1
|
Even-Ros D, Huertas-Romero J, Marín-Menguiano M, Nusspaumer G, Borge M, Irimia M, Zurita F, González-Reyes A. Drosophila ovarian stem cell niche ageing involves coordinated changes in transcription and alternative splicing. Nat Commun 2025; 16:2596. [PMID: 40091053 PMCID: PMC11911433 DOI: 10.1038/s41467-025-57901-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 03/06/2025] [Indexed: 03/19/2025] Open
Abstract
Gene expression (GE) and alternative splicing (AS) contribute to the formation of new interaction networks with potentially significant cellular functions. Here, we investigate ageing in the Drosophila female germline stem cell (GSC) niche and describe functional changes in both GE and AS. The GSC niche comprises three types of support cells, whose ageing transcriptomes reveal differential GE and AS variations related to cell adhesion, cytoskeleton and neural signalling. Because each population show distinctive GE and AS changes, niche cell types possess unique ageing signatures. Depending on the cell population, groups of genes display changes in both GE and AS, revealing a coordinated regulation of transcription and splicing during niche ageing. One such gene is Fasciclin 2, a neural adhesion molecule that we find is essential for niche functioning. Furthermore, genes involved in AS undergo changes in GE and/or AS themselves, providing a mechanistic explanation for the coordination of these two processes during niche ageing. This is the case of the splicing factor Smu1, described here as a key element necessary for ovarian niche homeostasis.
Collapse
Affiliation(s)
- Dilamm Even-Ros
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Junta de Andalucía-UPO, Carretera de Utrera km 1, 41013, Seville, Spain
| | - Judit Huertas-Romero
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Junta de Andalucía-UPO, Carretera de Utrera km 1, 41013, Seville, Spain
| | - Miriam Marín-Menguiano
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Junta de Andalucía-UPO, Carretera de Utrera km 1, 41013, Seville, Spain
| | - Gretel Nusspaumer
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Junta de Andalucía-UPO, Carretera de Utrera km 1, 41013, Seville, Spain
| | - Miguel Borge
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Federico Zurita
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Centro de Investigación Biomédica, 18071, Granada, Spain.
| | - Acaimo González-Reyes
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Junta de Andalucía-UPO, Carretera de Utrera km 1, 41013, Seville, Spain.
| |
Collapse
|
2
|
Lu F, Park BJ, Fujiwara R, Wilusz JE, Gilmour DS, Lehmann R, Lionnet T. Integrator-mediated clustering of poised RNA polymerase II synchronizes histone transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.07.561364. [PMID: 37873455 PMCID: PMC10592978 DOI: 10.1101/2023.10.07.561364] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Numerous components of the transcription machinery, including RNA polymerase II (Pol II), accumulate in regions of high local concentration known as clusters, which are thought to facilitate transcription. Using the histone locus of Drosophila nurse cells as a model, we find that Pol II forms long-lived, transcriptionally poised clusters distinct from liquid droplets, which contain unbound and paused Pol II. Depletion of the Integrator complex endonuclease module, but not its phosphatase module or Pol II pausing factors disperses these Pol II clusters. Consequently, histone transcription fails to reach peak levels during S-phase and aberrantly continues throughout the cell cycle. We propose that Pol II clustering is a regulatory step occurring near promoters that limits rapid gene activation to defined times. One Sentence Summary Using the Drosophila histone locus as a model, we show that clustered RNA polymerase II is poised for synchronous activation.
Collapse
|
3
|
Sun Z, Nystul TG, Zhong G. Single-cell RNA sequencing identifies eggplant as a regulator of germ cell development in Drosophila. EMBO Rep 2023; 24:e56475. [PMID: 37603128 PMCID: PMC10561367 DOI: 10.15252/embr.202256475] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/22/2023] Open
Abstract
Drosophila ovarian germline stem cells (GSCs) are a powerful model for stem cell research. In this study, we use single-cell RNA sequencing (scRNA-seq), an RNAi screen and bioinformatic analysis, to identify genes involved in germ cell differentiation, including 34 genes with upregulated expression during early germ cell development and 19 genes that may regulate germ cell differentiation. Among these, a gene we have named eggplant (eggpl) is highly expressed in GSCs and downregulated in early daughter cells. RNAi knockdown of eggpl causes germ cell proliferation and differentiation defects. In flies fed a rich yeast diet, the expression of eggpl is significantly lower and knockdown or knockout of eggpl phenocopies a rich diet. In addition, eggpl knockdown suppresses the reduction in germ cell proliferation caused by inhibition of the insulin effector PI3K. These findings suggest that downregulation of eggpl links nutritional status to germ cell proliferation and differentiation. Collectively, this study provides new insights into the signaling networks that regulate early germ cell development and identifies eggpl as a key player in this process.
Collapse
Affiliation(s)
- Zhipeng Sun
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural AffairsSouth China Agricultural UniversityGuangzhouChina
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of EducationSouth China Agricultural UniversityGuangzhouChina
| | | | - Guohua Zhong
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural AffairsSouth China Agricultural UniversityGuangzhouChina
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of EducationSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
4
|
Siddall NA, Casagranda F, Johanson TM, Dominado N, Heaney J, Sutherland JM, McLaughlin EA, Hime GR. MiMIC analysis reveals an isoform specific role for Drosophila Musashi in follicle stem cell maintenance and escort cell function. Cell Death Dis 2022; 8:455. [DOI: 10.1038/s41420-022-01245-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022]
Abstract
AbstractThe Drosophila ovary is regenerated from germline and somatic stem cell populations that have provided fundamental conceptual understanding on how adult stem cells are regulated within their niches. Recent ovarian transcriptomic studies have failed to identify mRNAs that are specific to follicle stem cells (FSCs), suggesting that their fate may be regulated post-transcriptionally. We have identified that the RNA-binding protein, Musashi (Msi) is required for maintaining the stem cell state of FSCs. Loss of msi function results in stem cell loss, due to a change in differentiation state, indicated by upregulation of Lamin C in the stem cell population. In msi mutant ovaries, Lamin C upregulation was also observed in posterior escort cells that interact with newly formed germ cell cysts. Mutant somatic cells within this region were dysfunctional, as evidenced by the presence of germline cyst collisions, fused egg chambers and an increase in germ cell cyst apoptosis. The msi locus produces two classes of mRNAs (long and short). We show that FSC maintenance and escort cell function specifically requires the long transcripts, thus providing the first evidence of isoform-specific regulation in a population of Drosophila epithelial cells. We further demonstrate that although male germline stem cells have previously been shown to require Msi function to prevent differentiation this is not the case for female germline stem cells, indicating that these similar stem cell types have different requirements for Msi, in addition to the differential use of Msi isoforms between soma and germline. In summary, we show that different isoforms of the Msi RNA-binding protein are expressed in specific cell populations of the ovarian stem cell niche where Msi regulates stem cell differentiation, niche cell function and subsequent germ cell survival and differentiation.
Collapse
|
5
|
Riparbelli MG, Persico V, Callaini G. Cell-to-Cell Interactions during Early Drosophila Oogenesis: An Ultrastructural Analysis. Cells 2022; 11:cells11172658. [PMID: 36078066 PMCID: PMC9454453 DOI: 10.3390/cells11172658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/27/2022] Open
Abstract
Drosophila oogenesis requires the subsequent growth of distinct egg chambers each containing a group of sixteen germline cells surrounded by a simple epithelium of follicle cells. The oocyte occupies a posterior position within the germ cells, thus giving a distinct asymmetry to the egg chamber. Although this disposition is critical for the formation of the anterior–posterior axis of the embryo, the interplay between somatic and germ cells during the early stages of oogenesis remains an open question. We uncover by stage 2, when the egg chambers leaved the germarium, some unique spatial interactions between the posterior follicle cells and the oocyte. These interactions are restricted to the surface of the oocyte over the centriole cluster that formed during early oogenesis. Moreover, the posterior follicle cells in front of the oocyte display a convoluted apical membrane with extensive contacts, whereas the other follicle cells have a flat apical surface without obvious surface protrusions. In addition, the germ cells located at the posterior end of the egg chamber have very elongated protrusions that come into contact with each other or with facing follicle cells. These observations point to distinct polarization events during early oogenesis supporting previous molecular data of an inherent asymmetry between the anterior and the posterior regions of the egg chambers.
Collapse
|
6
|
Diegmiller R, Nunley H, Shvartsman SY, Imran Alsous J. Quantitative models for building and growing fated small cell networks. Interface Focus 2022; 12:20210082. [PMID: 35865502 PMCID: PMC9184967 DOI: 10.1098/rsfs.2021.0082] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/31/2022] [Indexed: 02/07/2023] Open
Abstract
Small cell clusters exhibit numerous phenomena typically associated with complex systems, such as division of labour and programmed cell death. A conserved class of such clusters occurs during oogenesis in the form of germline cysts that give rise to oocytes. Germline cysts form through cell divisions with incomplete cytokinesis, leaving cells intimately connected through intercellular bridges that facilitate cyst generation, cell fate determination and collective growth dynamics. Using the well-characterized Drosophila melanogaster female germline cyst as a foundation, we present mathematical models rooted in the dynamics of cell cycle proteins and their interactions to explain the generation of germline cell lineage trees (CLTs) and highlight the diversity of observed CLT sizes and topologies across species. We analyse competing models of symmetry breaking in CLTs to rationalize the observed dynamics and robustness of oocyte fate specification, and highlight remaining gaps in knowledge. We also explore how CLT topology affects cell cycle dynamics and synchronization and highlight mechanisms of intercellular coupling that underlie the observed collective growth patterns during oogenesis. Throughout, we point to similarities across organisms that warrant further investigation and comment on the extent to which experimental and theoretical findings made in model systems extend to other species.
Collapse
Affiliation(s)
- Rocky Diegmiller
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Hayden Nunley
- Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Stanislav Y. Shvartsman
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Flatiron Institute, Simons Foundation, New York, NY, USA
| | | |
Collapse
|
7
|
Chen TA, Lin KY, Yang SM, Tseng CY, Wang YT, Lin CH, Luo L, Cai Y, Hsu HJ. Canonical Wnt Signaling Promotes Formation of Somatic Permeability Barrier for Proper Germ Cell Differentiation. Front Cell Dev Biol 2022; 10:877047. [PMID: 35517512 PMCID: PMC9062081 DOI: 10.3389/fcell.2022.877047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/16/2022] [Indexed: 11/22/2022] Open
Abstract
Morphogen-mediated signaling is critical for proper organ development and stem cell function, and well-characterized mechanisms spatiotemporally limit the expression of ligands, receptors, and ligand-binding cell-surface glypicans. Here, we show that in the developing Drosophila ovary, canonical Wnt signaling promotes the formation of somatic escort cells (ECs) and their protrusions, which establish a physical permeability barrier to define morphogen territories for proper germ cell differentiation. The protrusions shield germ cells from Dpp and Wingless morphogens produced by the germline stem cell (GSC) niche and normally only received by GSCs. Genetic disruption of EC protrusions allows GSC progeny to also receive Dpp and Wingless, which subsequently disrupt germ cell differentiation. Our results reveal a role for canonical Wnt signaling in specifying the ovarian somatic cells necessary for germ cell differentiation. Additionally, we demonstrate the morphogen-limiting function of this physical permeability barrier, which may be a common mechanism in other organs across species.
Collapse
Affiliation(s)
- Ting-An Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Kun-Yang Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Shun-Min Yang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Chen-Yuan Tseng
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Ting Wang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Chi-Hung Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Lichao Luo
- Temasek Life Science Laboratory, National University of Singapore, Singapore, Singapore
| | - Yu Cai
- Temasek Life Science Laboratory, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Hwei-Jan Hsu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- *Correspondence: Hwei-Jan Hsu,
| |
Collapse
|
8
|
Reilein A, Kogan HV, Misner R, Park KS, Kalderon D. Adult stem cells and niche cells segregate gradually from common precursors that build the adult Drosophila ovary during pupal development. eLife 2021; 10:69749. [PMID: 34590579 PMCID: PMC8536258 DOI: 10.7554/elife.69749] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 09/29/2021] [Indexed: 12/31/2022] Open
Abstract
Production of proliferative follicle cells (FCs) and quiescent escort cells (ECs) by follicle stem cells (FSCs) in adult Drosophila ovaries is regulated by niche signals from anterior (cap cells, ECs) and posterior (polar FCs) sources. Here we show that ECs, FSCs, and FCs develop from common pupal precursors, with different fates acquired by progressive separation of cells along the AP axis and a graded decline in anterior cell proliferation. ECs, FSCs, and most FCs derive from intermingled cell (IC) precursors interspersed with germline cells. Precursors also accumulate posterior to ICs before engulfing a naked germline cyst projected out of the germarium to form the first egg chamber and posterior polar FC signaling center. Thus, stem and niche cells develop in appropriate numbers and spatial organization through regulated proliferative expansion together with progressive establishment of spatial signaling cues that guide adult cell behavior, rather than through rigid early specification events.
Collapse
Affiliation(s)
- Amy Reilein
- Department of Biological Sciences, Columbia University, New York, United States
| | - Helen V Kogan
- Department of Biological Sciences, Columbia University, New York, United States
| | - Rachel Misner
- Department of Biological Sciences, Columbia University, New York, United States
| | - Karen Sophia Park
- Department of Biological Sciences, Columbia University, New York, United States
| | - Daniel Kalderon
- Department of Biological Sciences, Columbia University, New York, United States
| |
Collapse
|
9
|
Slaidina M, Gupta S, Banisch TU, Lehmann R. A single-cell atlas reveals unanticipated cell type complexity in Drosophila ovaries. Genome Res 2021; 31:1938-1951. [PMID: 34389661 DOI: 10.1101/gr.274340.120] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 08/09/2021] [Indexed: 11/24/2022]
Abstract
Organ function relies on the spatial organization and functional coordination of numerous cell types. The Drosophila ovary is a widely used model system to study the cellular activities underlying organ function, including stem cell regulation, cell signaling and epithelial morphogenesis. However, the relative paucity of cell type-specific reagents hinders investigation of molecular functions at the appropriate cellular resolution. Here, we used single-cell RNA sequencing to characterize all cell types of the stem cell compartment and early follicles of the Drosophila ovary. We computed transcriptional signatures and identified specific markers for nine states of germ cell differentiation, and 23 somatic cell types and subtypes. We uncovered an unanticipated diversity of escort cells, the somatic cells that directly interact with differentiating germline cysts. Three escort cell subtypes reside in discrete anatomical positions, and express distinct sets of secreted and transmembrane proteins, suggesting that diverse micro-environments support the progressive differentiation of germ cells. Finally, we identified 17 follicle cell subtypes, and characterized their transcriptional profiles. Altogether, we provide a comprehensive resource of gene expression, cell type-specific markers, spatial coordinates and functional predictions for 34 ovarian cell types and subtypes.
Collapse
Affiliation(s)
| | - Selena Gupta
- Skirball Institute, NYU Grossman School of Medicine
| | | | | |
Collapse
|
10
|
Beachum AN, Whitehead KM, McDonald SI, Phipps DN, Berghout HE, Ables ET. Orphan nuclear receptor ftz-f1 (NR5A3) promotes egg chamber survival in the Drosophila ovary. G3-GENES GENOMES GENETICS 2021; 11:6114459. [PMID: 33693603 PMCID: PMC8022936 DOI: 10.1093/g3journal/jkab003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/30/2020] [Indexed: 11/12/2022]
Abstract
Gamete production in mammals and insects is controlled by cell signaling pathways that facilitate communication between germ cells and somatic cells. Nuclear receptor signaling is a key mediator of many aspects of reproduction, including gametogenesis. For example, the NR5A subfamily of nuclear receptors is essential for gonad development and sex steroid production in mammals. Despite the original identification of the NR5A subfamily in the model insect Drosophila melanogaster, it has been unclear whether Drosophila NR5A receptors directly control oocyte production. Ftz-f1 is expressed throughout the ovary, including in germline stem cells, germline cysts, and several populations of somatic cells. We show that ftz-f1 is required in follicle cells prior to stage 10 to promote egg chamber survival at the mid-oogenesis checkpoint. Our data suggest that egg chamber death in the absence of ftz-f1 is due, at least in part, to failure of follicle cells to exit the mitotic cell cycle or failure to accumulate oocyte-specific factors in the germline. Taken together, these results show that, as in mammals, the NR5A subfamily promotes maximal reproductive output in Drosophila. Our data underscore the importance of nuclear receptors in the control of reproduction and highlight the utility of Drosophila oogenesis as a key model for unraveling the complexity of nuclear receptor signaling in gametogenesis.
Collapse
Affiliation(s)
- Allison N Beachum
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | | | | | - Daniel N Phipps
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Hanna E Berghout
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Elizabeth T Ables
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
- Corresponding author: Department of Biology, East Carolina University, 1001 E. 10th St., Mailstop 551, 553 Science & Technology Building, Greenville, NC 27858, USA.
| |
Collapse
|
11
|
Banisch TU, Slaidina M, Gupta S, Ho M, Gilboa L, Lehmann R. A transitory signaling center controls timing of primordial germ cell differentiation. Dev Cell 2021; 56:1742-1755.e4. [PMID: 34081907 PMCID: PMC8330407 DOI: 10.1016/j.devcel.2021.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 03/07/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022]
Abstract
Organogenesis requires exquisite spatiotemporal coordination of cell morphogenesis, migration, proliferation, and differentiation of multiple cell types. For gonads, this involves complex interactions between somatic and germline tissues. During Drosophila ovary morphogenesis, primordial germ cells (PGCs) either are sequestered in stem cell niches and are maintained in an undifferentiated germline stem cell state or transition directly toward differentiation. Here, we identify a mechanism that links hormonal triggers of somatic tissue morphogenesis with PGC differentiation. An early ecdysone pulse initiates somatic swarm cell (SwC) migration, positioning these cells close to PGCs. A second hormone peak activates Torso-like signal in SwCs, which stimulates the Torso receptor tyrosine kinase (RTK) signaling pathway in PGCs promoting their differentiation by de-repression of the differentiation gene, bag of marbles. Thus, systemic temporal cues generate a transitory signaling center that coordinates ovarian morphogenesis with stem cell self-renewal and differentiation programs, highlighting a more general role for such centers in reproductive and developmental biology.
Collapse
Affiliation(s)
- Torsten U Banisch
- Department of Cell Biology, Howard Hughes Medical Institute, Skirball Institute of Biomolecular Medicine, NYU School of Medicine, New York, NY 10016, USA.
| | - Maija Slaidina
- Department of Cell Biology, Howard Hughes Medical Institute, Skirball Institute of Biomolecular Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Selena Gupta
- Department of Cell Biology, Howard Hughes Medical Institute, Skirball Institute of Biomolecular Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Megan Ho
- Department of Cell Biology, Howard Hughes Medical Institute, Skirball Institute of Biomolecular Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Lilach Gilboa
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ruth Lehmann
- Department of Cell Biology, Howard Hughes Medical Institute, Skirball Institute of Biomolecular Medicine, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
12
|
Hu X, Li M, Hao X, Lu Y, Zhang L, Wu G. The Osa-Containing SWI/SNF Chromatin-Remodeling Complex Is Required in the Germline Differentiation Niche for Germline Stem Cell Progeny Differentiation. Genes (Basel) 2021; 12:genes12030363. [PMID: 33806269 PMCID: PMC7998989 DOI: 10.3390/genes12030363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/22/2022] Open
Abstract
The Drosophila ovary is recognized as a powerful model to study stem cell self-renewal and differentiation. Decapentaplegic (Dpp) is secreted from the germline stem cell (GSC) niche to activate Bone Morphogenic Protein (BMP) signaling in GSCs for their self-renewal and is restricted in the differentiation niche for daughter cell differentiation. Here, we report that Switch/sucrose non-fermentable (SWI/SNF) component Osa depletion in escort cells (ECs) results in a blockage of GSC progeny differentiation. Further molecular and genetic analyses suggest that the defective germline differentiation is partially attributed to the elevated dpp transcription in ECs. Moreover, ectopic Engrailed (En) expression in osa-depleted ECs partially contributes to upregulated dpp transcription. Furthermore, we show that Osa regulates germline differentiation in a Brahma (Brm)-associated protein (BAP)-complex-dependent manner. Additionally, the loss of EC long cellular processes upon osa depletion may also partly contribute to the germline differentiation defect. Taken together, these data suggest that the epigenetic factor Osa plays an important role in controlling EC characteristics and germline lineage differentiation.
Collapse
Affiliation(s)
- Xiaolong Hu
- State Key Laboratory of Microbial Metabolism, The Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences &Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.H.); (M.L.)
| | - Mengjie Li
- State Key Laboratory of Microbial Metabolism, The Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences &Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.H.); (M.L.)
| | - Xue Hao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; (X.H.); (Y.L.); (L.Z.)
| | - Yi Lu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; (X.H.); (Y.L.); (L.Z.)
| | - Lei Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; (X.H.); (Y.L.); (L.Z.)
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
- Bio-Research Innovation Center, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Suzhou 215121, China
| | - Geng Wu
- State Key Laboratory of Microbial Metabolism, The Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences &Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.H.); (M.L.)
- Correspondence:
| |
Collapse
|
13
|
A Progressive Somatic Cell Niche Regulates Germline Cyst Differentiation in the Drosophila Ovary. Curr Biol 2021; 31:840-852.e5. [PMID: 33340458 DOI: 10.1016/j.cub.2020.11.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 10/02/2020] [Accepted: 11/18/2020] [Indexed: 12/20/2022]
Abstract
In the germarium of the Drosophila ovary, developing germline cysts are surrounded by a population of somatic escort cells that are known to function as the niche cells for germline differentiation;1 however, the underlying molecular mechanisms of this niche function remain poorly understood. Through single-cell gene expression profiling combined with genetic analyses, we here demonstrate that the escort cells can be spatially and functionally divided into two successive domains. The anterior escort cells (aECs) specifically produce ecdysone, which acts on the cystoblast to promote synchronous cell division, whereas the posterior escort cells (pECs) respond to ecdysone signaling and regulate soma-germline cell adhesion to promote the transition from 16-cell cyst-to-egg chamber formation. The patterning of the aEC and pEC domains is independent of the germline but is dependent on JAK/STAT signaling activity, which emanates from the posterior. Thus, a heterogeneous population of escort cells constitutes a stepwise niche environment to orchestrate cystoblast division and differentiation toward egg chamber formation.
Collapse
|
14
|
Antel M, Baena V, Terasaki M, Inaba M. Ultrastructural Analysis of Cell-Cell Interactions in Drosophila Ovary. Methods Mol Biol 2021; 2346:79-90. [PMID: 33460026 DOI: 10.1007/7651_2020_342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Drosophila ovary is an exceptional model for studying cell-cell interactions in vivo. Cells communicate with each other in a highly coordinated manner. Accurate spatiotemporal regulation of cell-cell interaction is critical for the development of eggs. Ultrastructural analysis using electron microscopy (EM) permits the visualization of both cells and subcellular signaling structures with high resolution. Here we describe a method for the processing of intact fly ovaries by scanning electron microscopy (SEM).
Collapse
Affiliation(s)
- Matthew Antel
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Valentina Baena
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Mark Terasaki
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Mayu Inaba
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
15
|
Finger DS, Whitehead KM, Phipps DN, Ables ET. Nuclear receptors linking physiology and germline stem cells in Drosophila. VITAMINS AND HORMONES 2021; 116:327-362. [PMID: 33752824 PMCID: PMC8063499 DOI: 10.1016/bs.vh.2020.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Maternal nutrition and physiology are intimately associated with reproductive success in diverse organisms. Despite decades of study, the molecular mechanisms linking maternal diet to the production and quality of oocytes remain poorly defined. Nuclear receptors (NRs) link nutritional signals to cellular responses and are essential for oocyte development. The fruit fly, Drosophila melanogaster, is an excellent genetically tractable model to study the relationship between NR signaling and oocyte production. In this review, we explore how NRs in Drosophila regulate the earliest stages of oocyte development. Long-recognized as an essential mediator of developmental transitions, we focus on the intrinsic roles of the Ecdysone Receptor and its ligand, ecdysone, in oogenesis. We also review recent studies suggesting broader roles for NRs as regulators of maternal physiology and their impact specifically on oocyte production. We propose that NRs form the molecular basis of a broad physiological surveillance network linking maternal diet with oocyte production. Given the functional conservation between Drosophila and humans, continued experimental investigation into the molecular mechanisms by which NRs promote oogenesis will likely aid our understanding of human fertility.
Collapse
Affiliation(s)
- Danielle S Finger
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Kaitlin M Whitehead
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Daniel N Phipps
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Elizabeth T Ables
- Department of Biology, East Carolina University, Greenville, NC, United States.
| |
Collapse
|
16
|
Tu R, Duan B, Song X, Chen S, Scott A, Hall K, Blanck J, DeGraffenreid D, Li H, Perera A, Haug J, Xie T. Multiple Niche Compartments Orchestrate Stepwise Germline Stem Cell Progeny Differentiation. Curr Biol 2020; 31:827-839.e3. [PMID: 33357404 DOI: 10.1016/j.cub.2020.12.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 11/17/2020] [Accepted: 12/15/2020] [Indexed: 11/28/2022]
Abstract
The niche controls stem cell self-renewal and progenitor differentiation for maintaining adult tissue homeostasis in various organisms. However, it remains unclear whether the niche is compartmentalized to control stem cell self-renewal and stepwise progeny differentiation. In the Drosophila ovary, inner germarial sheath (IGS) cells form a niche for controlling germline stem cell (GSC) progeny differentiation. In this study, we have identified four IGS subpopulations, which form linearly arranged niche compartments for controlling GSC maintenance and multi-step progeny differentiation. Single-cell analysis of the adult ovary has identified four IGS subpopulations (IGS1-IGS4), the identities and cellular locations of which have been further confirmed by fluorescent in situ hybridization. IGS1 and IGS2 physically interact with GSCs and mitotic cysts to control GSC maintenance and cyst formation, respectively, whereas IGS3 and IGS4 physically interact with 16-cell cysts to regulate meiosis, oocyte development, and cyst morphological change. Finally, one follicle cell progenitor population has also been transcriptionally defined for facilitating future studies on follicle stem cell regulation. Therefore, this study has structurally revealed that the niche is organized into multiple compartments for orchestrating stepwise adult stem cell development and has also provided useful resources and tools for further functional characterization of the niche in the future.
Collapse
Affiliation(s)
- Renjun Tu
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Bo Duan
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Xiaoqing Song
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Shiyuan Chen
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Allison Scott
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Kate Hall
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Jillian Blanck
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Dustin DeGraffenreid
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Hua Li
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Anoja Perera
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Jeff Haug
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Ting Xie
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
17
|
A single-cell atlas and lineage analysis of the adult Drosophila ovary. Nat Commun 2020; 11:5628. [PMID: 33159074 PMCID: PMC7648648 DOI: 10.1038/s41467-020-19361-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/08/2020] [Indexed: 01/05/2023] Open
Abstract
The Drosophila ovary is a widely used model for germ cell and somatic tissue biology. Here we use single-cell RNA-sequencing (scRNA-seq) to build a comprehensive cell atlas of the adult Drosophila ovary that contains transcriptional profiles for every major cell type in the ovary, including the germline stem cells and their niche cells, follicle stem cells, and previously undescribed subpopulations of escort cells. In addition, we identify Gal4 lines with specific expression patterns and perform lineage tracing of subpopulations of escort cells and follicle cells. We discover that a distinct subpopulation of escort cells is able to convert to follicle stem cells in response to starvation or upon genetic manipulation, including knockdown of escargot, or overactivation of mTor or Toll signalling.
Collapse
|
18
|
Wang M, Chen X, Wu Y, Zheng Q, Chen W, Yan Y, Luan X, Shen C, Fang J, Zheng B, Yu J. RpS13 controls the homeostasis of germline stem cell niche through Rho1-mediated signals in the Drosophila testis. Cell Prolif 2020; 53:e12899. [PMID: 32896929 PMCID: PMC7574871 DOI: 10.1111/cpr.12899] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 12/20/2022] Open
Abstract
Objectives Stem cell niche regulated the renewal and differentiation of germline stem cells (GSCs) in Drosophila. Previously, we and others identified a series of genes encoding ribosomal proteins that may contribute to the self‐renewal and differentiation of GSCs. However, the mechanisms that maintain and differentiate GSCs in their niches were not well understood. Materials and Methods Flies were used to generate tissue‐specific gene knockdown. Small interfering RNAs were used to knockdown genes in S2 cells. qRT‐PCR was used to examine the relative mRNA expression level. TUNEL staining or flow cytometry assays were used to detect cell survival. Immunofluorescence was used to determine protein localization and expression pattern. Results Herein, using a genetic manipulation approach, we investigated the role of ribosomal protein S13 (RpS13) in testes and S2 cells. We reported that RpS13 was required for the self‐renewal and differentiation of GSCs. We also demonstrated that RpS13 regulated cell proliferation and apoptosis. Mechanistically, we showed that RpS13 regulated the expression of ribosome subunits and could moderate the expression of the Rho1, DE‐cad and Arm proteins. Notably, Rho1 imitated the phenotype of RpS13 in both Drosophila testes and S2 cells, and recruited cell adhesions, which was mediated by the DE‐cad and Arm proteins. Conclusion These findings uncover a novel mechanism of RpS13 that mediates Rho1 signals in the stem cell niche of the Drosophila testis.
Collapse
Affiliation(s)
- Min Wang
- Department of Gynecology, the Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Xia Chen
- Department of Gynecology, the Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Yibo Wu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Qianwen Zheng
- Department of Gynecology, the Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Wanyin Chen
- Department of Gynecology, the Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Yidan Yan
- Department of Gynecology, the Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Xiaojin Luan
- Department of Gynecology, the Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Cong Shen
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jie Fang
- Department of Gynecology, the Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Bo Zheng
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jun Yu
- Department of Gynecology, the Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| |
Collapse
|
19
|
Tu R, Duan B, Song X, Xie T. Dlp-mediated Hh and Wnt signaling interdependence is critical in the niche for germline stem cell progeny differentiation. SCIENCE ADVANCES 2020; 6:eaaz0480. [PMID: 32426496 PMCID: PMC7220319 DOI: 10.1126/sciadv.aaz0480] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 02/28/2020] [Indexed: 05/04/2023]
Abstract
Although multiple signaling pathways work synergistically in various niches to control stem cell self-renewal and differentiation, it remains poorly understood how they cooperate with one another molecularly. In the Drosophila ovary, Hh and Wnt pathways function in the niche to promote germline stem cell (GSC) progeny differentiation. Here, we show that glypican Dlp-mediated Hh and Wnt signaling interdependence operates in the niche to promote GSC progeny differentiation by preventing BMP signaling. Hh/Wnt-mediated dlp repression is essential for their signaling interdependence in niche cells and for GSC progeny differentiation by preventing BMP signaling. Mechanistically, Hh and Wnt downstream transcription factors directly bind to the same dlp regulatory region and recruit corepressors composed of transcription factor Croc and Egg/H3K9 trimethylase to repress Dlp expression. Therefore, our study reveals a novel mechanism for Hh/Wnt signaling-mediated direct dlp repression and a novel regulatory mechanism for Dlp-mediated Hh/Wnt signaling interdependence in the GSC differentiation niche.
Collapse
Affiliation(s)
- Renjun Tu
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Bo Duan
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Xiaoqing Song
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Ting Xie
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Corresponding author.
| |
Collapse
|
20
|
Hinnant TD, Merkle JA, Ables ET. Coordinating Proliferation, Polarity, and Cell Fate in the Drosophila Female Germline. Front Cell Dev Biol 2020; 8:19. [PMID: 32117961 PMCID: PMC7010594 DOI: 10.3389/fcell.2020.00019] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/10/2020] [Indexed: 01/05/2023] Open
Abstract
Gametes are highly specialized cell types produced by a complex differentiation process. Production of viable oocytes requires a series of precise and coordinated molecular events. Early in their development, germ cells are an interconnected group of mitotically dividing cells. Key regulatory events lead to the specification of mature oocytes and initiate a switch to the meiotic cell cycle program. Though the chromosomal events of meiosis have been extensively studied, it is unclear how other aspects of oocyte specification are temporally coordinated. The fruit fly, Drosophila melanogaster, has long been at the forefront as a model system for genetics and cell biology research. The adult Drosophila ovary continuously produces germ cells throughout the organism’s lifetime, and many of the cellular processes that occur to establish oocyte fate are conserved with mammalian gamete development. Here, we review recent discoveries from Drosophila that advance our understanding of how early germ cells balance mitotic exit with meiotic initiation. We discuss cell cycle control and establishment of cell polarity as major themes in oocyte specification. We also highlight a germline-specific organelle, the fusome, as integral to the coordination of cell division, cell polarity, and cell fate in ovarian germ cells. Finally, we discuss how the molecular controls of the cell cycle might be integrated with cell polarity and cell fate to maintain oocyte production.
Collapse
Affiliation(s)
- Taylor D Hinnant
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Julie A Merkle
- Department of Biology, University of Evansville, Evansville, IN, United States
| | - Elizabeth T Ables
- Department of Biology, East Carolina University, Greenville, NC, United States
| |
Collapse
|
21
|
Slaidina M, Banisch TU, Gupta S, Lehmann R. A single-cell atlas of the developing Drosophila ovary identifies follicle stem cell progenitors. Genes Dev 2020; 34:239-249. [PMID: 31919193 PMCID: PMC7000915 DOI: 10.1101/gad.330464.119] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 12/02/2019] [Indexed: 12/16/2022]
Abstract
Addressing the complexity of organogenesis at a system-wide level requires a complete understanding of adult cell types, their origin, and precursor relationships. The Drosophila ovary has been a model to study how coordinated stem cell units, germline, and somatic follicle stem cells maintain and renew an organ. However, lack of cell type-specific tools have limited our ability to study the origin of individual cell types and stem cell units. Here, we used a single-cell RNA sequencing approach to uncover all known cell types of the developing ovary, reveal transcriptional signatures, and identify cell type-specific markers for lineage tracing. Our study identifies a novel cell type corresponding to the elusive follicle stem cell precursors and predicts subtypes of known cell types. Altogether, we reveal a previously unanticipated complexity of the developing ovary and provide a comprehensive resource for the systematic analysis of ovary morphogenesis.
Collapse
Affiliation(s)
- Maija Slaidina
- Department of Cell Biology, Howard Hughes Medical Institute, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York 10016, USA
| | - Torsten U Banisch
- Department of Cell Biology, Howard Hughes Medical Institute, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York 10016, USA
| | - Selena Gupta
- Department of Cell Biology, Howard Hughes Medical Institute, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York 10016, USA
| | - Ruth Lehmann
- Department of Cell Biology, Howard Hughes Medical Institute, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York 10016, USA
| |
Collapse
|
22
|
Sokolova OA, Mikhaleva EA, Kharitonov SL, Abramov YA, Gvozdev VA, Klenov MS. Special vulnerability of somatic niche cells to transposable element activation in Drosophila larval ovaries. Sci Rep 2020; 10:1076. [PMID: 31974416 PMCID: PMC6978372 DOI: 10.1038/s41598-020-57901-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 01/07/2020] [Indexed: 01/09/2023] Open
Abstract
In the Drosophila ovary, somatic escort cells (ECs) form a niche that promotes differentiation of germline stem cell (GSC) progeny. The piRNA (Piwi-interacting RNA) pathway, which represses transposable elements (TEs), is required in ECs to prevent the accumulation of undifferentiated germ cells (germline tumor phenotype). The soma-specific piRNA cluster flamenco (flam) produces a substantial part of somatic piRNAs. Here, we characterized the biological effects of somatic TE activation on germ cell differentiation in flam mutants. We revealed that the choice between normal and tumorous phenotypes of flam mutant ovaries depends on the number of persisting ECs, which is determined at the larval stage. Accordingly, we found much more frequent DNA breaks in somatic cells of flam larval ovaries than in adult ECs. The absence of Chk2 or ATM checkpoint kinases dramatically enhanced oogenesis defects of flam mutants, in contrast to the germline TE-induced defects that are known to be mostly suppressed by сhk2 mutation. These results demonstrate a crucial role of checkpoint kinases in protecting niche cells against deleterious TE activation and suggest substantial differences between DNA damage responses in ovarian somatic and germ cells.
Collapse
Affiliation(s)
- Olesya A Sokolova
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., 123182, Moscow, Russian Federation
| | - Elena A Mikhaleva
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., 123182, Moscow, Russian Federation
| | - Sergey L Kharitonov
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., 123182, Moscow, Russian Federation
- Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova St., 119991, Moscow, Russian Federation
| | - Yuri A Abramov
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., 123182, Moscow, Russian Federation
| | - Vladimir A Gvozdev
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., 123182, Moscow, Russian Federation
| | - Mikhail S Klenov
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., 123182, Moscow, Russian Federation.
| |
Collapse
|
23
|
Modulation of Cell-Cell Interactions in Drosophila Oocyte Development. Cells 2020; 9:cells9020274. [PMID: 31979180 PMCID: PMC7072342 DOI: 10.3390/cells9020274] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023] Open
Abstract
The Drosophila ovary offers a suitable model system to study the mechanisms that orchestrate diverse cellular processes. Oogenesis starts from asymmetric stem cell division, proper differentiation and the production of fully patterned oocytes equipped with all the maternal information required for embryogenesis. Spatial and temporal regulation of cell-cell interaction is particularly important to fulfill accurate biological outcomes at each step of oocyte development. Progress has been made in understanding diverse cell physiological regulation of signaling. Here we review the roles of specialized cellular machinery in cell-cell communication in different stages of oogenesis.
Collapse
|
24
|
Li M, Hu X, Zhang S, Ho MS, Wu G, Zhang L. Traffic jam regulates the function of the ovarian germline stem cell progeny differentiation niche during pre-adult stage in Drosophila. Sci Rep 2019; 9:10124. [PMID: 31300663 PMCID: PMC6626045 DOI: 10.1038/s41598-019-45317-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 03/29/2019] [Indexed: 11/28/2022] Open
Abstract
Stem cell self-renewal and the daughter cell differentiation are tightly regulated by the respective niches, which produce extrinsic cues to support the proper development. In Drosophila ovary, Dpp is secreted from germline stem cell (GSC) niche and activates the BMP signaling in GSCs for their self-renewal. Escort cells (ECs) in differentiation niche restrict Dpp outside the GSC niche and extend protrusions to help with proper differentiation of the GSC daughter cells. Here we provide evidence that loss of large Maf transcriptional factor Traffic jam (Tj) blocks GSC progeny differentiation. Spatio-temporal specific knockdown experiments indicate that Tj is required in pre-adult EC lineage for germline differentiation control. Further molecular and genetic analyses suggest that the defective germline differentiation caused by tj-depletion is partly attributed to the elevated dpp in the differentiation niche. Moreover, our study reveals that tj-depletion induces ectopic En expression outside the GSC niche, which contributes to the upregulated dpp expression in ECs as well as GSC progeny differentiation defect. Alternatively, loss of EC protrusions and decreased EC number elicited by tj-depletion may also partially contribute to the germline differentiation defect. Collectively, our findings suggest that Tj in ECs regulates germline differentiation by controlling the differentiation niche characteristics.
Collapse
Affiliation(s)
- Mengjie Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, The Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaolong Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, The Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shu Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Margaret S Ho
- School of Life Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Geng Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, The Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Lei Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China. .,School of Life Science and Technology, Shanghai Tech University, Shanghai, 201210, China.
| |
Collapse
|
25
|
Mao Y, Tu R, Huang Y, Mao D, Yang Z, Lau PK, Wang J, Ni J, Guo Y, Xie T. The exocyst functions in niche cells to promote germline stem cell differentiation by directly controlling EGFR membrane trafficking. Development 2019; 146:dev.174615. [PMID: 31142545 DOI: 10.1242/dev.174615] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/14/2019] [Indexed: 12/31/2022]
Abstract
The niche controls stem cell self-renewal and differentiation in animal tissues. Although the exocyst is known to be important for protein membrane trafficking and secretion, its role in stem cells and niches has never been reported. Here, this study shows that the exocyst functions in the niche to promote germline stem cell (GSC) progeny differentiation in the Drosophila ovary by directly regulating EGFR membrane trafficking and signaling. Inactivation of exocyst components in inner germarial sheath cells, which form the differentiation niche, causes a severe GSC differentiation defect. The exocyst is required for maintaining niche cells and preventing BMP signaling in GSC progeny by promoting EGFR membrane targeting and signaling through direct association with EGFR. Finally, it is also required for EGFR membrane targeting, recycling and signaling in human cells. Therefore, this study reveals a novel function of the exocyst in niche cells to promote stem cell progeny differentiation by directly controlling EGFR membrane trafficking and signaling in vivo, and also provides important insight into how the niche controls stem cell progeny differentiation at the molecular level.
Collapse
Affiliation(s)
- Ying Mao
- PKU-THU Joint Center for Life Sciences, College of Life Sciences, School of Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Renjun Tu
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Yan Huang
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Decai Mao
- PKU-THU Joint Center for Life Sciences, College of Life Sciences, School of Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Zhihao Yang
- PKU-THU Joint Center for Life Sciences, College of Life Sciences, School of Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Pik Ki Lau
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jinhui Wang
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jianquan Ni
- PKU-THU Joint Center for Life Sciences, College of Life Sciences, School of Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Yusong Guo
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ting Xie
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| |
Collapse
|
26
|
Kahney EW, Snedeker JC, Chen X. Regulation of Drosophila germline stem cells. Curr Opin Cell Biol 2019; 60:27-35. [PMID: 31014993 DOI: 10.1016/j.ceb.2019.03.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 12/16/2022]
Abstract
The asymmetric division of adult stem cells into one self-renewing stem cell and one differentiating cell is critical for maintaining homeostasis in many tissues. One paradigmatic model of this division is the Drosophila male and female germline stem cell, which provides two model systems not only sharing common features but also having distinct characteristics for studying asymmetric stem cell division in vivo. This asymmetric division is controlled by a combination of extrinsic signaling molecules and intrinsic factors that are either asymmetrically segregated or regulated differentially following division. In this review, we will discuss recent advances in understanding the molecular and cellular mechanisms guiding this asymmetric outcome, including extrinsic cues, intrinsic factors governing cell fate specification, and cell cycle control.
Collapse
Affiliation(s)
- Elizabeth W Kahney
- Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Jonathan C Snedeker
- Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
27
|
Reilein A, Cimetta E, Tandon NM, Kalderon D, Vunjak-Novakovic G. Live imaging of stem cells in the germarium of the Drosophila ovary using a reusable gas-permeable imaging chamber. Nat Protoc 2019; 13:2601-2614. [PMID: 30349048 DOI: 10.1038/s41596-018-0054-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Live imaging of stem cells and their support cells can be used to visualize cellular dynamics and fluctuations of intracellular signals, proteins, and organelles in order to better understand stem cell behavior in the niche. We describe a simple protocol for imaging stem cells in the Drosophila ovary that improves on alternative protocols in that flies of any age can be used, dissection is simplified because the epithelial sheath that surrounds each ovariole need not be removed, and ovarioles are imaged in a closed chamber with a large volume of medium that buffers oxygen, pH, and temperature. We also describe how to construct the imaging chamber, which can be easily modified and used to image other tissues and non-adherent cells. Imaging is limited by follicle cells moving out of the germarium in culture around the time of egg chamber budding; however, the epithelial sheath delays this abnormal cell migration. This protocol requires an hour to prepare the ovarioles, followed by half an hour on the confocal microscope to locate germaria and set z limits. Successful imaging time depends on germarial morphology at the time of dissection, but we suggest 10-11 h to encompass all specimens.
Collapse
Affiliation(s)
- Amy Reilein
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| | - Elisa Cimetta
- Department of Industrial Engineering (DII), Padova University, Padua, Italy. .,Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti, Padua, Italy.
| | - Nina M Tandon
- EpiBone, Inc., Brooklyn, NY, USA.,Department of Electrical Engineering, The Cooper Union for the Advancement of Science and Art, New York, NY, USA
| | - Daniel Kalderon
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | | |
Collapse
|
28
|
Ben-Zvi DS, Volk T. Escort cell encapsulation of Drosophila germline cells is maintained by irre cell recognition module proteins. Biol Open 2019; 8:bio039842. [PMID: 30837217 PMCID: PMC6451344 DOI: 10.1242/bio.039842] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 02/06/2019] [Indexed: 12/17/2022] Open
Abstract
Differentiation of germline stem cells (GSCs) in the Drosophila ovary is induced by somatic escort cells (ECs), which extend membrane protrusions encapsulating the germline cells (GCs). Germline encapsulation requires activated epidermal growth factor receptor (Egfr) signaling within the ECs, following secretion of its ligands from the GCs. We show that the conserved family of irre cell recognition module (IRM) proteins is essential for GC encapsulation by ECs, with a requirement for roughest (rst) and kin of irre (kirre) in the germline and for sticks and stones (sns) and hibris (hbs) in ECs. In the absence of IRM components in their respective cell types, EC extensions are reduced concomitantly with a decrease in Egfr signaling in these cells. Reintroducing either activated Egfr in the ECs, or overexpressing its ligand Spitz (Spi) from the germline, rescued the requirement for IRM proteins in both cell types. These experiments introduce novel essential components, the IRM proteins, into the process of inductive interactions between GCs and ECs, and imply that IRM-mediated activity is required upstream of the Egfr signaling.
Collapse
Affiliation(s)
- Doreen S Ben-Zvi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Talila Volk
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
29
|
|
30
|
Tseng CY, Su YH, Yang SM, Lin KY, Lai CM, Rastegari E, Amartuvshin O, Cho Y, Cai Y, Hsu HJ. Smad-Independent BMP Signaling in Somatic Cells Limits the Size of the Germline Stem Cell Pool. Stem Cell Reports 2018; 11:811-827. [PMID: 30122445 PMCID: PMC6135924 DOI: 10.1016/j.stemcr.2018.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 12/22/2022] Open
Abstract
In developing organisms, proper tuning of the number of stem cells within a niche is critical for the maintenance of adult tissues; however, the involved mechanisms remain largely unclear. Here, we demonstrate that Thickveins (Tkv), a type I bone morphogenetic protein (BMP) receptor, acts in the Drosophila developing ovarian soma through a Smad-independent pathway to shape the distribution of BMP signal within the niche, impacting germline stem cell (GSC) recruitment and maintenance. Somatic Tkv promotes Egfr signaling to silence transcription of Dally, which localizes BMP signals on the cell surface. In parallel, Tkv promotes Hh signaling, which promotes escort cell cellular protrusions and upregulates expression of the Drosophila BMP homolog, Dpp, forming a positive feedback loop that enhances Tkv signaling and strengthens the niche boundary. Our results reveal a role for non-canonical BMP signaling in the soma during GSC establishment and generally illustrate how complex, cell-specific BMP signaling mediates niche-stem cell interactions. Tkv, a BMP receptor, in the developing ovarian soma controls fertility Knockdown Tkv in the developing soma causes ectopic germline stem cell (GSC) accumulation Tkv in the soma controls GSC number by limiting BMPs within the GSC niche BMP-Tkv signaling in the soma limits GSC number via Egfr and Hh signaling
Collapse
Affiliation(s)
- Chen-Yuan Tseng
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yu-Han Su
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Shun-Min Yang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Kun-Yang Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan; Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung-Hsing University, Taipei 11529, Taiwan; Graduate Institute of Biotechnology and Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Chun-Ming Lai
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan; Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung-Hsing University, Taipei 11529, Taiwan; Graduate Institute of Biotechnology and Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Elham Rastegari
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan; Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung-Hsing University, Taipei 11529, Taiwan; Graduate Institute of Biotechnology and Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Oyundari Amartuvshin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yueh Cho
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan; Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung-Hsing University, Taipei 11529, Taiwan; Graduate Institute of Biotechnology and Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Yu Cai
- Temasek Life Science Laboratory, National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Hwei-Jan Hsu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan; Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung-Hsing University, Taipei 11529, Taiwan; Graduate Institute of Biotechnology and Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
31
|
Upadhyay M, Kuna M, Tudor S, Martino Cortez Y, Rangan P. A switch in the mode of Wnt signaling orchestrates the formation of germline stem cell differentiation niche in Drosophila. PLoS Genet 2018; 14:e1007154. [PMID: 29370168 PMCID: PMC5811049 DOI: 10.1371/journal.pgen.1007154] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 02/13/2018] [Accepted: 12/13/2017] [Indexed: 01/12/2023] Open
Abstract
Germline stem cell (GSC) self-renewal and differentiation into gametes is regulated by both intrinsic factors in the germ line as well as extrinsic factors from the surrounding somatic niche. dWnt4, in the escort cells of the adult somatic niche promotes GSC differentiation using the canonical β-catenin-dependent transcriptional pathway to regulate escort cell survival, adhesion to the germ line and downregulation of self-renewal signaling. Here, we show that in addition to the β-catenin-dependent canonical pathway, dWnt4 also uses downstream components of the Wnt non-canonical pathway to promote escort cell function earlier in development. We find that the downstream non-canonical components, RhoA, Rac1 and cdc42, are expressed at high levels and are active in escort cell precursors of the female larval gonad compared to the adult somatic niche. Consistent with this expression pattern, we find that the non-canonical pathway components function in the larval stages but not in adults to regulate GSC differentiation. In the larval gonad, dWnt4, RhoA, Rac1 and cdc42 are required to promote intermingling of escort cell precursors, a function that then promotes proper escort cell function in the adults. We find that dWnt4 acts by modulating the activity of RhoA, Rac1 and cdc42, but not their protein levels. Together, our results indicate that at different points of development, dWnt4 switches from using the non-canonical pathway components to using a β-catenin-dependent canonical pathway in the escort cells to facilitate the proper differentiation of GSCs. Germ line association with the somatic cells is critical for various aspects of germ cell biology, including migration, self-renewal and differentiation. In Drosophila females, soma–germ line association begins during embryogenesis and continues until the mature egg is formed. In the adult, the somatic escort cells promote differentiation of the germline stem cell daughter using Wnt signaling. dWnt4, a Wnt ligand, acts in an autocrine manner in these escort cells, using the canonical pathway to regulate survival, division and encapsulation of the stem cell daughter, a function critical for differentiation. Here, we show at an earlier stage, in the larvae, the same ligand uses components of Wnt non-canonical pathway, RhoA, Rac1 and cdc42, to regulate proper mingling of escort cell precursors between the germ cells. Thus, dWnt4 uses different modules of signaling at different points in development to promote cell movement and control cytoplasmic protrusions. As Wnts have been associated with cancers, understanding how Wnts modulate cell movement by switching on and off different modules may lead to insights into the etiology and progression of cancers.
Collapse
Affiliation(s)
- Maitreyi Upadhyay
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, New York, United States of America
| | - Michael Kuna
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, New York, United States of America
- Albany Medical College, Albany, New York, United States of America
| | - Sara Tudor
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, New York, United States of America
- Albany Medical College, Albany, New York, United States of America
| | - Yesenia Martino Cortez
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, New York, United States of America
- Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Prashanth Rangan
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
32
|
Banisch TU, Maimon I, Dadosh T, Gilboa L. Escort cells generate a dynamic compartment for germline stem cell differentiation via combined Stat and Erk signalling. J Cell Sci 2017. [DOI: 10.1242/jcs.206540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|