1
|
Spirov AV, Myasnikova EM, Holloway DM. Body plan evolvability: The role of variability in gene regulatory networks. J Bioinform Comput Biol 2024; 22:2450011. [PMID: 39036846 DOI: 10.1142/s0219720024500112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Recent computational modeling of early fruit fly (Drosophila) development has characterized the degree to which gene regulation networks can be robust to natural variability. In the first few hours of development, broad spatial gradients of maternally derived transcription factors activate embryonic gap genes. These gap patterns determine the subsequent segmented insect body plan through pair-rule gene expression. Gap genes are expressed with greater spatial precision than the maternal patterns. Computational modeling of the gap-gap regulatory interactions provides a mechanistic understanding for this robustness to maternal variability in wild-type (WT) patterning. A long-standing question in evolutionary biology has been how a system which is robust, such as the developmental program creating any particular species' body plan, is also evolvable, i.e. how can a system evolve or speciate, if the WT form is strongly buffered and protected? In the present work, we use the WT model to explore the breakdown of such Waddington-type 'canalization'. What levels of variability will push the system out of the WT form; are there particular pathways in the gene regulatory mechanism which are more susceptible to losing the WT form; and when robustness is lost, what types of forms are most likely to occur (i.e. what forms lie near the WT)? Manipulating maternal effects in several different pathways, we find a common gap 'peak-to-step' pattern transition in the loss of WT. We discuss these results in terms of the evolvability of insect segmentation, and in terms of experimental perturbations and mutations which could test the model predictions. We conclude by discussing the prospects for using continuum models of pattern dynamics to investigate a wider range of evo-devo problems.
Collapse
Affiliation(s)
- Alexander V Spirov
- Lab Modeling of Evolution, I. M. Sechenov Institute of Evolutionary Physiology & Biochemistry, Russian Academy of Sciences, Thorez Pr. 44, St. Petersburg 2194223, Russia
| | - Ekaterina M Myasnikova
- Lab Modeling of Evolution, I. M. Sechenov Institute of Evolutionary Physiology & Biochemistry, Russian Academy of Sciences, Thorez Pr. 44, St. Petersburg 2194223, Russia
| | - David M Holloway
- Mathematics Department, British Columbia Institute of Technology, 3700 Willingdon Ave., Burnaby, B.C. V5G 3H2, Canada
| |
Collapse
|
2
|
Baumgartner S. Revisiting bicoid function: complete inactivation reveals an additional fundamental role in Drosophila egg geometry specification. Hereditas 2024; 161:1. [PMID: 38167241 PMCID: PMC10759373 DOI: 10.1186/s41065-023-00305-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
INTRODUCTION The bicoid (bcd) gene in Drosophila has served as a paradigm for a morphogen in textbooks for decades. Discovered in 1986 as a mutation affecting anterior development in the embryo, its expression pattern as a protein gradient later confirmed the prediction from transplantation experiments. These experiments suggested that the protein fulfills the criteria of a true morphogen, with the existence of a homeodomain crucial for activation of genes along the anterior-posterior axis, based on the concentration of the morphogen. The bcd gene undergoes alternative splicing, resulting in, among other isoforms, a small and often neglected isoform with low abundance, which lacks the homeodomain, termed small bicoid (smbcd). Most importantly, all known classical strong bcd alleles used in the past to determine bcd function apparently do not affect the function of this isoform. RESULTS To overcome the uncertainty regarding which isoform regulates what, I removed the bcd locus entirely using CRISPR technology. bcdCRISPR eggs exhibited a short and round appearance. The phenotype could be ascribed to smbcd because all bcd alleles affecting the function of the major transcript, termed large bicoid (lgbcd) showed normally sized eggs. Several patterning genes for the embryo showed expression in the oocyte, and their expression patterns were altered in bcdCRISPR oocytes. In bcdCRISPR embryos, all downstream segmentation genes showed altered expression patterns, consistent with the expression patterns in "classical" alleles; however, due to the altered egg geometry resulting in fewer blastoderm nuclei, additional constraints came into play, further affecting their expression patterns. CONCLUSIONS This study unveils a novel and fundamental role of bcd in shaping the egg's geometry. This discovery demands a comprehensive revision of our understanding of this important patterning gene and prompts a reevaluation of past experiments conducted under the assumption that bcd mutants were bcdnull-mutants.
Collapse
Affiliation(s)
- Stefan Baumgartner
- Dept. of Experimental Medical Sciences, Lund University, Lund, S-22184, Sweden.
| |
Collapse
|
3
|
Myasnikova E, Spirov A. Relative sensitivity analysis of the predictive properties of sloppy models. J Bioinform Comput Biol 2018; 16:1840008. [DOI: 10.1142/s0219720018400085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Commonly among the model parameters characterizing complex biological systems are those that do not significantly influence the quality of the fit to experimental data, so-called “sloppy” parameters. The sloppiness can be mathematically expressed through saturating response functions (Hill’s, sigmoid) thereby embodying biological mechanisms responsible for the system robustness to external perturbations. However, if a sloppy model is used for the prediction of the system behavior at the altered input (e.g. knock out mutations, natural expression variability), it may demonstrate the poor predictive power due to the ambiguity in the parameter estimates. We introduce a method of the predictive power evaluation under the parameter estimation uncertainty, Relative Sensitivity Analysis. The prediction problem is addressed in the context of gene circuit models describing the dynamics of segmentation gene expression in Drosophila embryo. Gene regulation in these models is introduced by a saturating sigmoid function of the concentrations of the regulatory gene products. We show how our approach can be applied to characterize the essential difference between the sensitivity properties of robust and non-robust solutions and select among the existing solutions those providing the correct system behavior at any reasonable input. In general, the method allows to uncover the sources of incorrect predictions and proposes the way to overcome the estimation uncertainties.
Collapse
Affiliation(s)
- Ekaterina Myasnikova
- Center for Advanced Studies, St. Petersburg State Polytechnical University 29, Polytekhnicheskaya, St. Petersburg 195251, Russia
| | - Alexander Spirov
- Computer Science and CEWIT, SUNY Stony Brook 1500 Stony Brook Road, Stony Brook, NY 11794, USA
- Lab Modeling of Evolution I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry Russian Academy of Sciences, Pr. Torez 44, St. Petersburg 194223, Russia
| |
Collapse
|
4
|
True equilibrium measurement of transcription factor-DNA binding affinities using automated polarization microscopy. Nat Commun 2018; 9:1605. [PMID: 29686282 PMCID: PMC5913336 DOI: 10.1038/s41467-018-03977-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 03/16/2018] [Indexed: 01/31/2023] Open
Abstract
The complex patterns of gene expression in metazoans are controlled by selective binding of transcription factors (TFs) to regulatory DNA. To improve the quantitative understanding of this process, we have developed a novel method that uses fluorescence anisotropy measurements in a controlled delivery system to determine TF-DNA binding energies in solution with high sensitivity and throughput. Owing to its large dynamic range, the method, named high performance fluorescence anisotropy (HiP-FA), allows for reliable quantification of both weak and strong binding; binding specificities are calculated on the basis of equilibrium constant measurements for mutational DNA variants. We determine the binding preference landscapes for 26 TFs and measure high absolute affinities, but mostly lower binding specificities than reported by other methods. The revised binding preferences give rise to improved predictions of in vivo TF occupancy and enhancer expression. Our approach provides a powerful new tool for the systems-biological analysis of gene regulation. Methods to measure selective transcription factor-DNA binding often lack sensitivity and are not performed in solution. Here the authors develop a method to perform fluorescence anisotropy measurements of transcription factor-DNA binding energies with high sensitivity and throughput.
Collapse
|
5
|
Fradin C. On the importance of protein diffusion in biological systems: The example of the Bicoid morphogen gradient. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1676-1686. [PMID: 28919007 DOI: 10.1016/j.bbapap.2017.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 08/16/2017] [Accepted: 09/05/2017] [Indexed: 10/18/2022]
Abstract
Morphogens are proteins that form concentration gradients in embryos and developing tissues, where they act as postal codes, providing cells with positional information and allowing them to behave accordingly. Bicoid was the first discovered morphogen, and remains one of the most studied. It regulates segmentation in flies, forming a striking exponential gradient along the anterior-posterior axis of early Drosophila embryos, and activating the transcription of multiple target genes in a concentration-dependent manner. In this review, the work done by us and by others to characterize the mobility of Bicoid in D. melanogaster embryos is presented. The central role played by the diffusion of Bicoid in both the establishment of the gradient and the activation of target genes is discussed, and placed in the context of the need for these processes to be all at once rapid, precise and robust. The Bicoid system, and morphogen gradients in general, remain amongst the most amazing examples of the coexistence, often observed in living systems, of small-scale disorder and large-scale spatial order. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman.
Collapse
Affiliation(s)
- Cécile Fradin
- Dept. of Physics and Astronomy, McMaster University, 1280 Main St W., Hamilton, ON L8S 4M1, Canada
| |
Collapse
|
6
|
Liu J, Ma J. Modulation of temporal dynamics of gene transcription by activator potency in the Drosophila embryo. Development 2015; 142:3781-90. [PMID: 26395487 DOI: 10.1242/dev.126946] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/07/2015] [Indexed: 12/24/2022]
Abstract
The Drosophila embryo at the mid-blastula transition (MBT) concurrently experiences a receding first wave of zygotic transcription and the surge of a massive second wave. It is not well understood how genes in the first wave become turned off transcriptionally and how their precise timing may impact embryonic development. Here we perturb the timing of the shutdown of Bicoid (Bcd)-dependent hunchback (hb) transcription in the embryo through the use of a Bcd mutant that has heightened activating potency. A delayed shutdown specifically increases Bcd-activated hb levels, and this alters spatial characteristics of the patterning outcome and causes developmental defects. Our study thus documents a specific participation of maternal activator input strength in the timing of molecular events in precise accordance with MBT morphological progression.
Collapse
Affiliation(s)
- Junbo Liu
- Division of Biomedical Informatics, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Jun Ma
- Division of Biomedical Informatics, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA Division of Developmental Biology, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| |
Collapse
|
7
|
Probing the impact of temperature on molecular events in a developmental system. Sci Rep 2015; 5:13124. [PMID: 26286011 PMCID: PMC4541335 DOI: 10.1038/srep13124] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/16/2015] [Indexed: 01/19/2023] Open
Abstract
A well-appreciated general feature of development is the ability to achieve a normal outcome despite the inevitable variability at molecular, genetic, or environmental levels. But it is not well understood how changes in a global factor such as temperature bring about specific challenges to a developmental system in molecular terms. Here we address this question using early Drosophila embryos where the maternal gradient Bicoid (Bcd) instructs anterior-patterning (AP) patterning. We show that temperature can impact the amplitude of the Bcd gradient in the embryo. To evaluate how molecular decisions are made at different temperatures, we quantify Bcd concentrations and the expression of its target gene hunchback (hb) in individual embryos. Our results suggest a relatively robust Bcd concentration threshold in inducing hb transcription within a temperature range. Our results also reveal a complex nature of the effects of temperature on the progressions of developmental and molecular events of the embryo. Our study thus advances the concept of developmental robustness by quantitatively elaborating specific features and challenges—imposed by changes in temperature—that an embryo must resolve.
Collapse
|
8
|
Ilsley GR, Fisher J, Apweiler R, DePace AH, Luscombe NM. Cellular resolution models for even skipped regulation in the entire Drosophila embryo. eLife 2013; 2:e00522. [PMID: 23930223 PMCID: PMC3736529 DOI: 10.7554/elife.00522] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 06/17/2013] [Indexed: 12/14/2022] Open
Abstract
Transcriptional control ensures genes are expressed in the right amounts at the correct times and locations. Understanding quantitatively how regulatory systems convert input signals to appropriate outputs remains a challenge. For the first time, we successfully model even skipped (eve) stripes 2 and 3+7 across the entire fly embryo at cellular resolution. A straightforward statistical relationship explains how transcription factor (TF) concentrations define eve's complex spatial expression, without the need for pairwise interactions or cross-regulatory dynamics. Simulating thousands of TF combinations, we recover known regulators and suggest new candidates. Finally, we accurately predict the intricate effects of perturbations including TF mutations and misexpression. Our approach imposes minimal assumptions about regulatory function; instead we infer underlying mechanisms from models that best fit the data, like the lack of TF-specific thresholds and the positional value of homotypic interactions. Our study provides a general and quantitative method for elucidating the regulation of diverse biological systems. DOI:http://dx.doi.org/10.7554/eLife.00522.001.
Collapse
Affiliation(s)
- Garth R Ilsley
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Jasmin Fisher
- Microsoft Research Cambridge, Cambridge, United Kingdom
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Rolf Apweiler
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Angela H DePace
- Department of Systems Biology, Harvard Medical School, Boston, United States
| | - Nicholas M Luscombe
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- UCL Genetics Institute, Department of Genetics, Evolution, and Environment, University College London, London, United Kingdom
- London Research Institute, Cancer Research UK, London, United Kingdom
| |
Collapse
|
9
|
Lagha M, Bothma JP, Esposito E, Ng S, Stefanik L, Tsui C, Johnston J, Chen K, Gilmour DS, Zeitlinger J, Levine MS. Paused Pol II coordinates tissue morphogenesis in the Drosophila embryo. Cell 2013; 153:976-87. [PMID: 23706736 DOI: 10.1016/j.cell.2013.04.045] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 02/23/2013] [Accepted: 04/22/2013] [Indexed: 11/18/2022]
Abstract
Paused RNA polymerase (Pol II) is a pervasive feature of Drosophila embryos and mammalian stem cells, but its role in development is uncertain. Here, we demonstrate that a spectrum of paused Pol II determines the "time to synchrony"-the time required to achieve coordinated gene expression across the cells of a tissue. To determine whether synchronous patterns of gene activation are significant in development, we manipulated the timing of snail expression, which controls the coordinated invagination of ∼1,000 mesoderm cells during gastrulation. Replacement of the strongly paused snail promoter with moderately paused or nonpaused promoters causes stochastic activation of snail expression and increased variability of mesoderm invagination. Computational modeling of the dorsal-ventral patterning network recapitulates these variable and bistable gastrulation profiles and emphasizes the importance of timing of gene activation in development. We conclude that paused Pol II and transcriptional synchrony are essential for coordinating cell behavior during morphogenesis.
Collapse
Affiliation(s)
- Mounia Lagha
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Liu J, Ma J. Dampened regulates the activating potency of Bicoid and the embryonic patterning outcome in Drosophila. Nat Commun 2013; 4:2968. [PMID: 24336107 PMCID: PMC3902774 DOI: 10.1038/ncomms3968] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 11/18/2013] [Indexed: 01/26/2023] Open
Abstract
The Drosophila morphogen gradient of Bicoid (Bcd) initiates anterior-posterior (AP) patterning; however, it is poorly understood how its ability to activate a target gene may have an impact on this process. Here we report an F-box protein, Dampened (Dmpd) as a nuclear cofactor of Bcd that can enhance its activating potency. We establish a quantitative platform to specifically investigate two parameters of a Bcd target gene response, expression amplitude and boundary position. We show that embryos lacking Dmpd have a reduced amplitude of Bcd-activated hunchback (hb) expression at a critical time of development. This is because of a reduced Bcd-dependent transcribing probability. This defect is faithfully propagated further downstream of the AP-patterning network to alter the spatial characteristics of even-skipped (eve) stripes. Thus, unlike another Bcd-interacting F-box protein Fate-shifted (Fsd), which controls AP patterning through regulating the Bcd gradient profile, Dmpd achieves its patterning role through regulating the activating potency of Bcd.
Collapse
Affiliation(s)
- Junbo Liu
- Division of Biomedical Informatics Cincinnati Children's Research Foundation 3333 Burnet Avenue Cincinnati, Ohio United States of America
| | - Jun Ma
- Division of Biomedical Informatics Cincinnati Children's Research Foundation 3333 Burnet Avenue Cincinnati, Ohio United States of America
- Division of Developmental Biology Cincinnati Children's Research Foundation 3333 Burnet Avenue Cincinnati, Ohio United States of America
| |
Collapse
|
11
|
Liu J, Ma J. Drosophila Bicoid is a substrate of sumoylation and its activator function is subject to inhibition by this post-translational modification. FEBS Lett 2012; 586:1719-23. [PMID: 22584054 DOI: 10.1016/j.febslet.2012.04.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 04/24/2012] [Accepted: 04/28/2012] [Indexed: 11/26/2022]
Abstract
Bicoid (Bcd) is a Drosophila morphogenetic protein and a transcriptional activator. Genetic studies have suggested a role of sumoylation in Bcd function, but it is unknown how Bcd activity is affected specifically by its own sumoylation status. Here we show that Bcd is sumoylated in Drosophila cells. We identify a lysine residue of Bcd as the primary sumoylation site. Using a Bcd mutant defective in being sumoylated, we show that sumoylation of Bcd is inhibitory to its ability to activate transcription. We provide evidence suggesting that the SUMO moiety has an intrinsic inhibitory activity for the activator function of Bcd.
Collapse
Affiliation(s)
- Junbo Liu
- Division of Biomedical Informatics, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH, United States
| | | |
Collapse
|
12
|
Cheung D, Miles C, Kreitman M, Ma J. Scaling of the Bicoid morphogen gradient by a volume-dependent production rate. Development 2011; 138:2741-9. [PMID: 21613328 DOI: 10.1242/dev.064402] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An important feature of development is the formation of patterns that are proportional to the overall size of the embryo. But how such proportionality, or scaling, is achieved mechanistically remains poorly understood. Furthermore, it is currently unclear whether organisms utilize similar or distinct mechanisms to achieve scaling within a species and between species. Here we investigate within-species scaling mechanisms for anterior-posterior (A-P) patterning in Drosophila melanogaster, focusing specifically on the properties of the Bicoid (Bcd) morphogen gradient. Using embryos from lines artificially selected for large and small egg volume, we show that large embryos have higher nuclear Bcd concentrations in the anterior than small embryos. This anterior difference leads to scaling properties of the Bcd gradient profiles: in broad regions of the large and small embryos along the A-P axis, normalizing their positions to embryo length reduces the differences in both the nuclear Bcd concentrations and Bcd-encoded positional information. We further trace the origin of Bcd gradient scaling by showing directly that large embryos have more maternally deposited bcd mRNA than small embryos. Our results suggest a simple model for how within-species Bcd gradient scaling can be achieved. In this model, the Bcd production rate, which is dependent on the total number of bcd mRNA molecules in the anterior, is scaled with embryo volume.
Collapse
Affiliation(s)
- David Cheung
- Division of Biomedical Informatics, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | | | | | |
Collapse
|
13
|
Liu J, Ma J. Fates-shifted is an F-box protein that targets Bicoid for degradation and regulates developmental fate determination in Drosophila embryos. Nat Cell Biol 2011; 13:22-9. [PMID: 21170036 PMCID: PMC3074934 DOI: 10.1038/ncb2141] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 11/17/2010] [Indexed: 12/31/2022]
Abstract
Bicoid (Bcd) is a morphogenetic protein that instructs patterning along the anterior-posterior (A-P) axis in Drosophila melanogaster embryos. Despite extensive studies, what controls the formation of a normal concentration gradient of Bcd remains an unresolved and controversial question. Here, we show that Bcd protein degradation is mediated by the ubiquitin-proteasome pathway. We have identified an F-box protein, encoded by fates-shifted (fsd), that has an important role in Bcd protein degradation by targeting it for ubiquitylation. Embryos from females lacking fsd have an altered Bcd gradient profile, resulting in a shift of the fatemap along the A-P axis. Our study is an experimental demonstration that, contrary to an alternative hypothesis, Bcd protein degradation is required for normal gradient formation and developmental fate determination.
Collapse
Affiliation(s)
- Junbo Liu
- Division of Biomedical Informatics Cincinnati Children's Research Foundation Cincinnati, Ohio United States of America
| | - Jun Ma
- Division of Biomedical Informatics Cincinnati Children's Research Foundation Cincinnati, Ohio United States of America
- Division of Developmental Biology Cincinnati Children's Research Foundation Cincinnati, Ohio United States of America
| |
Collapse
|
14
|
Lemke S, Busch SE, Antonopoulos DA, Meyer F, Domanus MH, Schmidt-Ott U. Maternal activation of gap genes in the hover fly Episyrphus. Development 2010; 137:1709-19. [DOI: 10.1242/dev.046649] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The metameric organization of the insect body plan is initiated with the activation of gap genes, a set of transcription-factor-encoding genes that are zygotically expressed in broad and partially overlapping domains along the anteroposterior (AP) axis of the early embryo. The spatial pattern of gap gene expression domains along the AP axis is generally conserved, but the maternal genes that regulate their expression are not. Building on the comprehensive knowledge of maternal gap gene activation in Drosophila, we used loss- and gain-of-function experiments in the hover fly Episyrphus balteatus (Syrphidae) to address the question of how the maternal regulation of gap genes evolved. We find that, in Episyrphus, a highly diverged bicoid ortholog is solely responsible for the AP polarity of the embryo. Episyrphus bicoid represses anterior zygotic expression of caudal and activates the anterior and central gap genes orthodenticle, hunchback and Krüppel. In bicoid-deficient Episyrphus embryos, nanos is insufficient to generate morphological asymmetry along the AP axis. Furthermore, we find that torso transiently regulates anterior repression of caudal and is required for the activation of orthodenticle, whereas all posterior gap gene domains of knirps, giant, hunchback, tailless and huckebein depend on caudal. We conclude that all maternal coordinate genes have altered their specific functions during the radiation of higher flies (Cyclorrhapha).
Collapse
Affiliation(s)
- Steffen Lemke
- University of Chicago, Department of Organismal Biology and Anatomy, CLSC 921B, 920 E. 58th Street, Chicago, IL 60637, USA
| | - Stephanie E. Busch
- University of Chicago, Department of Organismal Biology and Anatomy, CLSC 921B, 920 E. 58th Street, Chicago, IL 60637, USA
| | - Dionysios A. Antonopoulos
- Argonne National Laboratory, Institute for Genomics & Systems Biology, 9700 S. Cass Avenue, Argonne, IL 60439, USA
| | - Folker Meyer
- Argonne National Laboratory, Institute for Genomics & Systems Biology, 9700 S. Cass Avenue, Argonne, IL 60439, USA
| | - Marc H. Domanus
- Argonne National Laboratory, Institute for Genomics & Systems Biology, 9700 S. Cass Avenue, Argonne, IL 60439, USA
| | - Urs Schmidt-Ott
- University of Chicago, Department of Organismal Biology and Anatomy, CLSC 921B, 920 E. 58th Street, Chicago, IL 60637, USA
| |
Collapse
|
15
|
Kim JH, Gurumurthy CB, Band H, Band V. Biochemical characterization of human Ecdysoneless reveals a role in transcriptional regulation. Biol Chem 2010; 391:9-19. [PMID: 19919181 DOI: 10.1515/bc.2010.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ecdysoneless (Ecd) is an evolutionarily conserved protein and its function is essential for embryonic development in Drosophila and cell growth in yeast. However, its function has remained unknown until recently. Studies in yeast suggested a potential role of Ecd in transcription; however, Ecd lacks a DNA-binding domain. Using a GAL4-luciferase reporter assay and a GAL4 DNA-binding domain fusion with Ecd or its mutants, we present evidence that human Ecd has a transactivation activity in its C-terminal region. Importantly, further analyses using point mutants showed that a single amino acid change at either Asp-484 or Leu-489 essentially completely abolishes the transactivation activity of Ecd. We further demonstrate that Ecd interacts with p300, a histone acetyltransferase, and coexpression of Ecd with p300 enhances the Ecd-mediated transactivation activity. Ecd localizes to both nucleus and cytoplasm and shuttles between the nucleus and cytoplasm; however, it exhibits strong nuclear export. Based on previous yeast studies and evidence provided here, we suggest that Ecd functions as a transcriptional regulator. Our results indicate an important function of human Ecd and provide a basis to explore the transcriptional partners of Ecd.
Collapse
Affiliation(s)
- Jun Hyun Kim
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | | |
Collapse
|
16
|
Li CW, Chen BS. Stochastic Spatio-Temporal Dynamic Model for Gene/Protein Interaction Network in Early Drosophila Development. GENE REGULATION AND SYSTEMS BIOLOGY 2009. [DOI: 10.1177/117762500900300001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In order to investigate the possible mechanisms for eve stripe formation of Drosophila embryo, a spatio-temporal gene/protein interaction network model is proposed to mimic dynamic behaviors of protein synthesis, protein decay, mRNA decay, protein diffusion, transcription regulations and autoregulation to analyze the interplay of genes and proteins at different compartments in early embryogenesis. In this study, we use the maximum likelihood (ML) method to identify the stochastic 3-D Embryo Space-Time (3-DEST) dynamic model for gene/protein interaction network via 3-D mRNA and protein expression data and then use the Akaike Information Criterion (AIC) to prune the gene/protein interaction network. The identified gene/protein interaction network allows us not only to analyze the dynamic interplay of genes and proteins on the border of eve stripes but also to infer that eve stripes are established and maintained by network motifs built by the cooperation between transcription regulations and diffusion mechanisms in early embryogenesis. Literature reference with the wet experiments of gene mutations provides a clue for validating the identified network. The proposed spatio-temporal dynamic model can be extended to gene/protein network construction of different biological phenotypes, which depend on compartments, e.g. postnatal stem/progenitor cell differentiation.
Collapse
Affiliation(s)
- Cheng-Wei Li
- Laboratory of Systems Biology, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Bor-Sen Chen
- Laboratory of Systems Biology, National Tsing Hua University, Hsinchu, 300, Taiwan
| |
Collapse
|
17
|
Cai Y, Laughon A. The Drosophila Smad cofactor Schnurri engages in redundant and synergistic interactions with multiple corepressors. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1789:232-45. [PMID: 19437622 DOI: 10.1016/j.bbagrm.2009.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In Drosophila a large zinc finger protein, Schnurri, functions as a Smad cofactor required for repression of brinker and other negative targets in response to signaling by the transforming growth factor beta ligand, Decapentaplegic. Schnurri binds to the silencer-bound Smads through a cluster of zinc fingers located near its carboxy-terminus and silences via a separate repression domain adjacent to this zinc-finger cluster. Here we show that this repression domain functions through interaction with two corepressors, dCtBP and dSin3A, and that either interaction is sufficient for repression. We also report that Schnurri contains additional repression domains that function through interaction with dCtBP, Groucho, dSin3A and SMRTER. By testing for the ability to rescue a shn RNAi phenotype we provide evidence that these diverse repression domains are both cooperative and partially redundant. In addition we find that Shn harbors a region capable of transcriptional activation, consistent with evidence that Schnurri can function as an activator as well as a repressor.
Collapse
Affiliation(s)
- Yi Cai
- Laboratory of Genetics, University of Wisconsin, 425G Henry Mall, Madison, WI 53706, USA
| | | |
Collapse
|
18
|
Abstract
Gene expression levels fluctuate even under constant external conditions. Much emphasis has usually been placed on the components of this noise that are due to randomness in transcription and translation. Here we focus on the role of noise associated with the inputs to transcriptional regulation; in particular, we analyze the effects of random arrival times and binding of transcription factors to their target sites along the genome. This contribution to the total noise sets a fundamental physical limit to the reliability of genetic control, and has clear signatures, but we show that these are easily obscured by experimental limitations and even by conventional methods for plotting the variance vs. mean expression level. We argue that simple, universal models of noise dominated by transcription and translation are inconsistent with the embedding of gene expression in a network of regulatory interactions. Analysis of recent experiments on transcriptional control in the early Drosophila embryo shows that these results are quantitatively consistent with the predicted signatures of input noise, and we discuss the experiments needed to test the importance of input noise more generally.
Collapse
|
19
|
Bialek W, Setayeshgar S. Cooperativity, sensitivity, and noise in biochemical signaling. PHYSICAL REVIEW LETTERS 2008; 100:258101. [PMID: 18643705 DOI: 10.1103/physrevlett.100.258101] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2007] [Indexed: 05/26/2023]
Abstract
Cooperative interactions in the binding of multiple signaling molecules is a common mechanism for enhancing the sensitivity of biological signaling systems. It is widely assumed this increase in sensitivity of the mean response implies the ability to detect smaller signals. Extending the classic work of Berg and Purcell [Biophys. J. 20, 193 (1977)] on the physical limits of chemoreception, we show that the random arrival of diffusing signaling molecules at receptor sites constitutes a noise source that is not reduced by cooperativity. Cooperativity makes reaching this limit easier, but cannot reduce the limit itself.
Collapse
Affiliation(s)
- William Bialek
- Joseph Henry Laboratories of Physics, Lewis-Sigler Institute for Integrative Genomics, and Princeton Center for Theoretical Physics, Princeton University, Princeton, New Jersey 08544, USA
| | | |
Collapse
|
20
|
Simpson P, Ayyar S. Chapter 3 Evolution of Cis‐Regulatory Sequences in Drosophila. LONG-RANGE CONTROL OF GENE EXPRESSION 2008; 61:67-106. [DOI: 10.1016/s0065-2660(07)00003-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
21
|
Gregor T, Tank DW, Wieschaus EF, Bialek W. Probing the limits to positional information. Cell 2007; 130:153-64. [PMID: 17632062 PMCID: PMC2253670 DOI: 10.1016/j.cell.2007.05.025] [Citation(s) in RCA: 512] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2006] [Revised: 02/15/2007] [Accepted: 05/03/2007] [Indexed: 11/22/2022]
Abstract
The reproducibility and precision of biological patterning is limited by the accuracy with which concentration profiles of morphogen molecules can be established and read out by their targets. We consider four measures of precision for the Bicoid morphogen in the Drosophila embryo: the concentration differences that distinguish neighboring cells, the limits set by the random arrival of Bicoid molecules at their targets (which depends on absolute concentration), the noise in readout of Bicoid by the activation of Hunchback, and the reproducibility of Bicoid concentration at corresponding positions in multiple embryos. We show, through a combination of different experiments, that all of these quantities are approximately 10%. This agreement among different measures of accuracy indicates that the embryo is not faced with noisy input signals and readout mechanisms; rather, the system exerts precise control over absolute concentrations and responds reliably to small concentration differences, approaching the limits set by basic physical principles.
Collapse
Affiliation(s)
- Thomas Gregor
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ 08544, USA.
| | | | | | | |
Collapse
|
22
|
Baird-Titus JM, Clark-Baldwin K, Dave V, Caperelli CA, Ma J, Rance M. The solution structure of the native K50 Bicoid homeodomain bound to the consensus TAATCC DNA-binding site. J Mol Biol 2005; 356:1137-51. [PMID: 16406070 DOI: 10.1016/j.jmb.2005.12.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2005] [Revised: 11/30/2005] [Accepted: 12/02/2005] [Indexed: 11/29/2022]
Abstract
The solution structure of the homeodomain of the Drosophila morphogenic protein Bicoid (Bcd) complexed with a TAATCC DNA site is described. Bicoid is the only known protein that uses a homeodomain to regulate translation, as well as transcription, by binding to both RNA and DNA during early Drosophila development; in addition, the Bcd homeodomain can recognize an array of different DNA sites. The dual functionality and broad recognition capabilities signify that the Bcd homeodomain may possess unique structural/dynamic properties. Bicoid is the founding member of the K50 class of homeodomain proteins, containing a lysine residue at the critical 50th position (K50) of the homeodomain sequence, a residue required for DNA and RNA recognition; Bcd also has an arginine residue at the 54th position (R54), which is essential for RNA recognition. Bcd is the only known homeodomain with the K50/R54 combination of residues. The Bcd structure indicates that this homeodomain conforms to the conserved topology of the homeodomain motif, but exhibits a significant variation from other homeodomain structures at the end of helix 1. A key result is the observation that the side-chains of the DNA-contacting residues K50, N51 and R54 all show strong signs of flexibility in the protein-DNA interface. This finding is supportive of the adaptive-recognition theory of protein-DNA interactions.
Collapse
Affiliation(s)
- Jamie M Baird-Titus
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Medical Sciences Building, Cincinnati, OH 45267-0524, USA
| | | | | | | | | | | |
Collapse
|
23
|
Howard M, ten Wolde PR. Finding the center reliably: robust patterns of developmental gene expression. PHYSICAL REVIEW LETTERS 2005; 95:208103. [PMID: 16384103 DOI: 10.1103/physrevlett.95.208103] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Indexed: 05/05/2023]
Abstract
We investigate a mechanism for the robust identification of the center of a developing biological system. We assume the existence of two morphogen gradients, an activator emanating from the anterior, and a corepressor from the posterior. The corepressor inhibits the action of the activator in switching on target genes. We apply this system to Drosophila embryos, where we predict the existence of a hitherto undetected posterior corepressor. Using mathematical modeling, we show that a symmetric activator-corepressor model can quantitatively explain the precise midembryo expression boundary of the hunchback gene, and the scaling of this pattern with embryo size.
Collapse
Affiliation(s)
- Martin Howard
- Department of Mathematics, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | | |
Collapse
|
24
|
Crauk O, Dostatni N. Bicoid Determines Sharp and Precise Target Gene Expression in the Drosophila Embryo. Curr Biol 2005; 15:1888-98. [PMID: 16271865 DOI: 10.1016/j.cub.2005.09.046] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Revised: 09/20/2005] [Accepted: 09/21/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND The activity of the Bicoid (Bcd) transcription factor is a useful example of how quantitative information contained in a smooth morphogen gradient is transformed into discrete and precise patterns of target gene expression. There are two distinct and important aspects to this process: the "sharpening" of the posterior borders of the expression domains and the "precision" of where the target genes are expressed along the length of the embryo as the syncytial embryo begins to cellularize. Although the sharpening phenomenon was observed over a decade ago, it is still poorly understood. RESULTS Here, we show that a Bcd reporter gene containing binding sites only for Bcd is expressed, like natural targets of Bcd, in a precise domain with a sharp boundary. Analysis of embryos expressing deleted forms of Bcd indicates that the sharpness of the Bcd target gene hunchback's expression involves the glutamine-rich and C-terminal activation domains of Bcd. Furthermore, several artificial Gal4-derived transcription factors expressed as gradients in the embryo share Bcd's ability to drive precise target gene expression with sharp boundaries. CONCLUSION Thus, contrary to recent reports proposing that the Bcd gradient is not sufficient to establish precise positional information, we show that Bcd drives precise and sharp expression of its target genes through a process that depends exclusively on its ability to activate transcription.
Collapse
Affiliation(s)
- Olivier Crauk
- Laboratory of Nuclear Dynamics and Genome Plasticity, CNRS/UMR 218, Institut Curie, Paris, France
| | | |
Collapse
|
25
|
Singh N, Zhu W, Hanes SD. Sap18 is required for the maternal gene bicoid to direct anterior patterning in Drosophila melanogaster. Dev Biol 2005; 278:242-54. [PMID: 15649476 DOI: 10.1016/j.ydbio.2004.11.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Revised: 11/05/2004] [Accepted: 11/09/2004] [Indexed: 10/26/2022]
Abstract
Development of the insect head is a complex process that in Drosophila requires the anterior determinant, Bicoid. Bicoid is present in an anterior-to-posterior concentration gradient, and binds DNA and stimulates transcription of head-specific genes. Many of these genes, including the gap-gene hunchback, are initially activated in a broad domain across the head primordium, but later retract so that their expression is cleared from the anterior-most segmented regions. Here, we show that retraction requires a Bicoid-interacting protein, Sap18, which is part of the Sin3/Rpd3 histone deacetylase complex. In sensitized-mutant backgrounds (e.g., bcdE1/+, removal of maternal sap18 results in embryos that are missing labrally derived parts of the cephalopharyngeal skeleton. These sap18 mutant embryos fail to repress hb expression, and show reduced anterior cap expression of the labral determinant cap 'n' collar. These phenotypes are enhanced by lowering the dose of rpd3, which encodes the catalytic subunit of the deacetylase complex. The results suggest a model where, in labral regions of the head, Bicoid is converted from an activator into a repressor by recruitment of a co-repressor to Bicoid-dependent promoters. Bicoid's activity, therefore, depends not only on its concentration gradient, but also on its interactions with modifier proteins within spatially restricted domains.
Collapse
Affiliation(s)
- Navjot Singh
- Molecular Genetics Program, Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, NY 12208, USA
| | | | | |
Collapse
|
26
|
Abstract
In Drosophila, a Bcd protein gradient orchestrates patterning along the anteroposterior embryonic axis. However, studies of basal flies and other insects have revealed that bcd is a derived Hox3 gene found only in higher dipterans. To understand how bcd acquired its role in flies and how anteroposterior patterning mechanisms have evolved, I first review key features of bcd function in Drosophila: anterior localization and transcriptional and translation control of gene expression. I then discuss investigations of bcd in other higher dipterans that have provided insight into the evolution of regulatory interactions and the Bcd gradient. Finally, I review studies of Drosophila and other insects that address the evolution of bcd function and integration of bcd into ancestral regulatory mechanisms. I suggest further comparative studies may allow us to identify the intermediate steps in bcd evolution. This will make bcd a paradigm for the origin and evolution of genes and regulatory networks.
Collapse
Affiliation(s)
- Alistair P McGregor
- Department of Ecology and Evolutionary Biology, Princeton University, New Jersey 08540, USA.
| |
Collapse
|
27
|
Abstract
Gene transcription can be activated or repressed. Such seemingly simple decisions reflect the coordinated actions of a wide array of proteins. Activators and co-activators work together to stimulate the assembly and activity of the machinery that transcribes the gene, whereas repressors and co-repressors work to achieve the opposite goal. Recent studies show that many proteins often engage in regulatory activities and interactions that cross the activation-repression divide. This article discusses selected examples to illustrate the dynamic nature of the transcriptional regulation process and highlights the important roles of not only the individual proteins but also their communication system.
Collapse
Affiliation(s)
- Jun Ma
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| |
Collapse
|
28
|
Fu D, Wen Y, Ma J. The co-activator CREB-binding protein participates in enhancer-dependent activities of bicoid. J Biol Chem 2004; 279:48725-33. [PMID: 15358774 DOI: 10.1074/jbc.m407066200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bicoid (Bcd) is a transcriptional activator required for early embryonic patterning in Drosophila. Despite extensive studies, it currently remains unclear how Bcd activates transcription and what proteins participate in its activation process. In this report, we describe experiments to analyze the role of the Drosophila co-activator dCBP in Bcd-mediated activation. In Drosophila S2 cells, the Bcd activity is increased by the co-transfection of plasmids expressing dCBP and reduced by double-stranded RNA-mediated interference against dCBP. We further show that Bcd and dCBP can interact with each other and that Bcd-interacting domains of dCBP can cause dominant negative effects on Bcd activity in S2 cells. Our comparison of two Bcd-responsive enhancers, hunchback (hb) and knirps (kni), reveals a differential role of dCBP in facilitating Bcd activation. A dCBP mutant defective in its histone acetyltransferase activity exhibits a reduced, but not abolished, co-activator function for Bcd. Our chromatin immunoprecipitation experiments show that dCBP can increase not only the occupancy of Bcd itself at the enhancers but also the recruitment of general transcription factors to the promoter. Together, these experiments suggest that dCBP is an enhancer-dependent co-activator of Bcd, facilitating its activation through multiple mechanisms.
Collapse
Affiliation(s)
- Dechen Fu
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Graduate Program in Molecular and Developmental Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA
| | | | | |
Collapse
|
29
|
Qiao F, Song H, Kim CA, Sawaya MR, Hunter JB, Gingery M, Rebay I, Courey AJ, Bowie JU. Derepression by depolymerization; structural insights into the regulation of Yan by Mae. Cell 2004; 118:163-73. [PMID: 15260987 DOI: 10.1016/j.cell.2004.07.010] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Revised: 05/25/2004] [Accepted: 06/08/2004] [Indexed: 11/20/2022]
Abstract
Yan, an ETS family transcriptional repressor, is regulated by receptor tyrosine kinase signaling via the Ras/MAPK pathway. Phosphorylation and downregulation of Yan is facilitated by a protein called Mae. Yan and Mae interact through their SAM domains. We find that repression by Yan requires the formation of a higher order structure mediated by Yan-SAM polymerization. Moreover, a crystal structure of the Yan-SAM/Mae-SAM complex shows that Mae-SAM specifically recognizes a surface on Yan-SAM that is also required for Yan-SAM polymerization. Mae-SAM binds to Yan-SAM with approximately 1000-fold higher affinity than Yan-SAM binds to itself and can effectively depolymerize Yan-SAM. Mutations on Mae that specifically disrupt its SAM domain-dependent interactions with Yan disable the derepression function of Mae in vivo. Depolymerization of Yan by Mae represents a novel mechanism of transcriptional control that sensitizes Yan for regulation by receptor tyrosine kinases.
Collapse
Affiliation(s)
- Feng Qiao
- UCLA-DOE Institute of Genomics and Proteomics, Molecular Biology Institute, Department of Chemistry and Biochemistry, University of California, Los Angeles 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Argiropoulos B, Ho J, Blachuta BJ, Tayyab I, Percival-Smith A. Low-level ectopic expression of Fushi tarazu in Drosophila melanogaster results in ftzUal/Rpl-like phenotypes and rescues ftz phenotypes. Mech Dev 2003; 120:1443-53. [PMID: 14654217 DOI: 10.1016/j.mod.2003.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The protein encoded by the Drosophila pair-rule gene fushi tarazu (ftz) is required for the formation of the even-numbered parasegments. Here we analyze the phenotypes of ectopic expression of FTZ and FTZ protein deletions from the Tubulin alpha1 (Tubalpha1) promoter. Fusion of ftz to the Tubalpha1 promoter resulted in low-level ectopic expression of FTZ relative to FTZ expressed from the endogenous ftz gene. The effects of ectopic expression of four FTZ proteins, FTZ(1-413) (full length wild-type FTZ), FTZ(delta257-316) (a complete deletion of the HD), FTZ(delta101-150) (a deletion that includes the major FTZ-F1 binding site) and FTZ(delta151-209) were determined. Ectopic expression of FTZ(1-413), FTZ(delta257-316) and FTZ(delta101-151) did not result in an anti-ftz phenotype; however, ectopic expression of FTZ(1-413), and FTZ(delta257-316) did result in a ftz(Ual/Rpl)-like phenotype. In addition, low-level ectopic expression of FTZ(1-413) and FTZ(delta257-316) rescued ftz phenotypes. This was an important observation because the even-numbered parasegment pattern of FTZ expression is considered important for normal segmentation. Therefore, the rescue of ftz phenotypes by low-level FTZ expression in all cells of the embryo suggests that the even-numbered parasegment expression pattern of FTZ is not the sole factor restricting FTZ action. Low-level ectopic expression of FTZ(delta151-209) resulted in the anti-ftz phenotype and rescued hypomorphic ftz-f1 phenotypes indicating that FTZ(delta151-209) is a hyperactive FTZ molecule. Therefore, the region encompassing amino acids 151-209 of FTZ is required in some manner for repression of FTZ activity. These results are discussed in relation to the current understanding of the mechanism of FTZ action.
Collapse
Affiliation(s)
- Bob Argiropoulos
- Department of Biology, University of Western Ontario, London, Ont, Canada N6A 5B7
| | | | | | | | | |
Collapse
|
31
|
Zhao C, Fu D, Dave V, Ma J. A composite motif of the Drosophila morphogenetic protein bicoid critical to transcription control. J Biol Chem 2003; 278:43901-9. [PMID: 12939280 DOI: 10.1074/jbc.m302714200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bicoid is a molecular morphogen-controlling embryonic patterning in Drosophila. It is a homeodomain-containing protein that activates specific target genes during early embryogenesis. Our recent studies have identified a domain of Bcd located outside its homeodomain and referred to as a self-inhibitory domain that can dramatically repress its own ability to activate transcription. Here we present evidence that the self-inhibitory function is evolutionarily conserved. A systematic analysis of this domain reveals a composite 10-amino acid motif with interdigitating residues that regulate Bcd activity in opposite manners. Mutations within the Bcd motif can exert their respective effects when the self-inhibitory domain is grafted to an entirely heterologous activator, but they do not affect DNA binding in vitro or subcellular localization of Bcd in cells. We further show that the self-inhibitory domain of Bcd can interact with Sin3A, a component of the histone deacetylase co-repressor complex. Our study suggests that the activity of Bcd is intricately controlled by multiple mechanisms involving the actions of co-repressor proteins.
Collapse
Affiliation(s)
- Chen Zhao
- Division of Developmental Biology, Children's Hospital Research Foundation, Cincinnati, Ohio 45229, USA
| | | | | | | |
Collapse
|
32
|
Gómez-Skarmeta JL, Campuzano S, Modolell J. Half a century of neural prepatterning: the story of a few bristles and many genes. Nat Rev Neurosci 2003; 4:587-98. [PMID: 12838333 DOI: 10.1038/nrn1142] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- José Luis Gómez-Skarmeta
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
33
|
Fu D, Zhao C, Ma J. Enhancer sequences influence the role of the amino-terminal domain of bicoid in transcription. Mol Cell Biol 2003; 23:4439-48. [PMID: 12808087 PMCID: PMC164838 DOI: 10.1128/mcb.23.13.4439-4448.2003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2003] [Revised: 03/25/2003] [Accepted: 04/01/2003] [Indexed: 11/20/2022] Open
Abstract
Bicoid (Bcd) is a Drosophila melanogaster morphogenetic gradient that controls embryonic patterning by activating target gene expression in a concentration-dependent manner. In this study we describe experiments to determine how different enhancers respond to Bcd distinctively, focusing on two natural Bcd-responsive enhancer elements, hunchback (hb) and knirps (kni). Our results show that, on the hb enhancer element, the amino-terminal domain of Bcd (residues 1 to 91) plays primarily an inhibitory role, whereas on the kni enhancer element this same Bcd domain plays a positive role at low protein concentrations. We further demonstrate that while the amino-terminal domain is largely dispensable for cooperative binding to the hb enhancer element, it is preferentially required for cooperative binding to the kni enhancer element. Alteration of the arrangement of Bcd binding sites in the kni enhancer element reduces the role of the amino-terminal domain in cooperative DNA binding but increases the effectiveness of the self-inhibitory function. In addition, elimination of symmetric pairs of Bcd binding sites in the kni enhancer element reduces both DNA binding and activation by Bcd. We propose that the amino-terminal domain of Bcd is an enhancer-specific switch that contributes to the protein's ability to activate different target genes in distinct manners.
Collapse
Affiliation(s)
- Dechen Fu
- Graduate Program in Molecular and Developmental Biology, Division of Developmental Biology, Children's Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA
| | | | | |
Collapse
|