartment boundaries when Hedgehog or Notch signaling is compromised, and that the interaction of cells with and without Ultrabithorax expression induces high levels of non-muscle myosin II. In the absence of Ultrabithorax there is occasional mixing of cells from different segments. We also show a similar role in cell segregation for the Abdominal-B Hox gene. Our results suggest that the juxtaposition of cells with different Hox gene expression leads to their sorting out, probably through the accumulation of non-muscle myosin II at the boundary of the different cell territories. The increase in myosin expression seems to be a general mechanism used by Hox genes or signaling pathways to maintain the segregation of different groups of cells.
Collapse
Affiliation(s)
- Jesús R Curt
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | | | | |
Collapse
|
25
|
Rivas ML, Espinosa-Vázquez JM, Sambrani N, Greig S, Merabet S, Graba Y, Castelli-Gair Hombría J. Antagonism versus cooperativity with TALE cofactors at the base of the functional diversification of Hox protein function. PLoS Genet 2013; 9:e1003252. [PMID: 23408901 PMCID: PMC3567137 DOI: 10.1371/journal.pgen.1003252] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 12/03/2012] [Indexed: 11/18/2022] Open
Abstract
Extradenticle (Exd) and Homothorax (Hth) function as positive transcriptional cofactors of Hox proteins, helping them to bind specifically their direct targets. The posterior Hox protein Abdominal-B (Abd-B) does not require Exd/Hth to bind DNA; and, during embryogenesis, Abd-B represses hth and exd transcription. Here we show that this repression is necessary for Abd-B function, as maintained Exd/Hth expression results in transformations similar to those observed in loss-of-function Abd-B mutants. We characterize the cis regulatory module directly regulated by Abd-B in the empty spiracles gene and show that the Exd/Hth complex interferes with Abd-B binding to this enhancer. Our results suggest that this novel Exd/Hth function does not require the complex to bind DNA and may be mediated by direct Exd/Hth binding to the Abd-B homeodomain. Thus, in some instances, the main positive cofactor complex for anterior Hox proteins can act as a negative factor for the posterior Hox protein Abd-B. This antagonistic interaction uncovers an alternative way in which MEIS and PBC cofactors can modulate Abd-B like posterior Hox genes during development.
Collapse
Affiliation(s)
| | | | - Nagraj Sambrani
- IBDML, CNRS/Université de la Méditerranée, Marseille, France
| | - Stephen Greig
- Akam Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Samir Merabet
- IBDML, CNRS/Université de la Méditerranée, Marseille, France
| | - Yacine Graba
- IBDML, CNRS/Université de la Méditerranée, Marseille, France
| | | |
Collapse
|
26
|
Sharma PP, Schwager EE, Extavour CG, Giribet G. Hox gene expression in the harvestman Phalangium opilio reveals divergent patterning of the chelicerate opisthosoma. Evol Dev 2012; 14:450-63. [DOI: 10.1111/j.1525-142x.2012.00565.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
| | - Evelyn E. Schwager
- Department of Organismic and Evolutionary Biology; Harvard University; 26 Oxford Street; Cambridge; MA; 02138; USA
| | - Cassandra G. Extavour
- Department of Organismic and Evolutionary Biology; Harvard University; 26 Oxford Street; Cambridge; MA; 02138; USA
| | | |
Collapse
|
27
|
Affiliation(s)
- Walter J. Gehring
- Biozentrum; University of Basel; Klingelbergstrasse 70, 4056 Basel Switzerland
| |
Collapse
|
28
|
Aspiras AC, Smith FW, Angelini DR. Sex-specific gene interactions in the patterning of insect genitalia. Dev Biol 2011; 360:369-80. [DOI: 10.1016/j.ydbio.2011.09.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 09/23/2011] [Accepted: 09/25/2011] [Indexed: 01/26/2023]
|
29
|
Sexually dimorphic regulation of the Wingless morphogen controls sex-specific segment number in Drosophila. Proc Natl Acad Sci U S A 2011; 108:11139-44. [PMID: 21690416 DOI: 10.1073/pnas.1108431108] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sexual dimorphism is widespread throughout the metazoa and plays important roles in mate recognition and preference, sex-based niche partitioning, and sex-specific coadaptation. One notable example of sex-specific differences in insect body morphology is presented by the higher diptera, such as Drosophila, in which males develop fewer abdominal segments than females. Because diversity in segment number is a distinguishing feature of major arthropod clades, it is of fundamental interest to understand how different numbers of segments can be generated within the same species. Here we show that sex-specific and segment-specific regulation of the Wingless (Wg) morphogen underlies the development of sexually dimorphic adult segment number in Drosophila. Wg expression is repressed in the developing terminal male abdominal segment by the combination of the Hox protein Abdominal-B (Abd-B) and the sex-determination regulator Doublesex (Dsx). The subsequent loss of the terminal male abdominal segment during pupation occurs through a combination of developmental processes including segment compartmental transformation, apoptosis, and suppression of cell proliferation. Furthermore, we show that ectopic expression of Wg is sufficient to rescue this loss. We propose that dimorphic Wg regulation, in concert with monomorphic segment-specific programmed cell death, are the principal mechanisms of sculpting the sexually dimorphic abdomen of Drosophila.
Collapse
|
30
|
Portela M, Casas-Tinto S, Rhiner C, López-Gay JM, Domínguez O, Soldini D, Moreno E. Drosophila SPARC Is a Self-Protective Signal Expressed by Loser Cells during Cell Competition. Dev Cell 2010; 19:562-73. [DOI: 10.1016/j.devcel.2010.09.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 08/03/2010] [Accepted: 08/17/2010] [Indexed: 12/26/2022]
|
31
|
Alvarez M, Ruiz MF, Sánchez L. Effect of the gene doublesex of anastrepha on the somatic sexual development of Drosophila. PLoS One 2009; 4:e5141. [PMID: 19340310 PMCID: PMC2660442 DOI: 10.1371/journal.pone.0005141] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 03/12/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The gene doublesex (dsx) is at the bottom of the sex determination genetic cascade and is transcribed in both sexes, but gives rise to two different proteins, DsxF and DsxM, which impose female and male sexual development respectively via the sex-specific regulation of the so-called sexual cyto-differentiation genes. The present manuscript addressed the question about the functional conservation of the tephritid Anastrepha DsxF and DsxM proteins to direct the sexual development in Drosophila (Drosophilidae). METHODOLOGY To express these proteins in Drosophila, the GAL4-UAS system was used. The effect of these proteins was monitored in the sexually dimorphic regions of the fly: the foreleg basitarsus, the 5th, 6th and 7th tergites, and the external terminalia. In addition, we analysed the effect of Anastrepha DsxF and DsxM proteins on the regulation of Drosophila yolk protein genes, which are expressed in the fat body of adult females under the control of dsx. CONCLUSIONS The Anastrepha DsxF and DsxM proteins transformed doublesex intersexual Drosophila flies into females and males respectively, though this transformation was incomplete and the extent of their influence varied in the different sexually dimorphic regions of the adult fly. The Anastrepha DsxF and DsxM proteins also behaved as activators and repressors, respectively, of the Drosophila yolk protein genes, as do the DsxF and DsxM proteins of Drosophila itself. Finally, the Anastrepha DsxF and DsxM proteins were found to counteract the functions of Drosophila DsxM and DsxF respectively, reflecting the normal behaviour of the latter proteins towards one another. Collectively, these results indicate that the Anastrepha DsxF and DsxM proteins show conserved female and male sex-determination function respectively in Drosophila, though it appears that they cannot fully substitute the latter's own Dsx proteins. This incomplete function might be partly due to a reduced capacity of the Anastrepha Dsx proteins to completely control the Drosophila sexual cyto-differentiation genes, a consequence of the accumulation of divergence between these species resulting in the formation of different co-adapted complexes between the Dsx proteins and their target genes.
Collapse
Affiliation(s)
| | | | - Lucas Sánchez
- Centro de Investigaciones Biológicas (C.S.I.C), Madrid, Spain
- * E-mail:
| |
Collapse
|
32
|
Tomita S, Kikuchi A. Abd-B suppresses lepidopteran proleg development in posterior abdomen. Dev Biol 2009; 328:403-9. [DOI: 10.1016/j.ydbio.2009.01.040] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2008] [Revised: 01/29/2009] [Accepted: 01/29/2009] [Indexed: 11/29/2022]
|
33
|
Abstract
Hox proteins are well known for executing highly specific functions in vivo, but our understanding of the molecular mechanisms underlying gene regulation by these fascinating proteins has lagged behind. The premise of this review is that an understanding of gene regulation-by any transcription factor-requires the dissection of the cis-regulatory elements that they act upon. With this goal in mind, we review the concepts and ideas regarding gene regulation by Hox proteins and apply them to a curated list of directly regulated Hox cis-regulatory elements that have been validated in the literature. Our analysis of the Hox-binding sites within these elements suggests several emerging generalizations. We distinguish between Hox cofactors, proteins that bind DNA cooperatively with Hox proteins and thereby help with DNA-binding site selection, and Hox collaborators, proteins that bind in parallel to Hox-targeted cis-regulatory elements and dictate the sign and strength of gene regulation. Finally, we summarize insights that come from examining five X-ray crystal structures of Hox-cofactor-DNA complexes. Together, these analyses reveal an enormous amount of flexibility into how Hox proteins function to regulate gene expression, perhaps providing an explanation for why these factors have been central players in the evolution of morphological diversity in the animal kingdom.
Collapse
Affiliation(s)
- Richard S Mann
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | | | | |
Collapse
|
34
|
Abstract
In this chapter, we consider the question of how the ordered clusters of Hox genes arose during evolution. Since ordered Hox clusters are found in all major superphyla, we have to assume that the Hox clusters arose before the Cambrian "explosion" giving rise to all of these taxa. Based on his studies of the bithorax complex (BX-C) in Drosophila Lewis considered the ground state to be the mesothoracic segment (T2) since the deletion of all of the genes of the BX-C leads to a transformation of all segments from T3 to A8/9 (the last abdominal segment) into T2 segments. We define the developmental ground state genetically, by assuming that loss-of-function mutants lead to transformations toward the ground state, whereas gain-of-function mutants lead to homeotic transformations away from the ground state. By this definition, T2 also represents the developmental ground state, if one includes the anterior genes, that is, those of the Antennapedia complex. We have reconstructed the evolution of the Hox cluster on the basis of known genetic mechanisms which involve unequal crossover and lead from an urhox gene, first to an anterior and a posterior gene and subsequently to intermediate genes which are progressively inserted, between the anterior and posterior genes. These intermediate genes are recombinant due to unequal crossover, whereas the anterior and posterior genes are not affected and therefore had the longest time to diverge from the urhox gene. The molecular phylogenetic analysis strongly supports this model. We consider the ground state to be both developmental and evolutionary and to represent the prototypic body segment. It corresponds to T2 and is specified by Antennapedia or Hox6, respectively. Experiments in the mouse also suggest that the ground state is a thoracic segment. Evolution leads from the prototypic segment to segmental divergence in both the anterior and posterior direction. The most anterior head and tail segments are specified by homeobox genes localized outside of the cluster.
Collapse
|
35
|
An antennal-specific role for bowl in repressing supernumerary appendage development in Drosophila. Mech Dev 2008; 125:809-21. [PMID: 18662773 DOI: 10.1016/j.mod.2008.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 07/02/2008] [Accepted: 07/02/2008] [Indexed: 11/22/2022]
Abstract
In Drosophila, antennae and legs are serially homologous appendages, and yet they develop into organs of very different structure and function. This implies that different genetic mechanisms operate onto a common developmental ground state to produce antennae and legs. Still few such mechanisms have been uncovered. During leg development, bowl, a member of the odd-skipped gene family, has been shown to participate in the formation of the leg segmental joints. Here we report that, in the antennal disc, bowl has a dramatically different role: bowl is expressed in the ventral antennal disc to prevent inappropriate expression of wg early during development. The removal of bowl function leads to the activation of wg in the dpp-expressing domain. This ectopic expression of wg, together with dpp, results in a new proximo-distal axis that promotes non-autonomous antennal duplications. The role of bowl in suppressing a supernumerary PD axis is maintained even when the antennal disc is homeotically transformed into a leg-like appendage. Therefore, bowl is part of a genetic program that suppresses the formation of supernumerary appendages specifically in the fly's head.
Collapse
|
36
|
Coutelis JB, Petzoldt AG, Spéder P, Suzanne M, Noselli S. Left-right asymmetry in Drosophila. Semin Cell Dev Biol 2008; 19:252-62. [PMID: 18328746 DOI: 10.1016/j.semcdb.2008.01.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 12/11/2007] [Accepted: 01/23/2008] [Indexed: 01/22/2023]
Abstract
Seminal studies of left-right (L/R) patterning in vertebrate models have led to the discovery of roles for the nodal pathway, ion flows and cilia in this process. Although the molecular mechanisms underlying L/R asymmetries seen in protostomes are less well understood, recent work using Drosophila melanogaster as a novel genetic model system to study this process has identified a number of mutations affecting directional organ looping. The genetic analysis of this, the most evolutionary conserved feature of L/R patterning, revealed the existence of a L/R pathway that involves the actin cytoskeleton and an associated type I myosin. In this review, we describe this work in the context of Drosophila development, and discuss the implications of these results for our understanding of L/R patterning in general.
Collapse
Affiliation(s)
- J B Coutelis
- Institute of Developmental Biology & Cancer, University of Nice Sophia-Antipolis, CNRS UMR6543, Parc Valrose, 06108 NICE Cedex 2, France
| | | | | | | | | |
Collapse
|
37
|
Camara N, Whitworth C, Van Doren M. The creation of sexual dimorphism in the Drosophila soma. Curr Top Dev Biol 2008; 83:65-107. [PMID: 19118664 DOI: 10.1016/s0070-2153(08)00403-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Animals have evolved a fascinating array of mechanisms for conducting sexual reproduction. These include producing the sex-specific gametes, as well as mechanisms for attracting a mate, courting a mate, and getting the gametes together. These processes require that males and females take on dramatically different forms (sexual dimorphism). Here, we will explore the problem of how sex is determined in Drosophila, and pay particular attention to how information about sexual identity is used to instruct males and females to develop differently. Along the way, we will highlight new work that challenges some of the traditional views about sex determination. In Drosophila, it is commonly thought that every cell decides its own sex based on its sex chromosome constitution (XX vs. XY). However, we now know that many cell types undergo nonautonomous sex determination, where they are told what sex to be through signals from surrounding cells, independent of their own chromosomal content. Further, it now appears that not all cells even "know" their sex, since key members of the sex determination pathway are not expressed in all cells. Thus, our understanding of how sex is determined, and how sexual identity is used to create sexual dimorphism, has changed considerably.
Collapse
Affiliation(s)
- Nicole Camara
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | |
Collapse
|
38
|
Estella C, McKay DJ, Mann RS. Molecular integration of wingless, decapentaplegic, and autoregulatory inputs into Distalless during Drosophila leg development. Dev Cell 2008; 14:86-96. [PMID: 18194655 PMCID: PMC2709787 DOI: 10.1016/j.devcel.2007.11.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 10/22/2007] [Accepted: 11/01/2007] [Indexed: 01/19/2023]
Abstract
The development of the Drosophila leg requires both Decapentaplegic (Dpp) and Wingless (Wg), two signals that establish the proximo-distal (PD) axis by activating target genes such as Distalless (Dll). Dll expression in the leg depends on a Dpp- and Wg-dependent phase and a maintenance phase that is independent of these signals. Here, we show that accurate Dll expression in the leg results from the synergistic interaction between two cis-regulatory elements. The Leg Trigger (LT) element directly integrates Wg and Dpp inputs and is only active in cells receiving high levels of both signals. The Maintenance (M) element is able to maintain Wg- and Dpp-independent expression, but only when in cis to LT. M, which includes the native Dll promoter, functions as an autoregulatory element by directly binding Dll. The "trigger-maintenance" model describes a mechanism by which secreted morphogens act combinatorially to induce the stable expression of target genes.
Collapse
Affiliation(s)
- Carlos Estella
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | | | | |
Collapse
|
39
|
de Navas L, Foronda D, Suzanne M, Sánchez-Herrero E. A simple and efficient method to identify replacements of P-lacZ by P-Gal4 lines allows obtaining Gal4 insertions in the bithorax complex of Drosophila. Mech Dev 2006; 123:860-7. [PMID: 16971094 DOI: 10.1016/j.mod.2006.07.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 07/25/2006] [Accepted: 07/26/2006] [Indexed: 01/12/2023]
Abstract
The functional replacement of one gene product by another one is a powerful method to study specificity in development and evolution. In Drosophila, the Gal4/UAS method has been used to analyze in vivo such functional substitutions. To this aim, Gal4 lines that inactivate a gene and reproduce its expression pattern are required, and they can be frequently obtained by replacing pre-existing P-lacZ lines with such characteristics. We have devised a new method to quickly identify replacements of P-lacZ lines by P-Gal4 lines, and applied it successfully to obtain Gal4 insertions in the Ultrabithorax and Abdominal-B Hox genes. We have used these lines to study the functional replacement of a Hox gene by another one. Our experiments confirm that the abdominal-A gene can replace Ultrabithorax in haltere development but that it cannot substitute for Abdominal-B in the formation of the genitalia.
Collapse
Affiliation(s)
- Luis de Navas
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
40
|
Yoder JH, Carroll SB. The evolution of abdominal reduction and the recent origin of distinct Abdominal-B transcript classes in Diptera. Evol Dev 2006; 8:241-51. [PMID: 16686635 DOI: 10.1111/j.1525-142x.2006.00095.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In insects, the Hox gene Abdominal-B (Abd-B) governs the development of the posterior-most segments, the number and fate of which differ within and between orders. A striking feature of insect evolution is a trend toward the reduction of posterior abdominal segments which is most pronounced in higher Diptera. In Drosophila melanogaster, two distinct Abd-B transcript classes and protein isoforms are expressed in non-overlapping domains and have discrete functions in patterning the posterior abdomen. It has been proposed that evolutionary changes in Abd-B structure and expression are responsible for the reduction of the dipteran abdomen. We have investigated the relationship between the evolution of the Abd-B gene and abdominal reduction by analyzing the structure and expression of homologs from four additional dipterans representing distinct clades within the order. The lower dipteran mosquito Anopheles gambiae expresses a single Abd-B transcript class, as do two species phylogenetically intermediate to mosquitoes and drosophilids. These results delimit the evolution of distinct functional Abd-B isoforms to within the dipteran radiation after the origin of the reduced abdominal morphology. Furthermore, we found that the spatial distribution of Abd-B transcripts in non-drosophilid Diptera is identical to the combined domains of the two D. melanogaster Abd-B transcripts. Therefore, neither the structural evolution nor changes in the spatial regulation of Abd-B account for the derived abdomen of higher Diptera. The recent subfunctionalization of this Hox gene has occurred without any apparent morphological correlate. We conclude that regulatory modifications to developmental programs downstream of or parallel to Abd-B are responsible for the evolutionary reduction of the higher dipteran postabdomen.
Collapse
Affiliation(s)
- John H Yoder
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, 53706, USA
| | | |
Collapse
|
41
|
Joulia L, Deutsch J, Bourbon HM, Cribbs DL. The specification of a highly derived arthropod appendage, the Drosophila labial palps, requires the joint action of selectors and signaling pathways. Dev Genes Evol 2006; 216:431-42. [PMID: 16773339 DOI: 10.1007/s00427-006-0086-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Accepted: 05/01/2006] [Indexed: 11/25/2022]
Abstract
The remarkable diversity of form in arthropods reflects flexible genetic programs deploying many conserved genes. In the insect model Drosophila melanogaster, diversity of form can be observed between serially homologous appendages or when a single appendage is transformed by homeotic mutations, such as the adult labial mouthparts that can present alternative antennal, prothoracic, or maxillary identities. We have examined the roles of the Hox selector genes proboscipedia (pb) and Sex combs reduced (Scr), and the antennal selectors homothorax (hth) and spineless (ss) in labial specification, by tissue-directed mitotic recombination. Whereas loss of pb function transforms labium to prothoracic leg, loss of Scr, hth, or ss functions results in little or no change in labial specification. Results of analysis of single and multiple mutant combinations support a genetic hierarchy in which the homeotic pb gene possesses a primary role. It is surprising to note that while loss of ss activity alone had no detected effect, all mutant combinations lacking both pb and ss yielded the most severe phenotype observed: stunted, apparently tripartite legs that may correspond to a default state. The roles of the four selector genes are functionally linked to a cell nonautonomous mechanism involving the coupled activities of the decapentaplegic (dpp)/TGF-beta and wingless (wg)/Wnt signaling pathways. Accordingly, several mutant combinations impaired in dpp signaling were seen to reorient labial-to-leg transformations toward antennal aristae. A crucial aspect of selector function in development and evolution may be in regulating diffusible signals, including those emitted by dpp and wg.
Collapse
Affiliation(s)
- Laurent Joulia
- Centre de Biologie du Développement, CNRS, 118 route de Narbonne, 31062 Toulouse Cedex 04, France.
| | | | | | | |
Collapse
|
42
|
Angelini DR, Liu PZ, Hughes CL, Kaufman TC. Hox gene function and interaction in the milkweed bug Oncopeltus fasciatus (Hemiptera). Dev Biol 2005; 287:440-55. [PMID: 16183053 DOI: 10.1016/j.ydbio.2005.08.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Revised: 06/30/2005] [Accepted: 08/09/2005] [Indexed: 10/25/2022]
Abstract
Studies in genetic model organisms such as Drosophila have demonstrated that the homeotic complex (Hox) genes impart segmental identity during embryogenesis. Comparative studies in a wide range of other insect taxa have shown that the Hox genes are expressed in largely conserved domains along the anterior-posterior body axis, but whether they are performing the same functions in different insects is an open question. Most of the Hox genes have been studied functionally in only a few holometabolous insects that undergo metamorphosis. Thus, it is unclear how the Hox genes are functioning in the majority of direct-developing insects and other arthropods. To address this question, we used a combination of RNAi and in situ hybridization to reveal the expression, functions, and regulatory interactions of the Hox genes in the milkweed bug Oncopeltus fasciatus. Our results reveal many similarities and some interesting differences compared to Drosophila. We find that the gene Antennapedia is required for the identity of all three thoracic segments, while Ultrabithorax, abdominal-A and Abdominal-B cooperate to pattern the abdomen. The three abdominal genes exhibit posterior prevalence like in Drosophila, but apparently via some post-transcriptional mechanism. The functions of the head genes proboscipedia, Deformed, and Sex combs reduced were shown previously, and here we find that the complex temporal expression of pb in the labium is like that of other insects, but its regulatory relationship with Scr is unique. Overall, our data reveal that the evolution of insect Hox genes has included many small changes within general conservation of expression and function, and that the milkweed bug provides a useful model for understanding the roles of Hox genes in a direct-developing insect.
Collapse
Affiliation(s)
- David R Angelini
- Department of Biology, Indiana University, 1001 E. Third St., Bloomington, IN 47405-7005, USA
| | | | | | | |
Collapse
|
43
|
DeFalco T, Le Bras S, Van Doren M. Abdominal-B is essential for proper sexually dimorphic development of the Drosophila gonad. Mech Dev 2005; 121:1323-33. [PMID: 15454263 DOI: 10.1016/j.mod.2004.07.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Revised: 06/30/2004] [Accepted: 07/01/2004] [Indexed: 11/19/2022]
Abstract
Sexual dimorphism requires the integration of positional information in the embryo with the sex determination pathway. Homeotic genes are a major source of positional information responsible for patterning along the anterior-posterior axis in embryonic development, and are likely to play a critical role in sexual dimorphism. Here, we investigate the role of homeotic genes in the sexually dimorphic development of the gonad in Drosophila. We have found that Abdominal-B (ABD-B) is expressed in a sexually dimorphic manner in the embryonic gonad. Furthermore, Abd-B is necessary and sufficient for specification of a sexually dimorphic cell type, the male-specific somatic gonadal precursors (msSGPs). In Abd-B mutants, the msSGPs are not specified and male gonads now resemble female gonads with respect to these cells. Ectopic expression of Abd-B is sufficient to induce formation of extra msSGPs in additional segments of the embryo. Abd-B works together with abdominal-A to pattern the non-sexually dimorphic somatic gonad in both sexes, while Abd-B alone specifies the msSGPs. Our results indicate that Abd-B acts at multiple levels to regulate gonad development and that Abd-B class homeotic genes are conserved factors in establishing gonad sexual dimorphism in diverse species.
Collapse
Affiliation(s)
- Tony DeFalco
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, 305 Mudd Hall, Baltimore, MD 21218, USA
| | | | | |
Collapse
|
44
|
Joulia L, Bourbon HM, Cribbs DL. Homeotic proboscipedia function modulates hedgehog-mediated organizer activity to pattern adult Drosophila mouthparts. Dev Biol 2005; 278:496-510. [PMID: 15680366 DOI: 10.1016/j.ydbio.2004.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Revised: 10/25/2004] [Accepted: 11/03/2004] [Indexed: 11/24/2022]
Abstract
Drosophila proboscipedia (pb; HoxA2/B2 homolog) mutants develop distal legs in place of their adult labial mouthparts. Here we examine how pb homeotic function distinguishes the developmental programs of labium and leg. We find that the labial-to-leg transformation in pb mutants occurs progressively over a 2-day period in mid-development, as viewed with identity markers such as dachshund (dac). This transformation requires hedgehog activity, and involves a morphogenetic reorganization of the labial imaginal disc. Our results implicate pb function in modulating global axial organization. Pb protein acts in at least two ways. First, Pb cell autonomously regulates the expression of target genes such as dac. Second, Pb acts in opposition to the organizing action of hedgehog. This latter action is cell-autonomous, but has a nonautonomous effect on labial structure, via the negative regulation of wingless/dWnt and decapentaplegic/TGF-beta. This opposition of Pb to hedgehog target expression appears to occur at the level of the conserved transcription factor cubitus interruptus/Gli that mediates hedgehog signaling activity. These results extend selector function to primary steps of tissue patterning, and lead us to suggest the notion of a homeotic organizer.
Collapse
Affiliation(s)
- Laurent Joulia
- Centre de Biologie du Développement-CNRS, 118 route de Narbonne, 31062 Toulouse Cedex 04, France.
| | | | | |
Collapse
|
45
|
Brena C, Liu PZ, Minelli A, Kaufman TC. Abd-B expression in Porcellio scaber Latreille, 1804 (Isopoda: Crustacea): conserved pattern versus novel roles in development and evolution. Evol Dev 2005; 7:42-50. [PMID: 15642088 DOI: 10.1111/j.1525-142x.2005.05005.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Hox genes are intimately involved in patterning the animal body during development and are considered to have had a pivotal role in the evolution of different body plans among the metazoans. From this perspective, crustaceans, a group that has evolved an extreme diversity of body structures, represent a choice group in which to study the evolution of these genes and their expression. The expression of one of these genes, Abdominal-B (Abd-B), has only been studied in two distantly related crustaceans, Artemia and Sacculina, where it shows dissimilar patterns, highly differentiated from the one described in other arthropods. Moreover, we have no information for the Malacostraca. Thus, we cloned the gene Abd-B and followed its expression through development by in situ hybridization in the isopod Porcellio scaber. We found a highly dynamic expression pattern of PsAbd-B during embryonic development. In early stages, it is expressed in the posterior-most part of the germ band, in a domain common to several arthropods studied to date, and later it is expressed in the developing limb buds of the pleon and still later in the endopodites of the third to fifth pleopodites. This raises the interesting possibility of the involvement of this gene in the later respiratory specialization of these appendages. In association with the above expression domain, Abd-B appears to be expressed in later stages also in the ventral ectoderm, raising the further suggestion of its possible involvement in patterning the developing nervous system. Moreover, we show that the first pleopod and the endopodite of the second pleopod, whereas present as limb buds in early embryonic stages, are later reduced and actually absent in the first postembryonic stage, although they reappear again in adults. These appendages thus represent an example of Lazarus appendages. Our data show strong plasticity in the use of a key developmental gene and point out the necessity of further research that may end with a revision of the current understanding of its role in animal evolution.
Collapse
Affiliation(s)
- C Brena
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | | | |
Collapse
|
46
|
Abstract
During development of higher organisms, most patterning events occur in growing tissues. Thus, unraveling the mechanism of how growing tissues are patterned into final morphologies has been an essential subject of developmental biology. Limb or appendage development in both vertebrates and invertebrates has attracted great attention from many researchers for a long time, because they involve almost all developmental processes required for tissue patterning, such as generation of the positional information by morphogen, subdivision of the tissue into distinct parts according to the positional information, localized cell growth and proliferation, and control of adhesivity, movement and shape changes of cells. The Drosophila leg development is a good model system, upon which a substantial amount of knowledge has been accumulated. In this review, the current understanding of the mechanism of Drosophila leg development is described.
Collapse
Affiliation(s)
- Tetsuya Kojima
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
47
|
Abstract
The imaginal discs of Drosophila melanogaster are an excellent material with which to analyze how signaling pathways and Hox genes control growth and pattern formation. The study of one of these discs, the genital disc, offers, in addition, the possibility of integrating the sex determination pathway into this analysis. This disc, whose growth and shape are sexually dimorphic, gives rise to the genitalia and analia, the more posterior structures of the fruit fly. Male genitalia, which develop from the ninth abdominal segment, and female genitalia, which develop mostly from the eighth one, display a characteristic array of structures. We will review here some recent findings about the development of these organs. As in other discs, different signaling pathways establish the positional information in the genital primordia. The Hox and sex determination genes modify these signaling routes at different levels to specify the particular growth and differentiation of male and female genitalia.
Collapse
Affiliation(s)
- Beatriz Estrada
- Division of Genetics, HHMI Brigham and Women's Hospital, 20 Shattuck Street, Boston, MA 02115, USA
| | | | | |
Collapse
|
48
|
Abstract
In recent years researchers have analyzed the expression patterns of the Hox genes in a multitude of arthropod species, with the hope of understanding the mechanisms at work in the evolution of the arthropod body plan. Now, with Hox expression data representing all four major groups of arthropods (chelicerates, myriapods, crustaceans, and insects), it seems appropriate to summarize the results and take stock of what has been learned. In this review we summarize the expression and functional data regarding the 10 arthropod Hox genes: labial proboscipedia, Hox3/zen, Deformed, Sex combs reduced, fushi tarazu, Antennapedia, Ultrabithorax, abdominal-A, and Abdominal-B. In addition, we discuss mechanisms of developmental evolutionary change thought to be important for the emergence of novel morphological features within the arthropods.
Collapse
Affiliation(s)
- Cynthia L Hughes
- Howard Hughes Medical Institute, Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|
49
|
Christiansen AE, Keisman EL, Ahmad SM, Baker BS. Sex comes in from the cold: the integration of sex and pattern. Trends Genet 2002; 18:510-6. [PMID: 12350340 DOI: 10.1016/s0168-9525(02)02769-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
There has recently been a revolution in our understanding of how the Drosophila sex-determination hierarchy generates somatic sexual dimorphism. Most significantly, the sex hierarchy has been shown to modulate the activities of well-known signaling molecules (FGF, Wnt and TGF beta proteins) and transcription factors (BAB and DAC) to direct various sex-specific aspects of growth and differentiation. As some of the genes encoding these proteins are also the targets of Hox gene action, these and other findings are revealing the levels at which the sex determination and Hox patterning pathways are integrated to control growth, morphogenesis and differentiation.
Collapse
|
50
|
Lints R, Emmons SW. Regulation of sex-specific differentiation and mating behavior in C. elegans by a new member of the DM domain transcription factor family. Genes Dev 2002; 16:2390-402. [PMID: 12231628 PMCID: PMC187445 DOI: 10.1101/gad.1012602] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mutations in Caenorhabditis elegans gene mab-23 cause abnormal male tail morphology and abolish male fecundity but have no obvious effect in the hermaphrodite. Here we show that mab-23 encodes a DM (Doublesex/MAB-3) domain transcription factor necessary for specific aspects of differentiation in sex-specific tissues of the male. mab-23 is required for the patterning of posterior sensory neurons in the male nervous system, sex muscle differentiation, and morphogenesis of the posterior hypodermis, spicules, and proctodeum. Failure of mab-23 mutant males to sire progeny is due primarily to defective sex muscle-mediated turning during copulatory behavior and likely compounded by impairment of sperm passage through the proctodeum. In the male nervous system, mab-23 refines ray neuron subtype distribution by restricting expression of dopaminergic neurotransmitter identity through interactions with the Hox gene egl-5 and a TGF-beta-related signaling pathway. mab-23 has distinct roles and functions independent of mab-3, indicating different aspects of C. elegans male sexual differentiation are coordinated among DM domain family members. Our results support the hypothesis that DM domain genes derive from an ancestral male sexual regulator and suggest how regulation of sexual development has evolved in distinct ways in different phyla.
Collapse
Affiliation(s)
- Robyn Lints
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|