1
|
Parambath S, Selvraj NR, Venugopal P, Aradhya R. Notch Signaling: An Emerging Paradigm in the Pathogenesis of Reproductive Disorders and Diverse Pathological Conditions. Int J Mol Sci 2024; 25:5423. [PMID: 38791461 PMCID: PMC11121885 DOI: 10.3390/ijms25105423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/27/2024] [Accepted: 04/20/2024] [Indexed: 05/26/2024] Open
Abstract
The highly conserved Notch pathway, a pillar of juxtacrine signaling, orchestrates intricate intercellular communication, governing diverse developmental and homeostatic processes through a tightly regulated cascade of proteolytic cleavages. This pathway, culminating in the migration of the Notch intracellular domain (NICD) to the nucleus and the subsequent activation of downstream target genes, exerts a profound influence on a plethora of molecular processes, including cell cycle progression, lineage specification, cell-cell adhesion, and fate determination. Accumulating evidence underscores the pivotal role of Notch dysregulation, encompassing both gain and loss-of-function mutations, in the pathogenesis of numerous human diseases. This review delves deep into the multifaceted roles of Notch signaling in cellular dynamics, encompassing proliferation, differentiation, polarity maintenance, epithelial-mesenchymal transition (EMT), tissue regeneration/remodeling, and its intricate interplay with other signaling pathways. We then focus on the emerging landscape of Notch aberrations in gynecological pathologies predisposing individuals to infertility. By highlighting the exquisite conservation of Notch signaling in Drosophila and its power as a model organism, we pave the way for further dissection of disease mechanisms and potential therapeutic interventions through targeted modulation of this master regulatory pathway.
Collapse
Affiliation(s)
| | | | | | - Rajaguru Aradhya
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, Kerala, India; (S.P.); (N.R.S.); (P.V.)
| |
Collapse
|
2
|
Suzuki S, Saito S, Narushima Y, Kodani S, Kagaya N, Suenaga H, Shin-Ya K, Arai MA. Notch activator cyclopiazonic acid induces apoptosis in HL-60 cells through calcineurin activation. J Antibiot (Tokyo) 2024; 77:30-38. [PMID: 37938761 DOI: 10.1038/s41429-023-00673-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/09/2023]
Abstract
We screened a library of microbial extracts and compounds library using our constructed assay cells and found pulicatins F (1) and G (2), and cyclopiazonic acid (CPA) (3) as Notch activators. Pulicatin F (1) and (±)-pulicatin G were synthesized and their activities were evaluated. Notch activation of CPA (3) was investigated using Western blot and RT-PCR. CPA (3) increased protein level of HES1 and mRNA expression of HES1. Also, the expression of FMS-like tyrosine kinase 3 (FLT3), which was known to inhibit apoptosis, was also inhibited by CPA (3) addition. The Notch activation by CPA (3) and cytotoxicity against HL-60 were clearly canceled by addition of FK506, which is an inhibitor of calcineurin (CaN). In addition, it was revealed that CPA (3) induced apoptosis in HL-60 cells.
Collapse
Affiliation(s)
- Shiina Suzuki
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Shun Saito
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Yuki Narushima
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Shunta Kodani
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Noritaka Kagaya
- Technology Research Association for Next Generation Natural Products Chemistry, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Hikaru Suenaga
- National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Kazuo Shin-Ya
- National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Midori A Arai
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan.
| |
Collapse
|
3
|
Makita Y, Saito S, Tsuchiya A, Ishibashi M, Arai MA. Identification of 1β,2α-epoxytagitinin C as a Notch inhibitor, oxidative stress mechanism and its anti-leukemia activity. J Nat Med 2021; 76:234-243. [PMID: 34779991 DOI: 10.1007/s11418-021-01584-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/02/2021] [Indexed: 11/25/2022]
Abstract
Notch signaling plays crucial roles in cell differentiation and proliferation, but aberrant activation of this signaling results in tumorigenesis and cancer progression. Notch signaling is thus a promising drug target for oncotherapy, and the development of Notch signaling inhibitors is eagerly awaited. Notch inhibitory activity-guided fractionation of a Spilanthes acmella extract led to the identification of five sesquiterpene lactones: tagitinin A (1), 1β,2α-epoxytagitinin C (2), tagitinin C (3), orizabin (4), and 2α-hydroxytirotundin (5). 1β,2α-Epoxytagitinin C (2) exhibited Notch signaling inhibition, with an IC50 of 25.6 μM, and was further evaluated for its activity against HPB-ALL, a Notch-activated leukemia cell line. Compound 2 showed potent cytotoxicity against HPB-ALL (IC50 1.7 μM) and arrested the cell cycle at the G2/M phase, but did not induce apoptotic cell death. Notch inhibitory mechanism analysis suggested that compound 2 transcriptionally suppresses Notch1 mRNA. In addition, we found that oxidative stress induction is critical for Notch signaling inhibition and the cytotoxicity of compound 2. This is the first mechanism of small molecule Notch inhibition. Our results demonstrate that 1β,2α-epoxytagitinin C (2) is a potential anti-leukemia agent and further investigation of this compound is warranted.
Collapse
Affiliation(s)
- Yoshinori Makita
- Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan.,Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Shun Saito
- Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Anna Tsuchiya
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Masami Ishibashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Midori A Arai
- Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan.
| |
Collapse
|
4
|
Isolation of nocobactin NAs as Notch signal inhibitors from Nocardia farcinica, a possibility of invasive evolution. J Antibiot (Tokyo) 2020; 74:255-259. [PMID: 33318622 DOI: 10.1038/s41429-020-00393-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 12/31/2022]
Abstract
Notch signaling inhibitors with the potential of immune suppressor production by pathogenic bacteria for easy host infection were searched from extracts of Nocardia sp. Nocobactin NA-a (compound 1) and nocobactin NA-b (compound 2), which have been suggested as pathogenesis factors, were isolated from N. farcinica IFM 11523 isolated from the sputum of a Japanese patient with chronic bronchitis. Compounds 1 and 2 showed Notch inhibitory activities with IC50 values of 12.4 and 17.6 μM, respectively. Compound 1 and 2 decreased of Notch1 protein, Notch intracellular domain, and hairy and enhancer of split 1, which is a Notch signaling target protein. In addition, compounds 1 and 2 showed cytotoxicity against mouse macrophage-like cell line RAW264.7 with IC50 values of 18.9 and 21.1 μM, respectively. These results suggested that the Notch inhibitors production by pathogenic bacteria may increase pathogen infectivity.
Collapse
|
5
|
Ortiz-Álvarez G, Spassky N. One progenitor to generate them all: new evidence for multi-fated neural progenitors. Curr Opin Neurobiol 2020; 66:186-194. [PMID: 33276241 DOI: 10.1016/j.conb.2020.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/13/2020] [Accepted: 10/21/2020] [Indexed: 12/30/2022]
Abstract
The past two decades have left behind the old conception of early fate-restricted neural progenitors. The new paradigm is that of a more plastic brain, in which the cellular potential of multi-fated progenitors is progressively restricted. This is observed in the switch from neurogenesis to gliogenesis, but also in the generation of different types of glial cells and neurons at later stages. The mechanisms that establish brain cell diversity or heterogeneity within a single population are starting to be elucidated. The role of cell cycle regulators and dynamics and the asymmetric distribution of cell cargoes during cell division are attracting more attention. Understanding these mechanisms could open the way for new treatments against brain pathologies such as brain tumors or neurodegenerative disorders.
Collapse
Affiliation(s)
- Gonzalo Ortiz-Álvarez
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, UMR8197, INSERM U1024, PSL Université Paris, 75005 Paris, France
| | - Nathalie Spassky
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, UMR8197, INSERM U1024, PSL Université Paris, 75005 Paris, France.
| |
Collapse
|
6
|
Isolation and evaluation of cardenolides from Lansium domesticum as Notch inhibitors. J Nat Med 2020; 74:758-766. [PMID: 32648094 DOI: 10.1007/s11418-020-01432-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/30/2020] [Indexed: 10/23/2022]
Abstract
Since Notch signaling plays important roles in cell proliferation and differentiation, aberrant activation of this signaling contributes to cancer progression. In neural stem cells, Notch signaling inhibits differentiation by activating HES1 expression. Therefore, Notch signaling inhibitors may be candidates for new anticancer drugs or have applications in neural regenerative medicine. In this study, six naturally occurring Notch inhibitors were isolated from the methanol (MeOH) extract of Lansium domesticum using our novel cell-based assay. Hongherin (2), a cardiac glycoside, demonstrated potent Notch inhibitory activity with an IC50 of 0.62 μM and was found to be cytotoxic in HPB-ALL human T cell acute lymphoblastic leukemia cells. Hongherin (2) also induced the differentiation of C17.2 neural stem cells to neurons, causing a 65% increase in differentiation compared to the control. Mechanistically, hongherin (2) reduced the amount of Notch1 (full length) and mastermind-like protein (MAML). This indicates that hongherin (2) inhibits Notch signaling through a dual mechanism involving the reduction of both Notch1 and MAML protein levels.
Collapse
|
7
|
Zhang L, Chen J, Yong J, Qiao L, Xu L, Liu C. An essential role of RNF187 in Notch1 mediated metastasis of hepatocellular carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:384. [PMID: 31477177 PMCID: PMC6720101 DOI: 10.1186/s13046-019-1382-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 08/13/2019] [Indexed: 12/29/2022]
Abstract
Background Aberrant activation of Notch signaling has been causally linked to the metastasis of hepatocellular carcinoma (HCC), however the underlying molecular mechanisms are still poorly understood. RING finger protein 187 (RNF187) was recently revealed to be a driver of several cancers, but its expression pattern and biological function in HCC are unknown. Methods The expression levels of Notch1 and RNF187 were assessed in two independent cohorts of HCC tissues, and modulation of Notch1 in HCC cells was performed to explore the regulatory role of Notch1 in HCC metastasis. RNA-sequencing (RNA-seq), bioinformatics analysis, luciferase reporter analysis, and chromatin immunoprecipitation assay (ChIP) were used to clarify the relationship between Notch1 signaling and its potential target Ring finger protein 187 (RNF187). Gain- and loss-of-function studies were used to dissect the role of Notch1-RNF187 signaling in promoting HCC metastasis. The impact of Notch1-RNF187 activity in determining clinical prognosis for HCC patients was evaluated by multivariate Cox regression. Results By RNA-seq, luciferase reporter analysis, and ChIP assay, RNF187 was confirmed to be a direct transcriptional target of Notch1, as Notch1 could activate RNF187 promoter whereas the pro-migratory and pro-invasive effects of Notch1 were significantly attenuated by RNF187 knockdown. Meanwhile, RNF187 silencing could attenuate the Notch1-dependent epithelial-mesenchymal transition (EMT). Moreover, overexpression of RNF187 counteracted the inhibitory effect of Notch1 knockdown on cancer progression. Importantly, HCC patients with high level of hepatic Notch1 expression had shorter disease-free survival (DFS) than those with low level of hepatic Notch1 expression. Furthermore, patients with high level of Notch1 and RNF187 co-expression showed the shortest DFS. The expression level of Notch1 and RNF187 was an independent prognostic factor for HCC. Conclusions For the first time we identified that RNF187 is an essential factor for Notch1 to promote invasion and metastasis of HCC. Of highly clinical relevance, we found that activation of Notch1-RNF187 correlates with a worse prognosis of HCC patients. These findings provide a solid foundation for developing novel strategies to tackle HCC metastasis. Electronic supplementary material The online version of this article (10.1186/s13046-019-1382-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lei Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Rd, Guangzhou, 510120, China
| | - Jiewei Chen
- Department of Pathology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Juanjuan Yong
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liang Qiao
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney at Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Leibo Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Rd, Guangzhou, 510120, China.
| | - Chao Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Rd, Guangzhou, 510120, China.
| |
Collapse
|
8
|
Pan Y, Mao Y, Jin R, Jiang L. Crosstalk between the Notch signaling pathway and non-coding RNAs in gastrointestinal cancers. Oncol Lett 2018; 15:31-40. [PMID: 29285185 PMCID: PMC5738678 DOI: 10.3892/ol.2017.7294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 09/07/2017] [Indexed: 12/14/2022] Open
Abstract
The Notch signaling pathway is one of the main signaling pathways that mediates direct contact between cells, and is essential for normal development. It regulates various cellular processes, including cell proliferation, apoptosis, migration, invasion, angiogenesis and metastasis. It additionally serves an important function in tumor progression. Non-coding RNAs mainly include small microRNAs, long non-coding RNAs and circular RNAs. At present, a large body of literature supports the biological significance of non-coding RNAs in tumor progression. It is also becoming increasingly evident that cross-talk exists between Notch signaling and non-coding RNAs. The present review summarizes the current knowledge of Notch-mediated gastrointestinal cancer cell processes, and the effect of the crosstalk between the three major types of non-coding RNAs and the Notch signaling pathway on the fate of gastrointestinal cancer cells.
Collapse
Affiliation(s)
- Yangyang Pan
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yuyan Mao
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Rong Jin
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Lei Jiang
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
9
|
Budzyński MA, Crul T, Himanen SV, Toth N, Otvos F, Sistonen L, Vigh L. Chaperone co-inducer BGP-15 inhibits histone deacetylases and enhances the heat shock response through increased chromatin accessibility. Cell Stress Chaperones 2017; 22:717-728. [PMID: 28474205 PMCID: PMC5573690 DOI: 10.1007/s12192-017-0798-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/22/2017] [Accepted: 04/07/2017] [Indexed: 01/20/2023] Open
Abstract
Defects in cellular protein homeostasis are associated with many severe and prevalent pathological conditions such as neurodegenerative diseases, muscle dystrophies, and metabolic disorders. One way to counteract these defects is to improve the protein homeostasis capacity through induction of the heat shock response. Despite numerous attempts to develop strategies for chemical activation of the heat shock response by heat shock transcription factor 1 (HSF1), the underlying mechanisms of drug candidates' mode of action are poorly understood. To lower the threshold for the heat shock response activation, we used the chaperone co-inducer BGP-15 that was previously shown to have beneficial effects on several proteinopathic disease models. We found that BGP-15 treatment combined with heat stress caused a substantial increase in HSF1-dependent heat shock protein 70 (HSPA1A/B) expression already at a febrile range of temperatures. Moreover, BGP-15 alone inhibited the activity of histone deacetylases (HDACs), thereby increasing chromatin accessibility at multiple genomic loci including the stress-inducible HSPA1A. Intriguingly, treatment with well-known potent HDAC inhibitors trichostatin A and valproic acid enhanced the heat shock response and improved cytoprotection. These results present a new pharmacological strategy for restoring protein homeostasis by inhibiting HDACs, increasing chromatin accessibility, and lowering the threshold for heat shock response activation.
Collapse
Affiliation(s)
- Marek A Budzyński
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, FI-20520, Turku, Finland
- Turku Centre for Biotechnology, Åbo Akademi University and University of Turku, FI-20520, Turku, Finland
| | - Tim Crul
- Biological Research Centre of the Hungarian Academy of Sciences, Szeged, 6726, Hungary
| | - Samu V Himanen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, FI-20520, Turku, Finland
- Turku Centre for Biotechnology, Åbo Akademi University and University of Turku, FI-20520, Turku, Finland
| | - Noemi Toth
- Biological Research Centre of the Hungarian Academy of Sciences, Szeged, 6726, Hungary
| | - Ferenc Otvos
- Biological Research Centre of the Hungarian Academy of Sciences, Szeged, 6726, Hungary
| | - Lea Sistonen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, FI-20520, Turku, Finland.
- Turku Centre for Biotechnology, Åbo Akademi University and University of Turku, FI-20520, Turku, Finland.
| | - Laszlo Vigh
- Biological Research Centre of the Hungarian Academy of Sciences, Szeged, 6726, Hungary.
| |
Collapse
|
10
|
Selective regulation of Notch ligands during angiogenesis is mediated by vimentin. Proc Natl Acad Sci U S A 2017; 114:E4574-E4581. [PMID: 28533359 PMCID: PMC5468602 DOI: 10.1073/pnas.1703057114] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Notch signaling is a key regulator of angiogenesis, in which sprouting is regulated by an equilibrium between inhibitory Dll4-Notch signaling and promoting Jagged-Notch signaling. Whereas Fringe proteins modify Notch receptors and strengthen their activation by Dll4 ligands, other mechanisms balancing Jagged and Dll4 signaling are yet to be described. The intermediate filament protein vimentin, which has been previously shown to affect vascular integrity and regenerative signaling, is here shown to regulate ligand-specific Notch signaling. Vimentin interacts with Jagged, impedes basal recycling endocytosis of ligands, but is required for efficient receptor ligand transendocytosis and Notch activation upon receptor binding. Analyses of Notch signal activation by using chimeric ligands with swapped intracellular domains (ICDs), demonstrated that the Jagged ICD binds to vimentin and contributes to signaling strength. Vimentin also suppresses expression of Fringe proteins, whereas depletion of vimentin enhances Fringe levels to promote Dll4 signaling. In line with these data, the vasculature in vimentin knockout (VimKO) embryos and placental tissue is underdeveloped with reduced branching. Disrupted angiogenesis in aortic rings from VimKO mice and in endothelial 3D sprouting assays can be rescued by reactivating Notch signaling by recombinant Jagged ligands. Taken together, we reveal a function of vimentin and demonstrate that vimentin regulates Notch ligand signaling activities during angiogenesis.
Collapse
|
11
|
Wu CX, Xu A, Zhang CC, Olson P, Chen L, Lee TK, Cheung TT, Lo CM, Wang XQ. Notch Inhibitor PF-03084014 Inhibits Hepatocellular Carcinoma Growth and Metastasis via Suppression of Cancer Stemness due to Reduced Activation of Notch1-Stat3. Mol Cancer Ther 2017; 16:1531-1543. [PMID: 28522590 DOI: 10.1158/1535-7163.mct-17-0001] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/29/2017] [Accepted: 05/01/2017] [Indexed: 01/12/2023]
Abstract
Aberrant activation of the Notch signaling pathway is implicated in many solid tumors, including hepatocellular carcinoma, indicating a potential use of Notch inhibitors for treatment. In this study, we investigated the antitumor and antimetastasis efficacy of the novel Notch inhibitor (γ-secretase inhibitor) PF-03084014 in hepatocellular carcinoma. Hepatocellular carcinoma spherical cells (stem-like cancer cells), a sphere-derived orthotopic tumor model and one patient-derived xenograft (PDX) model were used in our experiment. We demonstrated that PF-03084014 inhibited the self-renewal and proliferation of cancer stem cells. PF-03084014 reduced the hepatocellular carcinoma sphere-derived orthotopic tumor and blocked the hepatocellular carcinoma tumor liver to lung metastasis. We further tested the PF-03084014 in PDX models and confirmed the inhibition tumor growth effect. In addition, a low dose of PF-03084014 induced hepatocellular carcinoma sphere differentiation, resulting in chemosensitization. Antitumor activity was associated with PF-03084014-induced suppression of Notch1 activity, decreased Stat3 activation and phosphorylation of the Akt signaling pathway, and reduced epithelial-mesenchymal transition. These are the key contributors to the maintenance of cancer stemness and the promotion of cancer metastasis. Moreover, the Notch-Stat3 association was implicated in the clinical hepatocellular carcinoma prognosis. Collectively, PF-03084014 revealed antitumor and antimetastatic effects in hepatocellular carcinoma, providing evidence for the potential use of gamma-secretase inhibitors as a therapeutic option for the treatment of hepatocellular carcinoma. Mol Cancer Ther; 16(8); 1531-43. ©2017 AACR.
Collapse
Affiliation(s)
- Chuan Xing Wu
- Department of Surgery, The University of Hong Kong, Hong Kong
| | - Aimin Xu
- Department of Medicine, The University of Hong Kong, Hong Kong
| | - Cathy C Zhang
- Oncology Research Unit, Pfizer Global Research and Development, La Jolla, California, USA
| | - Peter Olson
- Oncology Research Unit, Pfizer Global Research and Development, La Jolla, California, USA
| | - Lin Chen
- Department of Surgery, The University of Hong Kong, Hong Kong
| | - Terence K Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
| | - Tan To Cheung
- Department of Surgery, The University of Hong Kong, Hong Kong
| | - Chung Mau Lo
- Department of Surgery, The University of Hong Kong, Hong Kong
| | - Xiao Qi Wang
- Department of Surgery, The University of Hong Kong, Hong Kong. .,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong
| |
Collapse
|
12
|
|