1
|
Aguillon R, Madelaine R, Aguirrebengoa M, Guturu H, Link S, Dufourcq P, Lecaudey V, Bejerano G, Blader P, Batut J. Morphogenesis is transcriptionally coupled to neurogenesis during peripheral olfactory organ development. Development 2020; 147:226001. [PMID: 33144399 DOI: 10.1242/dev.192971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 10/28/2020] [Indexed: 01/04/2023]
Abstract
Sense organs acquire their distinctive shapes concomitantly with the differentiation of sensory cells and neurons necessary for their function. Although our understanding of the mechanisms controlling morphogenesis and neurogenesis in these structures has grown, how these processes are coordinated remains largely unexplored. Neurogenesis in the zebrafish olfactory epithelium requires the bHLH proneural transcription factor Neurogenin 1 (Neurog1). To address whether Neurog1 also controls morphogenesis, we analysed the migratory behaviour of early olfactory neural progenitors in neurog1 mutant embryos. Our results indicate that the oriented movements of these progenitors are disrupted in this context. Morphogenesis is similarly affected by mutations in the chemokine receptor gene, cxcr4b, suggesting it is a potential Neurog1 target gene. We find that Neurog1 directly regulates cxcr4b through an E-box cluster located just upstream of the cxcr4b transcription start site. Our results suggest that proneural transcription factors, such as Neurog1, directly couple distinct aspects of nervous system development.
Collapse
Affiliation(s)
- Raphaël Aguillon
- Centre de Biologie du Développement (CBD, UMR5547), Centre de Biologie Intégrative (CBI, FR 3743), Université de Toulouse, CNRS, UPS, 31062, France
| | - Romain Madelaine
- Centre de Biologie du Développement (CBD, UMR5547), Centre de Biologie Intégrative (CBI, FR 3743), Université de Toulouse, CNRS, UPS, 31062, France
| | - Marion Aguirrebengoa
- BigA Core Facility, Centre de Biologie Intégrative (CBI, FR 3743), Université de Toulouse, CNRS, UPS, 31062, France
| | - Harendra Guturu
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Sandra Link
- BIOSS Centre for Biological Signalling Studies, Albert Ludwigs University of Freiburg, D-79104 Freiburg im Breisgau, Germany
| | - Pascale Dufourcq
- Centre de Biologie du Développement (CBD, UMR5547), Centre de Biologie Intégrative (CBI, FR 3743), Université de Toulouse, CNRS, UPS, 31062, France
| | - Virginie Lecaudey
- BIOSS Centre for Biological Signalling Studies, Albert Ludwigs University of Freiburg, D-79104 Freiburg im Breisgau, Germany
| | - Gill Bejerano
- Department of Developmental Biology, Department of Computer Science, Department of Pediatrics, Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Patrick Blader
- Centre de Biologie du Développement (CBD, UMR5547), Centre de Biologie Intégrative (CBI, FR 3743), Université de Toulouse, CNRS, UPS, 31062, France
| | - Julie Batut
- Centre de Biologie du Développement (CBD, UMR5547), Centre de Biologie Intégrative (CBI, FR 3743), Université de Toulouse, CNRS, UPS, 31062, France
| |
Collapse
|
2
|
Schwarzer S, Asokan N, Bludau O, Chae J, Kuscha V, Kaslin J, Hans S. Neurogenesis in the inner ear: the zebrafish statoacoustic ganglion provides new neurons from a Neurod/Nestin-positive progenitor pool well into adulthood. Development 2020; 147:dev.176750. [PMID: 32165493 DOI: 10.1242/dev.176750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 02/25/2020] [Indexed: 01/13/2023]
Abstract
The vertebrate inner ear employs sensory hair cells and neurons to mediate hearing and balance. In mammals, damaged hair cells and neurons are not regenerated. In contrast, hair cells in the inner ear of zebrafish are produced throughout life and regenerate after trauma. However, it is unknown whether new sensory neurons are also formed in the adult zebrafish statoacoustic ganglion (SAG), the sensory ganglion connecting the inner ear to the brain. Using transgenic lines and marker analysis, we identify distinct cell populations and anatomical landmarks in the juvenile and adult SAG. In particular, we analyze a Neurod/Nestin-positive progenitor pool that produces large amounts of new neurons at juvenile stages, which transitions to a quiescent state in the adult SAG. Moreover, BrdU pulse chase experiments reveal the existence of a proliferative but otherwise marker-negative cell population that replenishes the Neurod/Nestin-positive progenitor pool at adult stages. Taken together, our study represents the first comprehensive characterization of the adult zebrafish SAG showing that zebrafish, in sharp contrast to mammals, display continued neurogenesis in the SAG well beyond embryonic and larval stages.
Collapse
Affiliation(s)
- Simone Schwarzer
- Center for Regenerative Therapies Dresden (CRTD), Cluster of Excellence, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Nandini Asokan
- Center for Regenerative Therapies Dresden (CRTD), Cluster of Excellence, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Oliver Bludau
- Center for Regenerative Therapies Dresden (CRTD), Cluster of Excellence, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Jeongeun Chae
- Center for Regenerative Therapies Dresden (CRTD), Cluster of Excellence, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Veronika Kuscha
- Center for Regenerative Therapies Dresden (CRTD), Cluster of Excellence, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Jan Kaslin
- Center for Regenerative Therapies Dresden (CRTD), Cluster of Excellence, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Stefan Hans
- Center for Regenerative Therapies Dresden (CRTD), Cluster of Excellence, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
3
|
Liao BK, Jörg DJ, Oates AC. Faster embryonic segmentation through elevated Delta-Notch signalling. Nat Commun 2016; 7:11861. [PMID: 27302627 PMCID: PMC4912627 DOI: 10.1038/ncomms11861] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 05/06/2016] [Indexed: 12/21/2022] Open
Abstract
An important step in understanding biological rhythms is the control of period. A multicellular, rhythmic patterning system termed the segmentation clock is thought to govern the sequential production of the vertebrate embryo's body segments, the somites. Several genetic loss-of-function conditions, including the Delta-Notch intercellular signalling mutants, result in slower segmentation. Here, we generate DeltaD transgenic zebrafish lines with a range of copy numbers and correspondingly increased signalling levels, and observe faster segmentation. The highest-expressing line shows an altered oscillating gene expression wave pattern and shortened segmentation period, producing embryos with more, shorter body segments. Our results reveal surprising differences in how Notch signalling strength is quantitatively interpreted in different organ systems, and suggest a role for intercellular communication in regulating the output period of the segmentation clock by altering its spatial pattern. Rhythmic patterning governs the formation of somites in vertebrates, but how the period of such rhythms can be changed is unclear. Here, the authors generate a genetic model in zebrafish to increase DeltaD expression, which increases the range of Delta-Notch signalling, causing faster segmentation.
Collapse
Affiliation(s)
- Bo-Kai Liao
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden 01037, Germany.,Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW7 1AA, UK
| | - David J Jörg
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, Dresden 01187, Germany
| | - Andrew C Oates
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden 01037, Germany.,Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW7 1AA, UK.,Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
4
|
Zaucker A, Mercurio S, Sternheim N, Talbot WS, Marlow FL. notch3 is essential for oligodendrocyte development and vascular integrity in zebrafish. Dis Model Mech 2013; 6:1246-59. [PMID: 23720232 PMCID: PMC3759344 DOI: 10.1242/dmm.012005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 05/22/2013] [Indexed: 01/08/2023] Open
Abstract
Mutations in the human NOTCH3 gene cause CADASIL syndrome (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy). CADASIL is an inherited small vessel disease characterized by diverse clinical manifestations including vasculopathy, neurodegeneration and dementia. Here we report two mutations in the zebrafish notch3 gene, one identified in a previous screen for mutations with reduced expression of myelin basic protein (mbp) and another caused by a retroviral insertion. Reduced mbp expression in notch3 mutant embryos is associated with fewer oligodendrocyte precursor cells (OPCs). Despite an early neurogenic phenotype, mbp expression recovered at later developmental stages and some notch3 homozygous mutants survived to adulthood. These mutants, as well as adult zebrafish carrying both mutant alleles together, displayed a striking stress-associated accumulation of blood in the head and fins. Histological analysis of mutant vessels revealed vasculopathy, including: an enlargement (dilation) of vessels in the telencephalon and fin, disorganization of the normal stereotyped arrangement of vessels in the fin, and an apparent loss of arterial morphological structure. Expression of hey1, a well-known transcriptional target of Notch signaling, was greatly reduced in notch3 mutant fins, suggesting that Notch3 acts via a canonical Notch signaling pathway to promote normal vessel structure. Ultrastructural analysis confirmed the presence of dilated vessels in notch3 mutant fins and revealed that the vessel walls of presumed arteries showed signs of deterioration. Gaps in the arterial wall and the presence of blood cells outside of vessels in mutants indicated that compromised vessel structure led to hemorrhage. In notch3 heterozygotes, we found elevated expression of both notch3 itself and target genes, indicating that specific alterations in gene expression due to partial loss of Notch3 function might contribute to the abnormalities observed in heterozygous larvae and adults. Our analysis of zebrafish notch3 mutants indicates that Notch3 regulates OPC development and mbp gene expression in larvae, and maintains vascular integrity in adults.
Collapse
Affiliation(s)
- Andreas Zaucker
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Sara Mercurio
- Department of Developmental Biology, Stanford University School of Medicine, Beckman Center B300, 279 Campus Drive, Stanford, CA 94305, USA
| | - Nitzan Sternheim
- Department of Developmental Biology, Stanford University School of Medicine, Beckman Center B300, 279 Campus Drive, Stanford, CA 94305, USA
| | - William S. Talbot
- Department of Developmental Biology, Stanford University School of Medicine, Beckman Center B300, 279 Campus Drive, Stanford, CA 94305, USA
| | - Florence L. Marlow
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| |
Collapse
|
5
|
Abstract
The Notch signaling pathway involves ligand-activated cleavage of the receptor Notch and the interaction of the intracellular fragment with the transcriptional regulators CSL and Mastermind. Additional complexity in the system arises through the differential interaction of Notch with its ligands of the Delta and Serrate families. Glycosylation of the extracellular portion of Notch by Fringe proteins contributes to receptor selectivity toward its ligands. Recent research suggests that a glycosylation-independent function of the Notch epidermal growth factor repeats also plays an important role in specifying activation of Notch by Ser.
Collapse
Affiliation(s)
- Jose F de Celis
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
6
|
Roach G, Heath Wallace R, Cameron A, Emrah Ozel R, Hongay CF, Baral R, Andreescu S, Wallace KN. Loss of ascl1a prevents secretory cell differentiation within the zebrafish intestinal epithelium resulting in a loss of distal intestinal motility. Dev Biol 2013; 376:171-86. [PMID: 23353550 DOI: 10.1016/j.ydbio.2013.01.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 01/05/2013] [Accepted: 01/08/2013] [Indexed: 02/07/2023]
Abstract
The vertebrate intestinal epithelium is renewed continuously from stem cells at the base of the crypt in mammals or base of the fold in fish over the life of the organism. As stem cells divide, newly formed epithelial cells make an initial choice between a secretory or enterocyte fate. This choice has previously been demonstrated to involve Notch signaling as well as Atonal and Her transcription factors in both embryogenesis and adults. Here, we demonstrate that in contrast to the atoh1 in mammals, ascl1a is responsible for formation of secretory cells in zebrafish. ascl1a-/- embryos lack all intestinal epithelial secretory cells and instead differentiate into enterocytes. ascl1a-/- embryos also fail to induce intestinal epithelial expression of deltaD suggesting that ascl1a plays a role in initiation of Notch signaling. Inhibition of Notch signaling increases the number of ascl1a and deltaD expressing intestinal epithelial cells as well as the number of developing secretory cells during two specific time periods: between 30 and 34hpf and again between 64 and 74hpf. Loss of enteroendocrine products results in loss of anterograde motility in ascl1a-/- embryos. 5HT produced by enterochromaffin cells is critical in motility and secretion within the intestine. We find that addition of exogenous 5HT to ascl1a-/- embryos at near physiological levels (measured by differential pulse voltammetry) induce anterograde motility at similar levels to wild type velocity, distance, and frequency. Removal or doubling the concentration of 5HT in WT embryos does not significantly affect anterograde motility, suggesting that the loss of additional enteroendocrine products in ascl1a-/- embryos also contributes to intestinal motility. Thus, zebrafish intestinal epithelial cells appear to have a common secretory progenitor from which all subtypes form. Loss of enteroendocrine cells reveals the critical need for enteroendocrine products in maintenance of normal intestinal motility.
Collapse
Affiliation(s)
- Gillian Roach
- Department of Biology, Clarkson University, 8 Clarkson Ave., Potsdam, NY 13699, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Kroehne V, Freudenreich D, Hans S, Kaslin J, Brand M. Regeneration of the adult zebrafish brain from neurogenic radial glia-type progenitors. Development 2011; 138:4831-41. [PMID: 22007133 DOI: 10.1242/dev.072587] [Citation(s) in RCA: 332] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Severe traumatic injury to the adult mammalian CNS leads to life-long loss of function. By contrast, several non-mammalian vertebrate species, including adult zebrafish, have a remarkable ability to regenerate injured organs, including the CNS. However, the cellular and molecular mechanisms that enable or prevent CNS regeneration are largely unknown. To study brain regeneration mechanisms in adult zebrafish, we developed a traumatic lesion assay, analyzed cellular reactions to injury and show that adult zebrafish can efficiently regenerate brain lesions and lack permanent glial scarring. Using Cre-loxP-based genetic lineage-tracing, we demonstrate that her4.1-positive ventricular radial glia progenitor cells react to injury, proliferate and generate neuroblasts that migrate to the lesion site. The newly generated neurons survive for more than 3 months, are decorated with synaptic contacts and express mature neuronal markers. Thus, regeneration after traumatic lesion of the adult zebrafish brain occurs efficiently from radial glia-type stem/progenitor cells.
Collapse
Affiliation(s)
- Volker Kroehne
- Biotechnology Center and DFG-Research Center for Regenerative Therapies Dresden, Technische Universitat Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | | | | | | | | |
Collapse
|
8
|
Liu X, Huang S, Ma J, Li C, Zhang Y, Luo L. NF-kappaB and Snail1a coordinate the cell cycle with gastrulation. ACTA ACUST UNITED AC 2009; 184:805-15. [PMID: 19307597 PMCID: PMC2699144 DOI: 10.1083/jcb.200806074] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cell cycle needs to strictly coordinate with developmental processes to ensure correct generation of the body plan and different tissues. However, the molecular mechanism underlying the coordination remains largely unknown. In this study, we investigate how the cell cycle coordinates gastrulation cell movements in zebrafish. We present a system to modulate the cell cycle in early zebrafish embryos by manipulating the geminin-Cdt1 balance. Alterations of the cell cycle change the apoptotic level during gastrulation, which correlates with the nuclear level of antiapoptotic nuclear factor κB (NF-κB). NF-κB associates with the Snail1a promoter region on the chromatin and directly activates Snail1a, an important factor controlling cell delamination, which is the initial step of mesendodermal cell movements during gastrulation. In effect, the cell cycle coordinates the delamination of mesendodermal cells through the transcription of Snail1a. Our results suggest a molecular mechanism by which NF-κB and Snail1a coordinate the cell cycle through gastrulation.
Collapse
Affiliation(s)
- Xiaolin Liu
- Key Laboratory of Aquatic Organism Reproduction and Development, Ministry of Education, Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Beibei, Chongqing, China
| | | | | | | | | | | |
Collapse
|
9
|
Rasmussen SLK, Holland LZ, Schubert M, Beaster-Jones L, Holland ND. Amphioxus AmphiDelta: evolution of Delta protein structure, segmentation, and neurogenesis. Genesis 2007; 45:113-22. [PMID: 17299746 DOI: 10.1002/dvg.20278] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The amphioxus genome has a single Delta gene (AmphiDelta) encoding a protein 766 amino acids long. Comparison of Delta proteins of amphioxus and other animals indicates that AmphiDelta retains features of a basal bilaterian Delta protein--in having nine epidermal growth factor (EGF) repeats and also in having characteristic numbers of amino acids separating successive cysteines between and within EGF repeats. During development, AmphiDelta is expressed in the forming somites, in some regions of pharyngeal endoderm, and in cells (presumably differentiating neurons) scattered in both the neural plate and ectoderm. Expression is strongly associated with cells initiating movements to separate themselves from parent epithelia, either en masse by evagination (endoderm and mesoderm) or by delamination as isolated cells (ectoderm). The AmphiDelta-expressing cells delaminating from the ectoderm apparently migrate beneath it as they begin differentiating into probable sensory neurons, suggesting a scenario for the evolutionary origin of the placode-derived neurons of vertebrate cranial ganglia.
Collapse
Affiliation(s)
- Stacy L K Rasmussen
- Division of Marine Biology Research, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093-0202, USA
| | | | | | | | | |
Collapse
|
10
|
Nakayama K, Nagase K, Tokutake Y, Koh CS, Hiratochi M, Ohkawara T, Nakayama N. Multiple POU-binding motifs, recognized by tissue-specific nuclear factors, are important for Dll1 gene expression in neural stem cells. Biochem Biophys Res Commun 2005; 325:991-6. [PMID: 15541387 DOI: 10.1016/j.bbrc.2004.10.138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Indexed: 10/26/2022]
Abstract
We cloned the 5'-flanking region of the mouse homolog of the Delta gene (Dll1) and demonstrated that the sequence between nucleotide position -514 and -484 in the 5'-flanking region of Dll1 played a critical role in the regulation of its tissue-specific expression in neural stem cells (NSCs). Further, we showed that multiple POU-binding motifs, located within this short sequence of 30bp, were essential for transcriptional activation of Dll1 and also that multiple tissue-specific nuclear factors recognized these POU-binding motifs in various combinations through differentiation of NSCs. Thus, POU-binding factors may play an important role in Dll1 expression in developing NSCs.
Collapse
Affiliation(s)
- Kohzo Nakayama
- Department of Anatomy, Shinshu University, School of Medicine, Matsumoto, Nagano 390-8621, Japan.
| | | | | | | | | | | | | |
Collapse
|
11
|
Boffelli D, Nobrega MA, Rubin EM. Comparative genomics at the vertebrate extremes. Nat Rev Genet 2004; 5:456-65. [PMID: 15153998 DOI: 10.1038/nrg1350] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Dario Boffelli
- DOE Joint Genome Institute, Walnut Creek, California 94598, USA
| | | | | |
Collapse
|
12
|
Dickmeis T, Plessy C, Rastegar S, Aanstad P, Herwig R, Chalmel F, Fischer N, Strähle U. Expression profiling and comparative genomics identify a conserved regulatory region controlling midline expression in the zebrafish embryo. Genome Res 2004; 14:228-38. [PMID: 14718378 PMCID: PMC327098 DOI: 10.1101/gr.1819204] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Differential gene transcription is a fundamental regulatory mechanism of biological systems during development, body homeostasis, and disease. Comparative genomics is believed to be a rapid means for the identification of regulatory sequences in genomes. We tested this approach to identify regulatory sequences that control expression in the midline of the zebrafish embryo. We first isolated a set of genes that are coexpressed in the midline of the zebrafish embryo during somitogenesis stages by gene array analysis and subsequent rescreens by in situ hybridization. We subjected 45 of these genes to Compare and DotPlot analysis to detect conserved sequences in noncoding regions of orthologous loci in the zebrafish and Takifugu genomes. The regions of homology that were scored in nonconserved regions were inserted into expression vectors and tested for their regulatory activity by transient transgenesis in the zebrafish embryo. We identified one conserved region from the connective tissue growth factor gene (ctgf), which was able to drive expression in the midline of the embryo. This region shares sequence similarity with other floor plate/notochord-specific regulatory regions. Our results demonstrate that an unbiased comparative approach is a relevant method for the identification of tissue-specific cis-regulatory sequences in the zebrafish embryo.
Collapse
Affiliation(s)
- Thomas Dickmeis
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, BP 10142, F-67404 Illkirch Cedex, C.U. de Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Stuckenholz C, Ulanch PE, Bahary N. From guts to brains: using zebrafish genetics to understand the innards of organogenesis. Curr Top Dev Biol 2004; 65:47-82. [PMID: 15642379 DOI: 10.1016/s0070-2153(04)65002-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Carsten Stuckenholz
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pennsylvania 15261, USA
| | | | | |
Collapse
|
15
|
Abstract
Vertebrate segmentation is manifested during embryonic development as serially repeated units termed somites that give rise to vertebrae, ribs, skeletal muscle and dermis. Many theoretical models including the "clock and wavefront" model have been proposed. There is compelling genetic evidence showing that Notch-Delta signaling is indispensable for somitogenesis. Notch receptor and its target genes, Hairy/E(spl) homologues, are known to be crucial for the ticking of the segmentation clock. Through the work done in mouse, chick, Xenopus and zebrafish, an oscillator operated by cyclical transcriptional activation and delayed negative feedback regulation is emerging as the fundamental mechanism underlying the segmentation clock. Ubiquitin-dependent protein degradation and probably other posttranslational regulations are also required. Fgf8 and Wnt3a gradients are important in positioning somite boundaries and, probably, in coordinating tail growth and segmentation. The circadian clock is another biochemical oscillator, which, similar to the segmentation clock, is operated with a negative transcription-regulated feedback mechanism. While the circadian clock uses a more complicated network of pathways to achieve homeostasis, it appears that the segmentation clock exploits the Notch pathway to achieve both signal generation and synchronization. We also discuss mathematical modeling and future directions in the end.
Collapse
Affiliation(s)
- Padmashree C G Rida
- Laboratory of Developmental Signalling and Patterning, Institute of Molecular and Cell Biology, National University of Singapore, Singapore 117604, Singapore
| | | | | |
Collapse
|