1
|
Bizen N, Takebayashi H. Diverse functions of DEAD-box proteins in oligodendrocyte development, differentiation, and homeostasis. J Neurochem 2025; 169:e16238. [PMID: 39374171 DOI: 10.1111/jnc.16238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024]
Abstract
Oligodendrocytes, a type of glial cell in the central nervous system, have a critical role in the formation of myelin around axons, facilitating saltatory conduction, and maintaining the integrity of nerve axons. The dysregulation of oligodendrocyte differentiation and homeostasis have been implicated in a wide range of neurological diseases, including dysmyelinating disorders (e.g., Pelizaeus-Merzbacher disease), demyelinating diseases (e.g., multiple sclerosis), Alzheimer's disease, and psychiatric disorders. Therefore, unraveling the mechanisms of oligodendrocyte development, differentiation, and homeostasis is essential for understanding the pathogenesis of these diseases and the development of therapeutic interventions. Numerous studies have identified and analyzed the functions of transcription factors, RNA metabolic factors, translation control factors, and intracellular and extracellular signals involved in the series of processes from oligodendrocyte fate determination to terminal differentiation. DEAD-box proteins, multifunctional RNA helicases that regulate various intracellular processes, including transcription, RNA processing, and translation, are increasingly recognized for their diverse roles in various aspects of oligodendrocyte development, differentiation, and maintenance of homeostasis. This review introduces the latest insights into the regulatory networks of oligodendrocyte biology mediated by DEAD-box proteins.
Collapse
Affiliation(s)
- Norihisa Bizen
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Center for Anatomical Studies, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
2
|
Kinoshita K, Tanabe K, Nakamura Y, Nishijima KI, Suzuki T, Okuzaki Y, Mizushima S, Wang MS, Khan SU, Xu K, Jamal MA, Wei T, Zhao H, Su Y, Sun F, Liu G, Zhu F, Zhao HY, Wei HJ. PGC-based cryobanking, regeneration through germline chimera mating, and CRISPR/Cas9-mediated TYRP1 modification in indigenous Chinese chickens. Commun Biol 2024; 7:1127. [PMID: 39271811 PMCID: PMC11399235 DOI: 10.1038/s42003-024-06775-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Primordial germ cells (PGCs) are vital for producing sperm and eggs and are crucial for conserving chicken germplasm and creating genetically modified chickens. However, efforts to use PGCs for preserving native chicken germplasm and genetic modification via CRISPR/Cas9 are limited. Here we show that we established 289 PGC lines from eight Chinese chicken populations with an 81.6% success rate. We regenerated Piao chickens by repropagating cryopreserved PGCs and transplanting them into recipient chickens, achieving a 12.7% efficiency rate. These regenerated chickens carried mitochondrial DNA from female donor PGC and the rumplessness mutation from both male and female donors. Additionally, we created the TYRP1 (tyrosinase-related protein 1) knockout (KO) PGC lines via CRISPR/Cas9. Transplanting KO cells into male recipients and mating them with wild-type hens produced four TYRP1 KO chickens with brown plumage due to reduced eumelanin production. Our work demonstrates efficient PGC culture, cryopreservation, regeneration, and gene editing in chickens.
Collapse
Affiliation(s)
- Keiji Kinoshita
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China
| | - Kumiko Tanabe
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China
| | - Yoshiaki Nakamura
- Laboratory of Animal Breeding and Genetics, Graduate School of Integrated Sciences for Life and School of Applied Biological Science, Hiroshima University, Hiroshima, 739-8528, Japan
| | - Ken-Ichi Nishijima
- Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Takayuki Suzuki
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, Osaka, 558-8585, Japan
| | - Yuya Okuzaki
- Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Shusei Mizushima
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Ming-Shan Wang
- State Key Laboratory of Genetic resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Sami Ullah Khan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China
| | - Kaixiang Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China
| | - Muhammad Ameen Jamal
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory of Genetic resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Taiyun Wei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China
| | - Heng Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China
| | - Yanhua Su
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China
| | - Feizhou Sun
- National Center for Preservation of Animal Genetic Resources, National Animal Husbandry Service, Beijing, 100125, China
| | - Gang Liu
- National Center for Preservation of Animal Genetic Resources, National Animal Husbandry Service, Beijing, 100125, China
| | - Fangxian Zhu
- National Center for Preservation of Animal Genetic Resources, National Animal Husbandry Service, Beijing, 100125, China
| | - Hong-Ye Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, 650201, China.
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China.
| | - Hong-Jiang Wei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, 650201, China.
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China.
- State Key Laboratory of Genetic resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
3
|
Ichikawa K, McGrew MJ. Innovations in poultry reproduction using cryopreserved avian germ cells. Reprod Domest Anim 2024; 59:e14591. [PMID: 38798199 DOI: 10.1111/rda.14591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/19/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024]
Abstract
Meat and eggs from chicken are the major source of animal protein for the human population. The cryopreservation of poultry species is needed to guarantee sustainable production. Here, we describe the existing cryopreservation technologies for avian reproductive cells using embryonic germ cells, spermatozoa and ovarian tissues. We outline strategies to reconstitute chicken breeds from their cryopreserved embryonic germ cells using surrogate hosts and discuss the perspectives for genetic conservation and reconstitution of chicken and wild avian species using surrogate host animals.
Collapse
Affiliation(s)
- Kennosuke Ichikawa
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Mike J McGrew
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| |
Collapse
|
4
|
Challagulla A, Jenkins KA, O'Neil TE, Morris KR, Wise TG, Tizard ML, Bean AGD, Schat KA, Doran TJ. Germline engineering of the chicken genome using CRISPR/Cas9 by in vivo transfection of PGCs. Anim Biotechnol 2023; 34:775-784. [PMID: 32707002 DOI: 10.1080/10495398.2020.1789869] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Development of simple and readily adoptable methods to mediate germline engineering of the chicken genome will have many applications in research, agriculture and industrial biotechnology. We report germline targeting of the endogenous chicken Interferon Alpha and Beta Receptor Subunit 1 (IFNAR1) gene by in vivo transgenic expression of the high-fidelity Cas9 (Cas9-HF1) and guide RNAs (gRNAs) in chickens. First, we developed a Tol2 transposon vector carrying Cas9-HF1, IFNAR1-gRNAs (IF-gRNAs) and green fluorescent protein (GFP) transgenes (pTgRCG) and validated in chicken fibroblast DF1 cells. Next, the pTgRCG plasmid was directly injected into the dorsal aorta of embryonic day (ED) 2.5 chicken embryos targeting the circulating primordial germ cells (PGCs). The resulting chimera roosters generated a fully transgenic generation 1 (G1) hen with constitutive expression of Cas9-HF1 and IF-gRNAs (G1_Tol2-Cas9/IF-gRNA). We detected a spectrum of indels at gRNA-targeted loci in the G1_Tol2-Cas9/IF-gRNA hen and the indels were stably inherited by the G2 progeny. Breeding of the G1_Tol2-Cas9/IF-gRNA hen resulted in up to 10% transgene-free heterozygote IFNAR1 mutants, following null-segregation of the Tol2 insert. The method described here will provide new opportunities for genome editing in chicken and other avian species that lack PGC culture.
Collapse
Affiliation(s)
- Arjun Challagulla
- Australian Centre for Disease Preparedness, CSIRO Health and Biosecurity, Geelong, Australia
| | - Kristie A Jenkins
- Australian Centre for Disease Preparedness, CSIRO Health and Biosecurity, Geelong, Australia
| | - Terri E O'Neil
- Australian Centre for Disease Preparedness, CSIRO Health and Biosecurity, Geelong, Australia
| | - Kirsten R Morris
- Australian Centre for Disease Preparedness, CSIRO Health and Biosecurity, Geelong, Australia
| | - Terry G Wise
- Australian Centre for Disease Preparedness, CSIRO Health and Biosecurity, Geelong, Australia
| | - Mark L Tizard
- Australian Centre for Disease Preparedness, CSIRO Health and Biosecurity, Geelong, Australia
| | - Andrew G D Bean
- Australian Centre for Disease Preparedness, CSIRO Health and Biosecurity, Geelong, Australia
| | - Karel A Schat
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Timothy J Doran
- Australian Centre for Disease Preparedness, CSIRO Health and Biosecurity, Geelong, Australia
| |
Collapse
|
5
|
Chen YC, Saito D, Suzuki T, Takemoto T. An inducible germ cell ablation chicken model for high-grade germline chimeras. Development 2023; 150:dev202079. [PMID: 37665168 PMCID: PMC10560566 DOI: 10.1242/dev.202079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023]
Abstract
Chicken embryos are a powerful and widely used animal model in developmental biology studies. Since the development of CRISPR technology, gene-edited chickens have been generated by transferring primordial germ cells (PGCs) into recipients after genetic modifications. However, low inheritance caused by competition between host germ cells and the transferred cells is a common complication and greatly reduces production efficiency. Here, we generated a gene-edited chicken, in which germ cells can be ablated in a drug-dependent manner, as recipients for gene-edited PGC transfer. We used the nitroreductase/metronidazole (NTR/Mtz) system for cell ablation, in which nitroreductase produces cytotoxic alkylating agents from administered metronidazole, causing cell apoptosis. The chicken Vasa homolog (CVH) gene locus was used to drive the expression of the nitroreductase gene in a germ cell-specific manner. In addition, a fluorescent protein gene, mCherry, was also placed in the CVH locus to visualize the PGCs. We named this system 'germ cell-specific autonomous removal induction' (gSAMURAI). gSAMURAI chickens will be an ideal recipient to produce offspring derived from transplanted exogenous germ cells.
Collapse
Affiliation(s)
- Yi-Chen Chen
- Division of Research and Development, Setsuro Tech Inc., Tokushima 770-8503, Japan
- Laboratory for Embryology, Institute for Advanced Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Daisuke Saito
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Takayuki Suzuki
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, Osaka 558-8585, Japan
| | - Tatsuya Takemoto
- Division of Research and Development, Setsuro Tech Inc., Tokushima 770-8503, Japan
- Laboratory for Embryology, Institute for Advanced Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| |
Collapse
|
6
|
Park TS. - Invited Review - Gene-editing techniques and their applications in livestock and beyond. Anim Biosci 2023; 36:333-338. [PMID: 36634662 PMCID: PMC9899584 DOI: 10.5713/ab.22.0383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/21/2022] [Indexed: 01/12/2023] Open
Abstract
Genetic modification enables modification of target genes or genome structure in livestock and experimental animals. These technologies have not only advanced bioscience but also improved agricultural productivity. To introduce a foreign transgene, the piggyBac transposon element/transposase system could be used for production of transgenic animals and specific target protein-expressing animal cells. In addition, the clustered regularly interspaced short palindromic repeat-CRISPR associated protein 9 (CRISPR-Cas9) system have been utilized to generate chickens with knockout of G0/G1 switch gene 2 (G0S2) and myostatin, which are related to lipid deposition and muscle growth, respectively. These experimental chickens could be the invaluable genetic resources to investigate the regulatory pathways and mechanisms of improvement of economic traits such as fat quantity and growth. The gene-edited animals could also be applicable to the livestock industry.
Collapse
Affiliation(s)
- Tae Sub Park
- Graduate School of International Agricultural Technology and Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang 25354,
Korea,Corresponding Author: Tae Sub Park, Tel: +82-33-339-5721, E-mail:
| |
Collapse
|
7
|
Smith J, Alfieri JM, Anthony N, Arensburger P, Athrey GN, Balacco J, Balic A, Bardou P, Barela P, Bigot Y, Blackmon H, Borodin PM, Carroll R, Casono MC, Charles M, Cheng H, Chiodi M, Cigan L, Coghill LM, Crooijmans R, Das N, Davey S, Davidian A, Degalez F, Dekkers JM, Derks M, Diack AB, Djikeng A, Drechsler Y, Dyomin A, Fedrigo O, Fiddaman SR, Formenti G, Frantz LA, Fulton JE, Gaginskaya E, Galkina S, Gallardo RA, Geibel J, Gheyas AA, Godinez CJP, Goodell A, Graves JA, Griffin DK, Haase B, Han JL, Hanotte O, Henderson LJ, Hou ZC, Howe K, Huynh L, Ilatsia E, Jarvis ED, Johnson SM, Kaufman J, Kelly T, Kemp S, Kern C, Keroack JH, Klopp C, Lagarrigue S, Lamont SJ, Lange M, Lanke A, Larkin DM, Larson G, Layos JKN, Lebrasseur O, Malinovskaya LP, Martin RJ, Martin Cerezo ML, Mason AS, McCarthy FM, McGrew MJ, Mountcastle J, Muhonja CK, Muir W, Muret K, Murphy TD, Ng'ang'a I, Nishibori M, O'Connor RE, Ogugo M, Okimoto R, Ouko O, Patel HR, Perini F, Pigozzi MI, Potter KC, Price PD, Reimer C, Rice ES, Rocos N, Rogers TF, Saelao P, Schauer J, Schnabel RD, Schneider VA, Simianer H, Smith A, et alSmith J, Alfieri JM, Anthony N, Arensburger P, Athrey GN, Balacco J, Balic A, Bardou P, Barela P, Bigot Y, Blackmon H, Borodin PM, Carroll R, Casono MC, Charles M, Cheng H, Chiodi M, Cigan L, Coghill LM, Crooijmans R, Das N, Davey S, Davidian A, Degalez F, Dekkers JM, Derks M, Diack AB, Djikeng A, Drechsler Y, Dyomin A, Fedrigo O, Fiddaman SR, Formenti G, Frantz LA, Fulton JE, Gaginskaya E, Galkina S, Gallardo RA, Geibel J, Gheyas AA, Godinez CJP, Goodell A, Graves JA, Griffin DK, Haase B, Han JL, Hanotte O, Henderson LJ, Hou ZC, Howe K, Huynh L, Ilatsia E, Jarvis ED, Johnson SM, Kaufman J, Kelly T, Kemp S, Kern C, Keroack JH, Klopp C, Lagarrigue S, Lamont SJ, Lange M, Lanke A, Larkin DM, Larson G, Layos JKN, Lebrasseur O, Malinovskaya LP, Martin RJ, Martin Cerezo ML, Mason AS, McCarthy FM, McGrew MJ, Mountcastle J, Muhonja CK, Muir W, Muret K, Murphy TD, Ng'ang'a I, Nishibori M, O'Connor RE, Ogugo M, Okimoto R, Ouko O, Patel HR, Perini F, Pigozzi MI, Potter KC, Price PD, Reimer C, Rice ES, Rocos N, Rogers TF, Saelao P, Schauer J, Schnabel RD, Schneider VA, Simianer H, Smith A, Stevens MP, Stiers K, Tiambo CK, Tixier-Boichard M, Torgasheva AA, Tracey A, Tregaskes CA, Vervelde L, Wang Y, Warren WC, Waters PD, Webb D, Weigend S, Wolc A, Wright AE, Wright D, Wu Z, Yamagata M, Yang C, Yin ZT, Young MC, Zhang G, Zhao B, Zhou H. Fourth Report on Chicken Genes and Chromosomes 2022. Cytogenet Genome Res 2023; 162:405-528. [PMID: 36716736 PMCID: PMC11835228 DOI: 10.1159/000529376] [Show More Authors] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 01/22/2023] [Indexed: 02/01/2023] Open
Affiliation(s)
- Jacqueline Smith
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - James M. Alfieri
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, Texas, USA
- Department of Biology, Texas A&M University, College Station, Texas, USA
- Department of Poultry Science, Texas A&M University, College Station, Texas, USA
| | | | - Peter Arensburger
- Biological Sciences Department, California State Polytechnic University, Pomona, California, USA
| | - Giridhar N. Athrey
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, Texas, USA
- Department of Poultry Science, Texas A&M University, College Station, Texas, USA
| | | | - Adam Balic
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Philippe Bardou
- Université de Toulouse, INRAE, ENVT, GenPhySE, Sigenae, Castanet Tolosan, France
| | | | - Yves Bigot
- PRC, UMR INRAE 0085, CNRS 7247, Centre INRAE Val de Loire, Nouzilly, France
| | - Heath Blackmon
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, Texas, USA
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Pavel M. Borodin
- Department of Molecular Genetics, Cell Biology and Bioinformatics, Institute of Cytology and Genetics of Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Rachel Carroll
- Department of Animal Sciences, Data Science and Informatics Institute, University of Missouri, Columbia, Missouri, USA
| | | | - Mathieu Charles
- University Paris-Saclay, INRAE, AgroParisTech, GABI, Sigenae, Jouy-en-Josas, France
| | - Hans Cheng
- USDA, ARS, USNPRC, Avian Disease and Oncology Laboratory, East Lansing, Michigan, USA
| | | | | | - Lyndon M. Coghill
- Department of Veterinary Pathology, University of Missouri, Columbia, Missouri, USA
| | - Richard Crooijmans
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
| | | | - Sean Davey
- University of Arizona, Tucson, Arizona, USA
| | - Asya Davidian
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Fabien Degalez
- Centre for Tropical Livestock Genetics and Health (CTLGH) − ILRI, Nairobi, Kenya
| | - Jack M. Dekkers
- Department of Animal Science, University of California, Davis, California, USA
- INRAE, MIAT UR875, Sigenae, Castanet Tolosan, France
| | - Martijn Derks
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
| | - Abigail B. Diack
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Appolinaire Djikeng
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| | | | - Alexander Dyomin
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | | | | | | | - Laurent A.F. Frantz
- Queen Mary University of London, Bethnal Green, London, UK
- Palaeogenomics Group, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Janet E. Fulton
- Hy-Line International, Research and Development, Dallas Center, Iowa, USA
| | - Elena Gaginskaya
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Svetlana Galkina
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Rodrigo A. Gallardo
- School of Veterinary Medicine, University of California, Davis, California, USA
- Department of Animal Science, University of California, Davis, California, USA
| | - Johannes Geibel
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
- Center for Integrated Breeding Research, University of Göttingen, Göttingen, Germany
| | - Almas A. Gheyas
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Cyrill John P. Godinez
- Department of Animal Science, College of Agriculture and Food Science, Visayas State University, Baybay City, Philippines
| | | | - Jennifer A.M. Graves
- Department of Environment and Genetics, La Trobe University, Melbourne, Victoria, Australia
- Institute for Applied Ecology, University of Canberra, Canberra, Australian Capital Territory, Australia
| | | | | | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Olivier Hanotte
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
- Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, UK
- Centre for Tropical Livestock Genetics and Health, The Roslin Institute, Edinburgh, UK
| | - Lindsay J. Henderson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Zhuo-Cheng Hou
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | | | - Lan Huynh
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Evans Ilatsia
- Dairy Research Institute, Kenya Agricultural and Livestock Organization, Naivasha, Kenya
| | | | | | - Jim Kaufman
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Terra Kelly
- School of Veterinary Medicine, University of California, Davis, California, USA
- Department of Animal Science, University of California, Davis, California, USA
| | - Steve Kemp
- INRAE, INSTITUT AGRO, PEGASE UMR 1348, Saint-Gilles, France
| | - Colin Kern
- Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, California, USA
| | | | - Christophe Klopp
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| | - Sandrine Lagarrigue
- Centre for Tropical Livestock Genetics and Health (CTLGH) − ILRI, Nairobi, Kenya
| | - Susan J. Lamont
- Department of Animal Science, University of California, Davis, California, USA
- INRAE, MIAT UR875, Sigenae, Castanet Tolosan, France
| | - Margaret Lange
- Centre for Tropical Livestock Genetics and Health (CTLGH) − The Roslin Institute, Edinburgh, UK
| | - Anika Lanke
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Denis M. Larkin
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK
| | - Greger Larson
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, The University of Oxford, Oxford, UK
| | - John King N. Layos
- College of Agriculture and Forestry, Capiz State University, Mambusao, Philippines
| | - Ophélie Lebrasseur
- Centre d'Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR 5288, Université Toulouse III Paul Sabatier, Toulouse, France
- Instituto Nacional de Antropología y Pensamiento Latinoamericano, Ciudad Autónoma de Buenos Aires, Argentina
| | - Lyubov P. Malinovskaya
- Department of Cytology and Genetics, Novosibirsk State University, Novosibirsk, Russian Federation
| | - Rebecca J. Martin
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | | | | | | | - Michael J. McGrew
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| | | | - Christine Kamidi Muhonja
- Department of Veterinary Pathology, University of Missouri, Columbia, Missouri, USA
- Centre for Tropical Livestock Genetics and Health (CTLGH) − ILRI, Nairobi, Kenya
| | - William Muir
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Kévin Muret
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de Recherche en Génomique Humaine, Evry, France
| | - Terence D. Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Masahide Nishibori
- Laboratory of Animal Genetics, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | | | - Moses Ogugo
- Centre for Tropical Livestock Genetics and Health (CTLGH) − ILRI, Nairobi, Kenya
| | - Ron Okimoto
- Cobb-Vantress, Siloam Springs, Arkansas, USA
| | - Ochieng Ouko
- Department of Veterinary Pathology, University of Missouri, Columbia, Missouri, USA
| | - Hardip R. Patel
- The John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Francesco Perini
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - María Ines Pigozzi
- INBIOMED (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Peter D. Price
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Christian Reimer
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
| | - Edward S. Rice
- Department of Animal Sciences, Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Nicolas Rocos
- USDA, ARS, USNPRC, Avian Disease and Oncology Laboratory, East Lansing, Michigan, USA
| | - Thea F. Rogers
- Department of Molecular Evolution and Development, University of Vienna, Vienna, Austria
| | - Perot Saelao
- Department of Animal Science, University of California, Davis, California, USA
- Veterinary Pest Genetics Research Unit, USDA, Kerrville, Texas, USA
| | - Jens Schauer
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
| | - Robert D. Schnabel
- Department of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Valerie A. Schneider
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Henner Simianer
- Center for Integrated Breeding Research, University of Göttingen, Göttingen, Germany
| | - Adrian Smith
- Department of Zoology, University of Oxford, Oxford, UK
| | - Mark P. Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Kyle Stiers
- Department of Veterinary Pathology, University of Missouri, Columbia, Missouri, USA
| | | | | | - Anna A. Torgasheva
- Department of Molecular Genetics, Cell Biology and Bioinformatics, Institute of Cytology and Genetics of Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Alan Tracey
- University Paris-Saclay, INRAE, AgroParisTech, GABI, Sigenae, Jouy-en-Josas, France
| | - Clive A. Tregaskes
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Lonneke Vervelde
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Ying Wang
- Department of Animal Science, University of California, Davis, California, USA
| | - Wesley C. Warren
- Department of Animal Sciences, Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Department of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Paul D. Waters
- School of Biotechnology and Biomolecular Science, Faculty of Science, UNSW Sydney, Sydney, New South Wales, Australia
| | - David Webb
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Steffen Weigend
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
- Center for Integrated Breeding Research, University of Göttingen, Göttingen, Germany
| | - Anna Wolc
- INRAE, MIAT UR875, Sigenae, Castanet Tolosan, France
- Hy-Line International, Research and Development, Dallas Center, Iowa, USA
| | - Alison E. Wright
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Dominic Wright
- AVIAN Behavioural Genomics and Physiology, IFM Biology, Linköping University, Linköping, Sweden
| | - Zhou Wu
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Masahito Yamagata
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | | | - Zhong-Tao Yin
- Department of Animal Sciences, Data Science and Informatics Institute, University of Missouri, Columbia, Missouri, USA
| | | | - Guojie Zhang
- Center for Evolutionary and Organismal Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Bingru Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, California, USA
| |
Collapse
|
8
|
Ibrahim M, Stadnicka K. The science of genetically modified poultry. PHYSICAL SCIENCES REVIEWS 2023. [DOI: 10.1515/psr-2022-0352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Abstract
The exuberant development of targeted genome editing has revolutionized research on the chicken genome, generating chickens with beneficial parameters. The chicken model is a crucial experimental tool that can be utilized for drug manufacture, preclinical research, pathological observation, and other applications. In essence, tweaking the chicken’s genome has enabled the poultry industry to get more done with less, generating genetically modified chickens that lay eggs containing large amounts of lifesaving humanized drugs. The transition of gene editing from concept to practical application has been dramatically hastened by the development of programmable nucleases, bringing scientists closer than ever to the efficient producers of tomorrow’s medicines. Combining the developmental and physiological characteristics of the chicken with cutting-edge genome editing, the chicken furnishes a potent frontier that is foreseen to be actively pursued in the future. Herein we review the current and future prospects of gene editing in chickens and the contributions to the development of humanized pharmaceuticals.
Collapse
Affiliation(s)
- Mariam Ibrahim
- Department of Animal Biotechnology and Genetics , PBS University of Science and Technology , 85-084 Bydgoszcz , Poland
| | - Katarzyna Stadnicka
- Department of Oncology , Collegium Medicum Nicolaus Copernicus University , 85-821 Bydgoszcz , Poland
| |
Collapse
|
9
|
Idoko-Akoh A, McGrew MJ. Generation of Genome-Edited Chicken Through Targeting of Primordial Germ Cells. Methods Mol Biol 2023; 2631:419-441. [PMID: 36995681 DOI: 10.1007/978-1-0716-2990-1_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Genome editing technology facilitates the creation of specific and precise genetic changes to unravel gene function and rapidly transfer unique alleles between chicken breeds in contrast to lengthy traditional crossbreeding methods for the study of poultry genetics. Innovations in genome sequencing technology have made it possible to map polymorphisms associated with both monogenic and multigenic traits in livestock species. We, and many others, have demonstrated the use of genome editing to introduce specific monogenic traits in chicken through targeting of cultured primordial germ cells. In this chapter, we describe materials and protocols for performing heritable genome editing in the chicken through targeting of in vitro propagated chicken primordial germ cells.
Collapse
Affiliation(s)
- Alewo Idoko-Akoh
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Michael J McGrew
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK.
| |
Collapse
|
10
|
Wani AK, Akhtar N, Singh R, Prakash A, Raza SHA, Cavalu S, Chopra C, Madkour M, Elolimy A, Hashem NM. Genome centric engineering using ZFNs, TALENs and CRISPR-Cas9 systems for trait improvement and disease control in Animals. Vet Res Commun 2023; 47:1-16. [PMID: 35781172 DOI: 10.1007/s11259-022-09967-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/24/2022] [Indexed: 01/27/2023]
Abstract
Livestock is an essential life commodity in modern agriculture involving breeding and maintenance. The farming practices have evolved mainly over the last century for commercial outputs, animal welfare, environment friendliness, and public health. Modifying genetic makeup of livestock has been proposed as an effective tool to create farmed animals with characteristics meeting modern farming system goals. The first technique used to produce transgenic farmed animals resulted in random transgene insertion and a low gene transfection rate. Therefore, genome manipulation technologies have been developed to enable efficient gene targeting with a higher accuracy and gene stability. Genome editing (GE) with engineered nucleases-Zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) regulates the targeted genetic alterations to facilitate multiple genomic modifications through protein-DNA binding. The application of genome editors indicates usefulness in reproduction, animal models, transgenic animals, and cell lines. Recently, CRISPR/Cas system, an RNA-dependent genome editing tool (GET), is considered one of the most advanced and precise GE techniques for on-target modifications in the mammalian genome by mediating knock-in (KI) and knock-out (KO) of several genes. Lately, CRISPR/Cas9 tool has become the method of choice for genome alterations in livestock species due to its efficiency and specificity. The aim of this review is to discuss the evolution of engineered nucleases and GETs as a powerful tool for genome manipulation with special emphasis on its applications in improving economic traits and conferring resistance to infectious diseases of animals used for food production, by highlighting the recent trends for maintaining sustainable livestock production.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Ajit Prakash
- Department of Biochemistry and Biophysics, University of North Carolina, 120 Mason Farm Road, CB# 7260, 3093 Genetic Medicine, Chapel Hill, NC, 27599-2760, USA
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P -ta 1Decembrie 10, 410073, Oradea, Romania
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Mahmoud Madkour
- Animal Production Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Ahmed Elolimy
- Animal Production Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Nesrein M Hashem
- Department of Animal and Fish Production, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt.
| |
Collapse
|
11
|
Butler K, Brinker CJ, Leong HS. Bridging the In Vitro to In Vivo gap: Using the Chick Embryo Model to Accelerate Nanoparticle Validation and Qualification for In Vivo studies. ACS NANO 2022; 16:19626-19650. [PMID: 36453753 PMCID: PMC9799072 DOI: 10.1021/acsnano.2c03990] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 10/17/2022] [Indexed: 06/17/2023]
Abstract
We postulate that nanoparticles (NPs) for use in therapeutic applications have largely not realized their clinical potential due to an overall inability to use in vitro results to predict NP performance in vivo. The avian embryo and associated chorioallantoic membrane (CAM) has emerged as an in vivo preclinical model that bridges the gap between in vitro and in vivo, enabling rapid screening of NP behavior under physiologically relevant conditions and providing a rapid, accessible, economical, and more ethical means of qualifying nanoparticles for in vivo use. The CAM is highly vascularized and mimics the diverging/converging vasculature of the liver, spleen, and lungs that serve as nanoparticle traps. Intravital imaging of fluorescently labeled NPs injected into the CAM vasculature enables immediate assessment and quantification of nano-bio interactions at the individual NP scale in any tissue of interest that is perfused with a microvasculature. In this review, we highlight how utilization of the avian embryo and its CAM as a preclinical model can be used to understand NP stability in blood and tissues, extravasation, biocompatibility, and NP distribution over time, thereby serving to identify a subset of NPs with the requisite stability and performance to introduce into rodent models and enabling the development of structure-property relationships and NP optimization without the sacrifice of large populations of mice or other rodents. We then review how the chicken embryo and CAM model systems have been used to accelerate the development of NP delivery and imaging agents by allowing direct visualization of targeted (active) and nontargeted (passive) NP binding, internalization, and cargo delivery to individual cells (of relevance for the treatment of leukemia and metastatic cancer) and cellular ensembles (e.g., cancer xenografts of interest for treatment or imaging of cancer tumors). We conclude by showcasing emerging techniques for the utilization of the CAM in future nano-bio studies.
Collapse
Affiliation(s)
- Kimberly
S. Butler
- Molecular
and Microbiology, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| | - C. Jeffrey Brinker
- Department
of Chemical and Biological Engineering and the Comprehensive Cancer
Center, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Hon Sing Leong
- Department
of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto M5G 1L7, Canada
- Biological
Sciences Platform, Sunnybrook Hospital, Toronto M4N 3M5, Canada
| |
Collapse
|
12
|
Atsuta Y, Suzuki K, Iikawa H, Yaguchi H, Saito D. Prime editing in chicken fibroblasts and primordial germ cells. Dev Growth Differ 2022; 64:548-557. [PMID: 36374008 DOI: 10.1111/dgd.12823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/28/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022]
Abstract
CRISPR/Cas9-based genome editing technologies are revolutionizing developmental biology. One of the advanced CRISPR-based techniques is prime editing (PE), which enables precise gene modification in multiple model organisms. However, there has been no report of taking advantage of the PE system for gene editing in primordial germ cells (PGCs) thus far. In the current study, we describe a method to apply PE to the genome of chicken fibroblasts and PGCs. By combining PE with a transposon-mediated genomic integration, drug selection, and the single-cell culture method, we successfully generated prime-edited chicken fibroblasts and PGCs. The chicken PGC is widely used as an experimental model to study germ cell formation and as a vector for gene transfer to produce transgenic chickens. Such experimental models are useful in the developmental biology field and as potential bioreactors to produce pharmaceutical and nutritious proteins. Thus, the method presented here will provide not only a powerful tool to investigate gene function in germ cell development but also a basis for generating prime-edited transgenic birds.
Collapse
Affiliation(s)
- Yuji Atsuta
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Katsuya Suzuki
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Hiroko Iikawa
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Haruna Yaguchi
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Daisuke Saito
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
13
|
Challagulla A, Shi S, Nair K, O'Neil TE, Morris KR, Wise TG, Cahill DM, Tizard ML, Doran TJ, Jenkins KA. Marker counter-selection via CRISPR/Cas9 co-targeting for efficient generation of genome edited avian cell lines and germ cells. Anim Biotechnol 2022; 33:1235-1245. [PMID: 33650465 DOI: 10.1080/10495398.2021.1885428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Efficient isolation of genetically modified cells that are phenotypically indistinguishable from the unmodified cells remains a major technical barrier for the broader utilization of CRISPR/Cas9. Here, we report a novel enrichment approach to select the genome engineered cells by co-targeting a genomically integrated GFP gene along with the endogenous gene of interest (GOI). Using this co-targeting approach, multiple genomic loci were successfully targeted in chicken (DF1) and quail (CEC-32) fibroblast cell lines by transient transfection of Cas9 and guide RNAs (gRNAs). Clonal isolation of co-targeted DF1 cells showed 75% of cell clones had deletion of GFP and biallelic deletion of the GOI. To assess the utility of this approach to generate genome modified animals, we tested it on chicken primordial germ cells (PGCs) expressing GFP by co-targeting with gRNAs against GFP and endogenous ovomucoid (OVM) gene. PGCs enriched for loss of GFP and confirmed for OVM deletion, derived by co-targeting, were injected into Hamburger and Hamilton stage 14-15 chicken embryos, and their ability to migrate to the genital ridge was confirmed. This simple, efficient enrichment approach could easily be applied to the creation of knock-out or edited cell lines or animals.
Collapse
Affiliation(s)
- Arjun Challagulla
- Australian Centre for Disease Preparedness, CSIRO Health and Biosecurity, Geelong, VIC, Australia
| | - Shunning Shi
- Australian Centre for Disease Preparedness, CSIRO Health and Biosecurity, Geelong, VIC, Australia
| | - Kiran Nair
- Australian Centre for Disease Preparedness, CSIRO Health and Biosecurity, Geelong, VIC, Australia
| | - Terri E O'Neil
- Australian Centre for Disease Preparedness, CSIRO Health and Biosecurity, Geelong, VIC, Australia
| | - Kirsten R Morris
- Australian Centre for Disease Preparedness, CSIRO Health and Biosecurity, Geelong, VIC, Australia
| | - Terry G Wise
- Australian Centre for Disease Preparedness, CSIRO Health and Biosecurity, Geelong, VIC, Australia
| | - David M Cahill
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
| | - Mark L Tizard
- Australian Centre for Disease Preparedness, CSIRO Health and Biosecurity, Geelong, VIC, Australia
| | - Timothy J Doran
- Australian Centre for Disease Preparedness, CSIRO Health and Biosecurity, Geelong, VIC, Australia
| | - Kristie A Jenkins
- Australian Centre for Disease Preparedness, CSIRO Health and Biosecurity, Geelong, VIC, Australia
| |
Collapse
|
14
|
Ichikawa K, Nakamura Y, Bono H, Ezaki R, Matsuzaki M, Horiuchi H. Prediction of sex-determination mechanisms in avian primordial germ cells using RNA-seq analysis. Sci Rep 2022; 12:13528. [PMID: 35978076 PMCID: PMC9385715 DOI: 10.1038/s41598-022-17726-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/29/2022] [Indexed: 12/12/2022] Open
Abstract
In birds, sex is determined through cell-autonomous mechanisms and various factors, such as the dosage of DMRT1. While the sex-determination mechanism in gonads is well known, the mechanism in germ cells remains unclear. In this study, we explored the gene expression profiles of male and female primordial germ cells (PGCs) during embryogenesis in chickens to predict the mechanism underlying sex determination. Male and female PGCs were isolated from blood and gonads with a purity > 96% using flow cytometry and analyzed using RNA-seq. Prior to settlement in the gonads, female circulating PGCs (cPGCs) obtained from blood displayed sex-biased expression. Gonadal PGCs (gPGCs) also exhibited sex-biased expression, and the number of female-biased genes detected was higher than that of male-biased genes. The female-biased genes in gPGCs were enriched in some metabolic processes. To reveal the mechanisms underlying the transcriptional regulation of female-biased genes in gPGCs, we performed stimulation tests. Retinoic acid stimulation of cultured gPGCs derived from male embryos resulted in the upregulation of several female-biased genes. Overall, our results suggest that sex determination in avian PGCs involves aspects of both cell-autonomous and somatic-cell regulation. Moreover, it appears that sex determination occurs earlier in females than in males.
Collapse
Affiliation(s)
- Kennosuke Ichikawa
- Genome Editing Innovation Center, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan.
| | - Yoshiaki Nakamura
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8528, Japan
| | - Hidemasa Bono
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8528, Japan
| | - Ryo Ezaki
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8528, Japan
| | - Mei Matsuzaki
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8528, Japan
| | - Hiroyuki Horiuchi
- Genome Editing Innovation Center, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan.,Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8528, Japan
| |
Collapse
|
15
|
Barkova OY, Larkina TA, Krutikova AA, Polteva EA, Shcherbakov YS, Peglivanyan GK, Pozovnikova MV. Innovative Approaches to Genome Editing in Chickens. CYTOL GENET+ 2022. [DOI: 10.3103/s0095452722020037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Hu T, Taylor L, Sherman A, Keambou Tiambo C, Kemp SJ, Whitelaw B, Hawken RJ, Djikeng A, McGrew MJ. A low-tech, cost-effective and efficient method for safeguarding genetic diversity by direct cryopreservation of poultry embryonic reproductive cells. eLife 2022; 11:e74036. [PMID: 35074046 PMCID: PMC8789256 DOI: 10.7554/elife.74036] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/06/2022] [Indexed: 12/18/2022] Open
Abstract
Chickens are an important resource for smallholder farmers who raise locally adapted, genetically distinct breeds for eggs and meat. The development of efficient reproductive technologies to conserve and regenerate chicken breeds safeguards existing biodiversity and secures poultry genetic resources for climate resilience, biosecurity, and future food production. The majority of the over 1600 breeds of chicken are raised in low and lower to middle income countries under resource-limited, small-scale production systems, which necessitates a low-tech, cost-effective means of conserving diversity is needed. Here, we validate a simple biobanking technique using cryopreserved embryonic chicken gonads. The gonads are quickly isolated, visually sexed, pooled by sex, and cryopreserved. Subsequently, the stored material is thawed and dissociated before injection into sterile host chicken embryos. By using pooled GFP and RFP-labelled donor gonadal cells and Sire Dam Surrogate mating, we demonstrate that chicks deriving entirely from male and female donor germ cells are hatched. This technology will enable ongoing efforts to conserve chicken genetic diversity for both commercial and smallholder farmers, and to preserve existing genetic resources at poultry research facilities.
Collapse
Affiliation(s)
- Tuanjun Hu
- Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, University of Edinburgh, Easter Bush CampusEdinburghUnited Kingdom
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush CampusEdinburghUnited Kingdom
| | - Lorna Taylor
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush CampusEdinburghUnited Kingdom
| | - Adrian Sherman
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush CampusEdinburghUnited Kingdom
| | - Christian Keambou Tiambo
- Centre for Tropical Livestock Genetics and Health (CTLGH), International Livestock Research Institute (ILRI)NairobiKenya
| | - Steven J Kemp
- Centre for Tropical Livestock Genetics and Health (CTLGH), International Livestock Research Institute (ILRI)NairobiKenya
| | - Bruce Whitelaw
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush CampusEdinburghUnited Kingdom
| | | | - Appolinaire Djikeng
- Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, University of Edinburgh, Easter Bush CampusEdinburghUnited Kingdom
| | - Michael J McGrew
- Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, University of Edinburgh, Easter Bush CampusEdinburghUnited Kingdom
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush CampusEdinburghUnited Kingdom
| |
Collapse
|
17
|
Ballantyne M, Taylor L, Hu T, Meunier D, Nandi S, Sherman A, Flack B, Henshall JM, Hawken RJ, McGrew MJ. Avian Primordial Germ Cells Are Bipotent for Male or Female Gametogenesis. Front Cell Dev Biol 2021; 9:726827. [PMID: 34660583 PMCID: PMC8511492 DOI: 10.3389/fcell.2021.726827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
In birds, males are the homogametic sex (ZZ) and females are the heterogametic sex (ZW). Here, we investigate the role of chromosomal sex and germ cell competition on avian germ cell differentiation. We recently developed genetically sterile layer cockerels and hens for use as surrogate hosts for primordial germ cell (PGC) transplantation. Using in vitro propagated and cryopreserved PGCs from a pedigree Silkie broiler breed, we now demonstrate that sterile surrogate layer hosts injected with same sex PGCs have normal fertility and produced pure breed Silkie broiler offspring when directly mated to each other in Sire Dam Surrogate mating. We found that female sterile hosts carrying chromosomally male (ZZ) PGCs formed functional oocytes and eggs, which gave rise to 100% male offspring after fertilization. Unexpectedly, we also observed that chromosomally female (ZW) PGCs carried by male sterile hosts formed functional spermatozoa and produced viable offspring. These findings demonstrate that avian PGCs are not sexually restricted for functional gamete formation and provide new insights for the cryopreservation of poultry and other bird species using diploid stage germ cells.
Collapse
Affiliation(s)
- Maeve Ballantyne
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.,Centre for Tropical Livestock Genetics and Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Lorna Taylor
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Tuanjun Hu
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.,Centre for Tropical Livestock Genetics and Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Dominique Meunier
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Sunil Nandi
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Adrian Sherman
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | - Mike J McGrew
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.,Centre for Tropical Livestock Genetics and Health, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
18
|
Karachaliou CE, Vassilakopoulou V, Livaniou E. IgY technology: Methods for developing and evaluating avian immunoglobulins for the in vitro detection of biomolecules. World J Methodol 2021; 11:243-262. [PMID: 34631482 PMCID: PMC8472547 DOI: 10.5662/wjm.v11.i5.243] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/10/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023] Open
Abstract
The term “IgY technology” was introduced in the literature in the mid 1990s to describe a procedure involving immunization of avian species, mainly laying hens and consequent isolation of the polyclonal IgYs from the “immune” egg yolk (thus avoiding bleeding and animal stress). IgYs have been applied to various fields of medicine and biotechnology. The present article will deal with specific aspects of IgY technology, focusing on the currently reported methods for developing, isolating, evaluating and storing polyclonal IgYs. Other topics such as current information on isolation protocols or evaluation of IgYs from different avian species are also discussed. Specific advantages of IgY technology (e.g., novel antibody specificities that may emerge via the avian immune system) will also be discussed. Recent in vitro applications of polyclonal egg yolk-derived IgYs to the field of disease diagnosis in human and veterinary medicine through in vitro immunodetection of target biomolecules will be presented. Moreover, ethical aspects associated with animal well-being as well as new promising approaches that are relevant to the original IgY technology (e.g., development of monoclonal IgYs and IgY-like antibodies through the phage display technique or in transgenic chickens) and future prospects in the area will also be mentioned.
Collapse
Affiliation(s)
- Chrysoula-Evangelia Karachaliou
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, Athens 15310, Greece
| | - Vyronia Vassilakopoulou
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, Athens 15310, Greece
| | - Evangelia Livaniou
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, Athens 15310, Greece
| |
Collapse
|
19
|
Improving germline transmission efficiency in chimeric chickens using a multi-stage injection approach. PLoS One 2021; 16:e0247471. [PMID: 34086696 PMCID: PMC8177527 DOI: 10.1371/journal.pone.0247471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/18/2021] [Indexed: 11/19/2022] Open
Abstract
Although different strategies have been developed to generate transgenic poultry, low efficiency of germline transgene transmission has remained a challenge in poultry transgenesis. Herein, we developed an efficient germline transgenesis method using a lentiviral vector system in chickens through multiple injections of transgenes into embryos at different stages of development. The embryo chorioallantoic membrane (CAM) vasculature was successfully used as a novel route of gene transfer into germline tissues. Compared to the other routes of viral vector administration, the embryo’s bloodstream at Hamburger-Hamilton (HH) stages 14–15 achieved the highest rate of germline transmission (GT), 7.7%. Single injection of viral vectors into the CAM vasculature resulted in a GT efficiency of 2.7%, which was significantly higher than the 0.4% obtained by injection into embryos at the blastoderm stage. Double injection of viral vectors into the bloodstream at HH stages 14–15 and through CAM was the most efficient method for producing germline chimeras, giving a GT rate of 13.6%. The authors suggest that the new method described in this study could be efficiently used to produce transgenic poultry in virus-mediated gene transfer systems.
Collapse
|
20
|
In vivo enrichment of busulfan-resistant germ cells for efficient production of transgenic avian models. Sci Rep 2021; 11:9127. [PMID: 33911174 PMCID: PMC8080772 DOI: 10.1038/s41598-021-88706-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/16/2021] [Indexed: 01/01/2023] Open
Abstract
Most transgenic animals are generated using a genome-modified stem cell system and genome modification directly in embryos. Although this system is well-established in the development of transgenic animals, donor cell-derived transgenic animal production is inefficient in some cases. Especially in avian models such as chickens, the efficiency of transgenic animal production through primordial germ cells (PGCs) is highly variable compared with embryonic manipulation of mammalian species. Because germ cell and germline-competent stem cell-mediated systems that contain the transgene are enriched only at the upstream level during cell cultivation, the efficiency of transgenic animal production is unreliable. Therefore, we developed an in vivo selection model to enhance the efficiency of transgenic chicken production using microsomal glutathione-S-transferase II (MGSTII)-overexpressing PGCs that are resistant to the alkylating agent busulfan, which induces germ cell-specific cytotoxicity. Under in vitro conditions, MGSTII-tg PGCs were resistant to 1 μM busulfan, which was highly toxic to wild-type PGCs. In germline chimeric roosters, transgene-expressing germ cells were dominantly colonized in the recipient testes after busulfan exposure compared with non-treated germline chimera. In validation of germline transmission, donor PGC-derived progeny production efficiency was 94.68%, and the transgene production rate of heterozygous transgenic chickens was significantly increased in chickens that received 40 mg/kg busulfan (80.33–95.23%) compared with that of non-treated germline chimeras (51.18%). This system is expected to significantly improve the efficiency of generating transgenic chickens and other animal species by increasing the distribution of donor cells in adult testes.
Collapse
|
21
|
Gessara I, Dittrich F, Hertel M, Hildebrand S, Pfeifer A, Frankl-Vilches C, McGrew M, Gahr M. Highly Efficient Genome Modification of Cultured Primordial Germ Cells with Lentiviral Vectors to Generate Transgenic Songbirds. Stem Cell Reports 2021; 16:784-796. [PMID: 33740464 PMCID: PMC8072032 DOI: 10.1016/j.stemcr.2021.02.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
The ability to genetically manipulate organisms has led to significant insights into functional genomics in many species. In birds, manipulation of the genome is hindered by the inaccessibility of the one-cell embryo. During embryonic development, avian primordial germ cells (PGCs) migrate through the bloodstream and reach the gonadal anlage, where they develop into mature germ cells. Here, we explored the use of PGCs to produce transgenic offspring in the zebra finch, which is a major animal model for sexual brain differentiation, vocal learning, and vocal communication. Zebra finch PGCs (zfPGCs) obtained from embryonic blood significantly proliferated when cultured in an optimized culture medium and conserved the expression of germ and stem cell markers. Transduction of cultured zfPGCs with lentiviral vectors was highly efficient, leading to strong expression of the enhanced green fluorescent protein. Transduced zfPGCs were injected into the host embryo and transgenic songbirds were successfully generated.
Collapse
Affiliation(s)
- Ivana Gessara
- Max Planck Institute for Ornithology, Eberhard Gwinner Strasse, 82319 Seewiesen, Germany.
| | - Falk Dittrich
- Max Planck Institute for Ornithology, Eberhard Gwinner Strasse, 82319 Seewiesen, Germany
| | - Moritz Hertel
- Max Planck Institute for Ornithology, Eberhard Gwinner Strasse, 82319 Seewiesen, Germany
| | - Staffan Hildebrand
- Institute of Pharmacology and Toxicology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | | | - Mike McGrew
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Manfred Gahr
- Max Planck Institute for Ornithology, Eberhard Gwinner Strasse, 82319 Seewiesen, Germany
| |
Collapse
|
22
|
Ioannidis J, Taylor G, Zhao D, Liu L, Idoko-Akoh A, Gong D, Lovell-Badge R, Guioli S, McGrew MJ, Clinton M. Primary sex determination in birds depends on DMRT1 dosage, but gonadal sex does not determine adult secondary sex characteristics. Proc Natl Acad Sci U S A 2021; 118:e2020909118. [PMID: 33658372 PMCID: PMC7958228 DOI: 10.1073/pnas.2020909118] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In birds, males are the homogametic sex (ZZ) and females the heterogametic sex (ZW). Primary sex determination is thought to depend on a sex chromosome gene dosage mechanism, and the most likely sex determinant is the Z chromosome gene Doublesex and Mab-3-Related Transcription factor 1 (DMRT1). To clarify this issue, we used a CRISPR-Cas9-based monoallelic targeting approach and sterile surrogate hosts to generate birds with targeted mutations in the DMRT1 gene. The resulting chromosomally male (ZZ) chicken with a single functional copy of DMRT1 developed ovaries in place of testes, demonstrating the avian sex-determining mechanism is based on DMRT1 dosage. These ZZ ovaries expressed typical female markers and showed clear evidence of follicular development. However, these ZZ adult birds with an ovary in place of testes were indistinguishable in appearance to wild-type adult males, supporting the concept of cell-autonomous sex identity (CASI) in birds. In experiments where estrogen synthesis was blocked in control ZW embryos, the resulting gonads developed as testes. In contrast, if estrogen synthesis was blocked in ZW embryos that lacked DMRT1, the gonads invariably adopted an ovarian fate. Our analysis shows that DMRT1 is the key sex determination switch in birds and that it is essential for testis development, but that production of estrogen is also a key factor in primary sex determination in chickens, and that this production is linked to DMRT1 expression.
Collapse
Affiliation(s)
- Jason Ioannidis
- Division of Functional Genomics and Development, The Roslin Institute, Royal (Dick) School of Veterinary Studies, EH25 9RG Midlothian, United Kingdom;
| | - Gunes Taylor
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Debiao Zhao
- Division of Functional Genomics and Development, The Roslin Institute, Royal (Dick) School of Veterinary Studies, EH25 9RG Midlothian, United Kingdom
| | - Long Liu
- College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, People's Republic of China
| | - Alewo Idoko-Akoh
- Division of Functional Genomics and Development, The Roslin Institute, Royal (Dick) School of Veterinary Studies, EH25 9RG Midlothian, United Kingdom
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, People's Republic of China
| | - Robin Lovell-Badge
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Silvana Guioli
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Mike J McGrew
- Division of Functional Genomics and Development, The Roslin Institute, Royal (Dick) School of Veterinary Studies, EH25 9RG Midlothian, United Kingdom;
| | - Michael Clinton
- Division of Functional Genomics and Development, The Roslin Institute, Royal (Dick) School of Veterinary Studies, EH25 9RG Midlothian, United Kingdom
| |
Collapse
|
23
|
Ballantyne M, Woodcock M, Doddamani D, Hu T, Taylor L, Hawken RJ, McGrew MJ. Direct allele introgression into pure chicken breeds using Sire Dam Surrogate (SDS) mating. Nat Commun 2021; 12:659. [PMID: 33510156 PMCID: PMC7844028 DOI: 10.1038/s41467-020-20812-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
Poultry is the most abundant livestock species with over 60 billion chickens raised globally per year. The majority of chicken are produced from commercial flocks, however many indigenous chicken breeds play an important role in rural economies as they are well adapted to local environmental and scavenging conditions. The ability to make precise genetic changes in chicken will permit the validation of genetic variants responsible for climate adaptation and disease resilience, and the transfer of beneficial alleles between breeds. Here, we generate a novel inducibly sterile surrogate host chicken. Introducing donor genome edited primordial germ cells into the sterile male and female host embryos produces adult chicken carrying only exogenous germ cells. Subsequent direct mating of the surrogate hosts, Sire Dam Surrogate (SDS) mating, recreates the donor chicken breed carrying the edited allele in a single generation. We demonstrate the introgression and validation of two feather trait alleles, Dominant white and Frizzle into two pure chicken breeds using the SDS surrogate hosts.
Collapse
Affiliation(s)
- Maeve Ballantyne
- Centre for Tropical Livestock Genetics and Health (CTLGH), Edinburgh, UK
- The Roslin Institute and Royal (Dick) School of Veterinary Studies University of Edinburgh, Easter Bush Campus, Midlothian, UK
| | - Mark Woodcock
- The Roslin Institute and Royal (Dick) School of Veterinary Studies University of Edinburgh, Easter Bush Campus, Midlothian, UK
| | - Dadakhalandar Doddamani
- The Roslin Institute and Royal (Dick) School of Veterinary Studies University of Edinburgh, Easter Bush Campus, Midlothian, UK
| | - Tuanjun Hu
- Centre for Tropical Livestock Genetics and Health (CTLGH), Edinburgh, UK
- The Roslin Institute and Royal (Dick) School of Veterinary Studies University of Edinburgh, Easter Bush Campus, Midlothian, UK
| | - Lorna Taylor
- The Roslin Institute and Royal (Dick) School of Veterinary Studies University of Edinburgh, Easter Bush Campus, Midlothian, UK
| | | | - Mike J McGrew
- Centre for Tropical Livestock Genetics and Health (CTLGH), Edinburgh, UK.
- The Roslin Institute and Royal (Dick) School of Veterinary Studies University of Edinburgh, Easter Bush Campus, Midlothian, UK.
| |
Collapse
|
24
|
Quantitative trait loci and transcriptome signatures associated with avian heritable resistance to Campylobacter. Sci Rep 2021; 11:1623. [PMID: 33436657 PMCID: PMC7804197 DOI: 10.1038/s41598-020-79005-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Campylobacter is the leading cause of bacterial foodborne gastroenteritis worldwide. Handling or consumption of contaminated poultry meat is a key risk factor for human campylobacteriosis. One potential control strategy is to select poultry with increased resistance to Campylobacter. We associated high-density genome-wide genotypes (600K single nucleotide polymorphisms) of 3000 commercial broilers with Campylobacter load in their caeca. Trait heritability was modest but significant (h2 = 0.11 ± 0.03). Results confirmed quantitative trait loci (QTL) on chromosomes 14 and 16 previously identified in inbred chicken lines, and detected two additional QTLs on chromosomes 19 and 26. RNA-Seq analysis of broilers at the extremes of colonisation phenotype identified differentially transcribed genes within the QTL on chromosome 16 and proximal to the major histocompatibility complex (MHC) locus. We identified strong cis-QTLs located within MHC suggesting the presence of cis-acting variation in MHC class I and II and BG genes. Pathway and network analyses implicated cooperative functional pathways and networks in colonisation, including those related to antigen presentation, innate and adaptive immune responses, calcium, and renin–angiotensin signalling. While co-selection for enhanced resistance and other breeding goals is feasible, the frequency of resistance-associated alleles was high in the population studied and non-genetic factors significantly influenced Campylobacter colonisation.
Collapse
|
25
|
Chan BHC, Moosajee M, Rainger J. Closing the Gap: Mechanisms of Epithelial Fusion During Optic Fissure Closure. Front Cell Dev Biol 2021; 8:620774. [PMID: 33505973 PMCID: PMC7829581 DOI: 10.3389/fcell.2020.620774] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
A key embryonic process that occurs early in ocular development is optic fissure closure (OFC). This fusion process closes the ventral optic fissure and completes the circumferential continuity of the 3-dimensional eye. It is defined by the coming together and fusion of opposing neuroepithelia along the entire proximal-distal axis of the ventral optic cup, involving future neural retina, retinal pigment epithelium (RPE), optic nerve, ciliary body, and iris. Once these have occurred, cells within the fused seam differentiate into components of the functioning visual system. Correct development and progression of OFC, and the continued integrity of the fused margin along this axis, are important for the overall structure of the eye. Failure of OFC results in ocular coloboma-a significant cause of childhood visual impairment that can be associated with several complex ocular phenotypes including microphthalmia and anterior segment dysgenesis. Despite a large number of genes identified, the exact pathways that definitively mediate fusion have not yet been found, reflecting both the biological complexity and genetic heterogeneity of the process. This review will highlight how recent developmental studies have become focused specifically on the epithelial fusion aspects of OFC, applying a range of model organisms (spanning fish, avian, and mammalian species) and utilizing emerging high-resolution live-imaging technologies, transgenic fluorescent models, and unbiased transcriptomic analyses of segmentally-dissected fissure tissue. Key aspects of the fusion process are discussed, including basement membrane dynamics, unique cell behaviors, and the identities and fates of the cells that mediate fusion. These will be set in the context of what is now known, and how these point the way to new avenues of research.
Collapse
Affiliation(s)
- Brian Ho Ching Chan
- The Division of Functional Genetics and Development, The Royal Dick School of Veterinary Sciences, The Roslin Institute, The University of Edinburgh, Scotland, United Kingdom
| | - Mariya Moosajee
- University College London Institute of Ophthalmology, London, United Kingdom.,The Francis Crick Institute, London, United Kingdom.,Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom.,Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Joe Rainger
- The Division of Functional Genetics and Development, The Royal Dick School of Veterinary Sciences, The Roslin Institute, The University of Edinburgh, Scotland, United Kingdom
| |
Collapse
|
26
|
Targeted Knock-in of a Fluorescent Protein Gene into the Chicken Vasa Homologue Locus of Chicken Primordial Germ Cells using CRIS-PITCh Method. J Poult Sci 2021; 59:182-190. [PMID: 35528378 PMCID: PMC9039151 DOI: 10.2141/jpsa.0210067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/09/2021] [Indexed: 11/21/2022] Open
Abstract
In chickens, primordial germ cells (PGCs) are effective targets for advanced genome editing, including gene knock-in. Although a long-term culture system has been established for chicken PGCs, it is necessary to select a gene-editing tool that is efficient and precise for editing the PGC genome while maintaining its ability to contribute to the reproductive system. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) and CRISPR-mediated precise integration into the target chromosome (CRIS-PITCh) methods are superior as the donor vector is easier to construct, has high genome editing efficiency, and does not select target cells, compared to the homologous recombination method, which has been conventionally used to generate knock-in chickens. In this study, we engineered knock-in chicken PGCs by integrating a fluorescent protein gene cassette as a fusion protein into the chicken vasa homolog (CVH) locus of chicken PGCs using the CRIS-PITCh method. The knock-in PGCs expressed the fluorescent protein in vitro and in vivo, facilitating the tracking of PGCs. Furthermore, we characterized the efficiency of engineering double knock-in cell lines. Knock-in cell clones were obtained by limiting dilution, and the efficiency of engineering double knock-in cell lines was confirmed by genotyping. We found that 82% of the analyzed clones were successfully knocked-in into both alleles. We suggest that the production of model chicken from the knock-in PGCs can contribute to various studies, such as the elucidation of the fate of germ cells and sex determination in chicken.
Collapse
|
27
|
Expression profiling of sexually dimorphic genes in the Japanese quail, Coturnix japonica. Sci Rep 2020; 10:20073. [PMID: 33257723 PMCID: PMC7705726 DOI: 10.1038/s41598-020-77094-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 11/06/2020] [Indexed: 11/08/2022] Open
Abstract
Research on avian sex determination has focused on the chicken. In this study, we established the utility of another widely used animal model, the Japanese quail (Coturnix japonica), for clarifying the molecular mechanisms underlying gonadal sex differentiation. In particular, we performed comprehensive gene expression profiling of embryonic gonads at three stages (HH27, HH31 and HH38) by mRNA-seq. We classified the expression patterns of 4,815 genes into nine clusters according to the extent of change between stages. Cluster 2 (characterized by an initial increase and steady levels thereafter), including 495 and 310 genes expressed in males and females, respectively, contained five key genes involved in gonadal sex differentiation. A GO analysis showed that genes in this cluster are related to developmental processes including reproductive structure development and developmental processes involved in reproduction were significant, suggesting that expression profiling is an effective approach to identify novel candidate genes. Based on RNA-seq data and in situ hybridization, the expression patterns and localization of most key genes for gonadal sex differentiation corresponded well to those of the chicken. Our results support the effectiveness of the Japanese quail as a model for studies gonadal sex differentiation in birds.
Collapse
|
28
|
Lee KY, Lee HJ, Choi HJ, Han ST, Lee KH, Park KJ, Park JS, Jung KM, Kim YM, Han HJ, Han JY. Highly elevated base excision repair pathway in primordial germ cells causes low base editing activity in chickens. FASEB J 2020; 34:15907-15921. [PMID: 33031594 DOI: 10.1096/fj.202001065rrr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 11/11/2022]
Abstract
Base editing technology enables the generation of precisely genome-modified animal models. In this study, we applied base editing to chicken, an important livestock animal in the fields of agriculture, nutrition, and research through primordial germ cell (PGC)-mediated germline transmission. Using this approach, we successfully produced two genome-modified chicken lines harboring mutations in the genes encoding ovotransferrin (TF) and myostatin (MSTN); however, only 55.5% and 35.7% of genome-modified chickens had the desired base substitutions in TF and MSTN, respectively. To explain the low base-editing activity, we performed molecular analysis to compare DNA repair pathways between PGCs and the chicken fibroblast cell line DF-1. The results revealed that base excision repair (BER)-related genes were significantly elevated in PGCs relative to DF-1 cells. Subsequent functional studies confirmed that the editing activity could be regulated by modulating the expression of uracil N-glycosylase (UNG), an upstream gene of the BER pathway. Collectively, our findings indicate that the distinct DNA repair property of chicken PGCs causes low editing activity during genome modification, however, modulation of BER functions could promote the production of genome-modified organisms with the desired genotypes.
Collapse
Affiliation(s)
- Kyung Youn Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Hong Jo Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Hee Jung Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Soo Taek Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Kyu Hyuk Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Kyung Je Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Jin Se Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Kyung Min Jung
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Young Min Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, Korea
| | - Jae Yong Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
29
|
Hagihara Y, Okuzaki Y, Matsubayashi K, Kaneoka H, Suzuki T, Iijima S, Nishijima KI. Primordial germ cell-specific expression of eGFP in transgenic chickens. Genesis 2020; 58:e23388. [PMID: 32776392 DOI: 10.1002/dvg.23388] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 11/09/2022]
Abstract
PR domain zinc finger protein 14 (PRDM14) plays an essential role in the development of primordial germ cells (PGCs) in mice. However, its functions in avian species remain unclear. In the present study, we used CRISPR/Cas9 to edit the PRDM14 locus in chickens in order to demonstrate its importance in development. The eGFP gene was introduced into the PRDM14 locus of cultured chicken PGCs to knockout PRDM14 and label PGCs. Chimeric chickens were established by a direct injection of eGFP knocked-in (gene-trapped) PGCs into the blood vessels of Hamburger-Hamilton stages (HH-stages) 13-16 chicken embryos. Gene-trapped chickens were established by crossing a chimeric chicken with a wild-type hen with very high efficiency. Heterozygous gene-trapped chickens grew normally and SSEA-1-positive cells expressed eGFP during HH-stages 13-30. These results indicated the specific expression of eGFP within circulating PGCs and gonadal PGCs. At the blastodermal stage, the ratio of homozygous gene-trapped embryos obtained by crossing heterozygous gene-trapped roosters and hens was almost normal; however, all embryos died soon afterward, suggesting the important roles of PRDM14 in chicken early development.
Collapse
Affiliation(s)
- Yota Hagihara
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Yuya Okuzaki
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan.,Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Kazuma Matsubayashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Hidenori Kaneoka
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Takayuki Suzuki
- Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.,Laboratory of Avian Bioscience, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Shinji Iijima
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Ken-Ichi Nishijima
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan.,Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.,Laboratory of Avian Bioscience, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
30
|
Zhang C, Zuo Q, Wang M, Chen H, He N, Jin J, Li T, Jiang J, Yuan X, Li J, Shi X, Zhang M, Bai H, Zhang Y, Xu Q, Cui H, Chang G, Song J, Sun H, Zhang Y, Chen G, Li B. Narrow H3K4me2 is required for chicken PGC formation. J Cell Physiol 2020; 236:1391-1400. [PMID: 32749682 DOI: 10.1002/jcp.29945] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 01/12/2023]
Abstract
The development of primordial germ cells (PGCs) undergoes epigenetic modifications. The study of histone methylation in regulating PGCs is beneficial to understand the development and differentiation mechanism of germ stem cells. Notably, it provides a theoretical basis for directed induction and mass acquisition in vitro. However, little is known about the regulation of PGC formation by histone methylation. Here, we found the high enrichment of H3K4me2 in the blastoderm, genital ridges, and testis. Chromatin immunoprecipitation sequencing was performed and the results revealed that genomic H3K4me2 is dynamic in embryonic stem cells, PGCs, and spermatogonial stem cells. This trend was consistent with the H3K4me2 enrichment in the gene promoter region. Additionally, narrow region triggered PGC-related genes (Bmp4, Wnt5a, and Tcf7l2) and signaling pathways (Wnt and transforming growth factor-β). After knocking down histone methylase Mll2 in vitro and vivo, the level of H3K4me2 decreased, inhibiting Cvh and Blimp1 expression, then repressing the formation of PGCs. Taken together, our study revealed the whole genome map of H3K4me2 in the formation of PGCs, contributing to improve the epigenetic study in PGC formation and providing materials for bird gene editing and rescue of endangered birds.
Collapse
Affiliation(s)
- Chen Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Qisheng Zuo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Man Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Hao Chen
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Nana He
- Department of Experimental Medical Science, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China.,Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, China
| | - Jing Jin
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Tingting Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jingyi Jiang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xia Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jiancheng Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiang Shi
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ming Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Hao Bai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yang Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Qi Xu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Hengmi Cui
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Guobin Chang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jiuzhou Song
- Department of Animal & Avian Sciences, University of Maryland, College Park, Maryland
| | - Hongyan Sun
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yani Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Guohong Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Bichun Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
31
|
Lee J, Kim DH, Lee K. Current Approaches and Applications in Avian Genome Editing. Int J Mol Sci 2020; 21:ijms21113937. [PMID: 32486292 PMCID: PMC7312999 DOI: 10.3390/ijms21113937] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 01/02/2023] Open
Abstract
Advances in genome-editing technologies and sequencing of animal genomes enable researchers to generate genome-edited (GE) livestock as valuable animal models that benefit biological researches and biomedical and agricultural industries. As birds are an important species in biology and agriculture, their genome editing has gained significant interest and is mainly performed by using a primordial germ cell (PGC)-mediated method because pronuclear injection is not practical in the avian species. In this method, PGCs can be isolated, cultured, genetically edited in vitro, and injected into a recipient embryo to produce GE offspring. Recently, a couple of GE quail have been generated by using the newly developed adenovirus-mediated method. Without technically required in vitro procedures of the PGC-mediated method, direct injection of adenovirus into the avian blastoderm in the freshly laid eggs resulted in the production of germ-line chimera and GE offspring. As more approaches are available in avian genome editing, avian research in various fields will progress rapidly. In this review, we describe the development of avian genome editing and scientific and industrial applications of GE avian species.
Collapse
Affiliation(s)
- Joonbum Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA; (J.L.); (D.-H.K.)
- The Ohio State University Interdisciplinary Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
| | - Dong-Hwan Kim
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA; (J.L.); (D.-H.K.)
| | - Kichoon Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA; (J.L.); (D.-H.K.)
- The Ohio State University Interdisciplinary Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
- Correspondence: ; Tel.: +1-614-688-7963
| |
Collapse
|
32
|
Serralbo O, Salgado D, Véron N, Cooper C, Dejardin MJ, Doran T, Gros J, Marcelle C. Transgenesis and web resources in quail. eLife 2020; 9:56312. [PMID: 32459172 PMCID: PMC7286689 DOI: 10.7554/elife.56312] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/26/2020] [Indexed: 12/26/2022] Open
Abstract
Due to its amenability to manipulations, to live observation and its striking similarities to mammals, the chicken embryo has been one of the major animal models in biomedical research. Although it is technically possible to genome-edit the chicken, its long generation time (6 months to sexual maturity) makes it an impractical lab model and has prevented it widespread use in research. The Japanese quail (Coturnix coturnix japonica) is an attractive alternative, very similar to the chicken, but with the decisive asset of a much shorter generation time (1.5 months). In recent years, transgenic quail lines have been described. Most of them were generated using replication-deficient lentiviruses, a technique that presents diverse limitations. Here, we introduce a novel technology to perform transgenesis in quail, based on the in vivo transfection of plasmids in circulating Primordial Germ Cells (PGCs). This technique is simple, efficient and allows using the infinite variety of genome engineering approaches developed in other models. Furthermore, we present a website centralizing quail genomic and technological information to facilitate the design of genome-editing strategies, showcase the past and future transgenic quail lines and foster collaborative work within the avian community.
Collapse
Affiliation(s)
- Olivier Serralbo
- Australian Regenerative Medicine Institute (ARMI), Monash University, Clayton, Australia
| | - David Salgado
- Marseille Medical Genetics (GMGF), Aix Marseille University, Marseille, France
| | - Nadège Véron
- Australian Regenerative Medicine Institute (ARMI), Monash University, Clayton, Australia
| | - Caitlin Cooper
- CSIRO Health & Biosecurity, Australian Animal Health Laboratory, Geelong, Australia
| | | | - Timothy Doran
- CSIRO Health & Biosecurity, Australian Animal Health Laboratory, Geelong, Australia
| | - Jérome Gros
- Department of Developmental and Stem Cell Biology, Pasteur Institute, Paris, France
| | - Christophe Marcelle
- Australian Regenerative Medicine Institute (ARMI), Monash University, Clayton, Australia.,Institut NeuroMyoGène (INMG), University Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
33
|
Jiang ZQ, Wu HY, Tian J, Li N, Hu XX. Targeting lentiviral vectors to primordial germ cells (PGCs): An efficient strategy for generating transgenic chickens. Zool Res 2020; 41:281-291. [PMID: 32274905 PMCID: PMC7231476 DOI: 10.24272/j.issn.2095-8137.2020.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Recent advances in avian transgenic studies highlight the possibility of utilizing lentiviral vectors as tools to generate transgenic chickens. However, low rates of gonadal chimerism and germ line transmission efficiency still limit the broad usage of this method in creating transgenic chickens. In this study, we implemented a simple strategy using modified lentiviral vectors targeted to chicken primordial germ cells (PGCs) to generate transgenic chickens. The lentiviral vectors were pseudotyped with a modified Sindbis virus envelope protein (termed M168) and conjugated with an antibody specific to PGC membrane proteins. We demonstrated that these optimized M168-pseudotyped lentiviral vectors conjugated with SSEA4 antibodies successfully targeted transduction of PGCs in vitro and in vivo. Compared with the control, 50.0%-66.7% of chicken embryos expressed green fluorescent protein (GFP) in gonads transduced by the M168-pseudotyped lentivirus. This improved the targeted transduction efficiency by 30.0%-46.7%. Efficient chimerism of exogenous genes was also observed. This targeting technology could improve the efficiency of germ line transmission and provide greater opportunities for transgenic poultry studies.
Collapse
Affiliation(s)
- Zi-Qin Jiang
- College of Biological Sciences, China Agricultural University, Beijing 100094, China.,State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing 100094, China
| | - Han-Yu Wu
- College of Biological Sciences, China Agricultural University, Beijing 100094, China.,State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing 100094, China
| | - Jing Tian
- College of Biological Sciences, China Agricultural University, Beijing 100094, China.,State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing 100094, China
| | - Ning Li
- College of Biological Sciences, China Agricultural University, Beijing 100094, China.,State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing 100094, China
| | - Xiao-Xiang Hu
- College of Biological Sciences, China Agricultural University, Beijing 100094, China.,State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing 100094, China. E-mail:
| |
Collapse
|
34
|
Follow Me! A Tale of Avian Heart Development with Comparisons to Mammal Heart Development. J Cardiovasc Dev Dis 2020; 7:jcdd7010008. [PMID: 32156044 PMCID: PMC7151090 DOI: 10.3390/jcdd7010008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/16/2020] [Accepted: 02/21/2020] [Indexed: 12/19/2022] Open
Abstract
Avian embryos have been used for centuries to study development due to the ease of access. Because the embryos are sheltered inside the eggshell, a small window in the shell is ideal for visualizing the embryos and performing different interventions. The window can then be covered, and the embryo returned to the incubator for the desired amount of time, and observed during further development. Up to about 4 days of chicken development (out of 21 days of incubation), when the egg is opened the embryo is on top of the yolk, and its heart is on top of its body. This allows easy imaging of heart formation and heart development using non-invasive techniques, including regular optical microscopy. After day 4, the embryo starts sinking into the yolk, but still imaging technologies, such as ultrasound, can tomographically image the embryo and its heart in vivo. Importantly, because like the human heart the avian heart develops into a four-chambered heart with valves, heart malformations and pathologies that human babies suffer can be replicated in avian embryos, allowing a unique developmental window into human congenital heart disease. Here, we review avian heart formation and provide comparisons to the mammalian heart.
Collapse
|
35
|
Ezaki R, Hirose F, Furusawa S, Horiuchi H. An improved protocol for stable and efficient culturing of chicken primordial germ cells using small-molecule inhibitors. Cytotechnology 2020; 72:397-405. [PMID: 32114635 DOI: 10.1007/s10616-020-00385-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 02/24/2020] [Indexed: 11/30/2022] Open
Abstract
At present, the most reliable method for creating genetically modified chickens is the modification of the DNA sequence of primordial germ cells (PGCs). However, during embryogenesis, only a small number of chicken PGCs can be obtained. Therefore, in vitro PGC culturing is necessary to obtain sufficient cells for further genetic engineering. Previously reported PGC culturing methods lack versatility. We report here a new protocol for stable and efficient culturing of chicken PGCs using small-molecule inhibitors. The growth rate of PGCs was investigated following the addition of three small-molecule inhibitors, including blebbistatin, into the culture medium. Chicken PGC survival and proliferation rates increased after the addition of small-molecule inhibitors, compared with the untreated control. Blebbistatin was shown to be the most effective inducer of PGC growth. Long-term culturing of PGCs with blebbistatin maintained the morphology of typical PGCs, and these cells expressed marker proteins such as chicken vasa homolog (CVH) and NANOG. Additionally, PGCs transfected with a fluorescent protein gene were shown to migrate into the gonads of the recipient embryo, and progeny derived from PGCs cultured by this method were efficiently obtained. These results demonstrate that small-molecule inhibitors represent a useful tool for stable and efficient chicken PGC culturing.
Collapse
Affiliation(s)
- Ryo Ezaki
- Laboratory of Immunobiology, Graduate School of Biosphere Science, Academy of Biological and Life Sciences, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, 739-8528, Japan
| | - Fumiya Hirose
- Laboratory of Immunobiology, Graduate School of Biosphere Science, Academy of Biological and Life Sciences, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, 739-8528, Japan
| | - Shuichi Furusawa
- Laboratory of Immunobiology, Graduate School of Biosphere Science, Academy of Biological and Life Sciences, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, 739-8528, Japan
| | - Hiroyuki Horiuchi
- Laboratory of Immunobiology, Graduate School of Biosphere Science, Academy of Biological and Life Sciences, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, 739-8528, Japan.
| |
Collapse
|
36
|
Bishop TF, Van Eenennaam AL. Genome editing approaches to augment livestock breeding programs. ACTA ACUST UNITED AC 2020; 223:223/Suppl_1/jeb207159. [PMID: 32034040 DOI: 10.1242/jeb.207159] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The prospect of genome editing offers a number of promising opportunities for livestock breeders. Firstly, these tools can be used in functional genomics to elucidate gene function, and identify causal variants underlying monogenic traits. Secondly, they can be used to precisely introduce useful genetic variation into structured livestock breeding programs. Such variation may include repair of genetic defects, the inactivation of undesired genes, and the moving of useful alleles and haplotypes between breeds in the absence of linkage drag. Editing could also be used to accelerate the rate of genetic progress by enabling the replacement of the germ cell lineage of commercial breeding animals with cells derived from genetically elite lines. In the future, editing may also provide a useful complement to evolving approaches to decrease the length of the generation interval through in vitro generation of gametes. For editing to be adopted, it will need to seamlessly integrate with livestock breeding schemes. This will likely involve introducing edits into multiple elite animals to avoid genetic bottlenecks. It will also require editing of different breeds and lines to maintain genetic diversity, and enable structured cross-breeding. This requirement is at odds with the process-based trigger and event-based regulatory approach that has been proposed for the products of genome editing by several countries. In the absence of regulatory harmony, researchers in some countries will have the ability to use genome editing in food animals, while others will not, resulting in disparate access to these tools, and ultimately the potential for global trade disruptions.
Collapse
|
37
|
Abstract
The chicken is an exemplar of efficient intensive animal agriculture and provides two valuable food products, chicken meat and eggs. Only aquaculture is better, by efficiency, but poultry is still top, by mass of animal protein produced as food in the global context. However this efficiency and intensive production comes with a number of challenges. Though the genetics of selective breeding have led to dramatic improvements in yield, efficiency and product quality, traits that relate to disease and welfare outcomes have not been so tractable. These two issues are major impacts to the industry in terms of production and in terms of public perception. Both transgenic technology and genome editing have clear potential for impact in these two important areas. The reproductive biology of birds requires techniques very specific to birds to achieve heritable (germline) edited traits. These are quite involved and, even though they are now well-defined and reliable, there is room for improvement and advances can be expected in the future. Currently the key targets for this technology are modifying chicken genes involved in virus-receptor interactions and cellular response involved in infection. For the egg industry the technology is being applied to the issue of sex-selection for layer hens (and the removal of males), removal of allergens from egg white and the tailoring of eggs system to enhance the yield of influenza vaccine doses. Regulation and trading of the animals generated, and resulting food products, will significantly impact the value and future development of genome editing for poultry.
Collapse
|
38
|
Zinovieva NA, Volkova NA, Bagirov VA. Genome Editing: Current State of Research and Application to Animal Husbandry. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s000368381907007x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Li XZ. What can PIWI-interacting RNA research learn from chickens, and vice versa? CANADIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1139/cjas-2018-0252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
P-element induced wimpy testis (PIWI) interacting RNA (piRNA) are essential for fertility, by protecting the integrity of the germ-line genome via silencing of transposable elements (TE). Because new TE are constantly invading the host genome, piRNA-producing loci are under continuous pressure to undergo rapid evolution. This arms race between TE and piRNA is a prime example of the genome being more plastic than previously thought. Historically, the study of piRNA and TE has benefited from the use of diverse model organisms, including worms, fruit fly, zebrafish, frogs, and mice. In domestic chickens, we recently identified a new mode of piRNA acquisition in which the host hijacks and converts a pre-existing provirus into a piRNA-producing locus to defend against Avian leukosis virus, an adaptive immune strategy similar to the prokaryotic CRISPR–Cas [clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas)] system. This finding reveals a previously unrecognized mechanism of the host piRNA repertoire to rapidly evolve and target TE specifically. In this review, we will focus on both the unique and common features of chicken piRNA, as well as the advantages of using chickens as a model system, to address fundamental questions regarding piRNA acquisition in hosts. We will also comment on the potential application of piRNA for improving poultry health and reproductive efficiency.
Collapse
Affiliation(s)
- Xin Zhiguo Li
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
40
|
Qin X, Xiao N, Xu Y, Yang F, Wang X, Hu H, Liu Q, Cui K, Tang X. Efficient knock-in at the chicken ovalbumin locus using adenovirus as a CRISPR/Cas9 delivery system. 3 Biotech 2019; 9:454. [PMID: 31832301 DOI: 10.1007/s13205-019-1966-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/23/2019] [Indexed: 11/29/2022] Open
Abstract
In this study, efficient knock-in (KI) of human epidermal growth factor (hEGF) cDNA at the ovalbumin (OV) locus in cultured chicken cells was achieved using adenovirus as a delivery for CRISPR/Cas9 elements and optimizing donor vector construction. The strategy of recruiting donor DNA to the insertion site further improved the KI efficiency. The inserted hEGF cDNA can expressed in primary oviduct cells and secreted hEGF promoted proliferation of Hela cells. Moreover, we achieved efficient KI in blastoderm cells without altering their induction in vitro and obtained germline chimeric KI chicken embryos by transplanting KI blastoderm cells as well as injecting adenovirus directly, in vivo. Our results provided an efficient KI method for chicken cells and embryos, and lay the foundation for more convenient production of KI chicken at the OV locus, which will promote the development of oviduct-specific bioreactor.
Collapse
Affiliation(s)
- Xiaolian Qin
- 1College of Animal Science and Technology, Guangxi University, Guangxi, 530004 People's Republic of China
| | - Ning Xiao
- 1College of Animal Science and Technology, Guangxi University, Guangxi, 530004 People's Republic of China
| | - Yu Xu
- 1College of Animal Science and Technology, Guangxi University, Guangxi, 530004 People's Republic of China
| | - Fengshuo Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi, 530004 People's Republic of China
| | - Xiaoli Wang
- 1College of Animal Science and Technology, Guangxi University, Guangxi, 530004 People's Republic of China
| | - Hao Hu
- 1College of Animal Science and Technology, Guangxi University, Guangxi, 530004 People's Republic of China
| | - Qingyou Liu
- 1College of Animal Science and Technology, Guangxi University, Guangxi, 530004 People's Republic of China
| | - Kuiqing Cui
- 1College of Animal Science and Technology, Guangxi University, Guangxi, 530004 People's Republic of China
| | - Xiaochuan Tang
- 1College of Animal Science and Technology, Guangxi University, Guangxi, 530004 People's Republic of China
| |
Collapse
|
41
|
Xie L, Sun J, Mo L, Xu T, Shahzad Q, Chen D, Yang W, Liao Y, Lu Y. HMEJ-mediated efficient site-specific gene integration in chicken cells. J Biol Eng 2019; 13:90. [PMID: 31832093 PMCID: PMC6868705 DOI: 10.1186/s13036-019-0217-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/21/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The production of transgenic chicken cells holds great promise for several diverse areas, including developmental biology and biomedical research. To this end, site-specific gene integration has been an attractive strategy for generating transgenic chicken cell lines and has been successfully adopted for inserting desired genes and regulating specific gene expression patterns. However, optimization of this method is essential for improving the efficiency of genome modification in this species. RESULTS Here we compare gene knock-in methods based on homology-independent targeted integration (HITI), homology-directed repair (HDR) and homology mediated end joining (HMEJ) coupled with a clustered regularly interspaced short palindromic repeat associated protein 9 (CRISPR/Cas9) gene editing system in chicken DF-1 cells and primordial germ cells (PGCs). HMEJ was found to be a robust and efficient method for gene knock-in in chicken PGCs. Using this method, we successfully labeled the germ cell specific gene DAZL and the pluripotency-related gene Pou5f3 in chicken PGCs through the insertion of a fluorescent protein in the frame at the 3' end of the gene, allowing us to track cell migration in the embryonic gonad. HMEJ strategy was also successfully used in Ovalbumin, which accounts for more than 60% of proteins in chicken eggs, suggested its good promise for the mass production of protein with pharmaceutical importance using the chicken oviduct system. CONCLUSIONS Taken together, these results demonstrate that HMEJ efficiently mediates site-specific gene integration in chicken PGCs, which holds great potential for the biopharmaceutical engineering of chicken cells.
Collapse
Affiliation(s)
- Long Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi China
| | - Juanjuan Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi China
| | - Lifen Mo
- Guangxi Institute of Animal Science, Nanning, Guangxi China
| | - Tianpeng Xu
- Guangxi Institute of Animal Science, Nanning, Guangxi China
| | - Qaisar Shahzad
- Guangxi Institute of Animal Science, Nanning, Guangxi China
| | - Dongyang Chen
- Guangxi Institute of Animal Science, Nanning, Guangxi China
| | - Wenhao Yang
- Guangxi Institute of Animal Science, Nanning, Guangxi China
| | - Yuying Liao
- Guangxi Institute of Animal Science, Nanning, Guangxi China
| | - Yangqing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi China
| |
Collapse
|
42
|
Bahrami S, Amiri-Yekta A, Daneshipour A, Jazayeri SH, Mozdziak PE, Sanati MH, Gourabi H. Designing A Transgenic Chicken: Applying New Approaches toward A Promising Bioreactor. CELL JOURNAL 2019; 22:133-139. [PMID: 31721526 PMCID: PMC6874784 DOI: 10.22074/cellj.2020.6738] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 04/15/2019] [Indexed: 12/26/2022]
Abstract
Specific developmental characteristics of the chicken make it an attractive model for the generation of transgenic organisms. Chicken possess a strong potential for recombinant protein production and can be used as a powerful bioreactor to produce pharmaceutical and nutritional proteins. Several transgenic chickens have been generated during the last two decades via viral and non-viral transfection. Culturing chicken primordial germ cells (PGCs) and their ability for germline transmission ushered in a new stage in this regard. With the advent of CRISPR/Cas9 system, a new phase of studies for manipulating genomes has begun. It is feasible to integrate a desired gene in a predetermined position of the genome using CRISPR/Cas9 system. In this review, we discuss the new approaches and technologies that can be applied to generate a transgenic chicken with regards to recombinant protein productions.
Collapse
Affiliation(s)
- Salahadin Bahrami
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Amir Amiri-Yekta
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Abbas Daneshipour
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Seyedeh Hoda Jazayeri
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | | | - Mohammad Hossein Sanati
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.Electronic Address: .,Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Hamid Gourabi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran. Electronic Address:
| |
Collapse
|
43
|
Investigation of the Guinea fowl and domestic fowl hybrids as potential surrogate hosts for avian cryopreservation programmes. Sci Rep 2019; 9:14284. [PMID: 31582777 PMCID: PMC6776557 DOI: 10.1038/s41598-019-50763-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/17/2019] [Indexed: 01/15/2023] Open
Abstract
In the last decade, avian gene preservation research has focused on the use of the early precursors of the reproductive cells, the primordial germ cells (PGCs). This is because avian PGCs have a unique migration route through the vascular system which offers easy accessibility. Furthermore, culturing of the cells in vitro, freezing/thawing, reintegration into a recipient embryo and the development of the germ cells can be carried out in well-defined laboratory circumstances. The efficient recovery of the donor genotype and the frequency of germline transmission from the surrogate host animals are still areas which need further development. Thus, the aim of the present study was to investigate an infertile interspecific hybrid (recipient) as an appropriate host for primordial germ cells from native poultry breeds. Guinea fowl × chicken hybrids were produced, the crossing was repeated inversely. The phenotype, the hatching time, the hatching rate, the sex ratio, the presence of own germ cells, the fertility and the phenotype of viable hybrids and the incidence of chromosomal abnormalities of dead hybrid embryos were described. 6.65% viable offspring was obtained with crossing of Guinea fowl females with domestic fowl males. Crossing of domestic fowl hens with Guinea fowl male resulted in lower fertility, 0.14% viable offspring. Based on the investigations, the observed offspring from the successful crossing were sterile male hybrids, thus an extreme form of Haldane’s rule was manifested. The sterile hybrid male embryos were tested by injecting fluorescently labeled chicken PGCs. The integration rate of labeled PGCs was measured in 7.5-day, 14.5-day and 18.5-day old embryonic gonads. 50%, 5.3% and 2.4% of the injected hybrid embryos survived and 40%, 5.3% and 2.4% of the examined gonads contained fluorescent labeled donor PGCs. Therefore, these sterile hybrid males may be suitable recipients for male PGCs and possibly for female PGCs although with lower efficiency. This research work shows that the sterility of hybrids can be used in gene conservation to be a universal host for PGCs of different avian species.
Collapse
|
44
|
Reviving rare chicken breeds using genetically engineered sterility in surrogate host birds. Proc Natl Acad Sci U S A 2019; 116:20930-20937. [PMID: 31575742 DOI: 10.1073/pnas.1906316116] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In macrolecithal species, cryopreservation of the oocyte and zygote is not possible due to the large size and quantity of lipid deposited within the egg. For birds, this signifies that cryopreserving and regenerating a species from frozen cellular material are currently technically unfeasible. Diploid primordial germ cells (PGCs) are a potential means to freeze down the entire genome and reconstitute an avian species from frozen material. Here, we examine the use of genetically engineered (GE) sterile female layer chicken as surrogate hosts for the transplantation of cryopreserved avian PGCs from rare heritage breeds of chicken. We first amplified PGC numbers in culture before cryopreservation and subsequent transplantation into host GE embryos. We found that all hatched offspring from the chimera GE hens were derived from the donor rare heritage breed broiler PGCs, and using cryopreserved semen, we were able to produce pure offspring. Measurement of the mutation rate of PGCs in culture revealed that 2.7 × 10-10 de novo single-nucleotide variants (SNVs) were generated per cell division, which is comparable with other stem cell lineages. We also found that endogenous avian leukosis virus (ALV) retroviral insertions were not mobilized during in vitro propagation. Taken together, these results show that mutation rates are no higher than normal stem cells, essential if we are to conserve avian breeds. Thus, GE sterile avian surrogate hosts provide a viable platform to conserve and regenerate avian species using cryopreserved PGCs.
Collapse
|
45
|
Establishment and Characterization of a Novel Tissue-specific DNA Construct and Culture System with Potential for Avian Bioreactor Generation. Mol Biotechnol 2019; 61:400-409. [PMID: 30945164 DOI: 10.1007/s12033-019-00170-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Transgenic chickens are of great interest for the production of recombinant proteins in their eggs. However, the use of constitutive strong promoters or the tissue-specific ovalbumin promoter for the generation of the transgenic chickens have different drawbacks that have to be overcome in order to make chicken bioreactor an efficient production system. This prompted us to investigate the use of an alternative tissue-specific promoter, the vitellogenin promoter, which could overcome the difficulties currently found in the generation of chicken bioreactors. In the present work we establish and characterize a DNA construct consisting of a fragment of the 5´-flanking region of the chicken vitellogenin II gene cloned in a reporter vector. This construct is capable of showing the ability of the promoter to drive expression of a reporting gene in a tissue-specific manner and in a way that closely resembles physiologic regulation of vitellogenin, making it an ideal candidate to be used in the future for generation of avian bioreactors. Besides, we validate an in vitro culture system to test the performance of the DNA construct under study that could be used as a practical tool before generating any transgenic chicken. These results are important since they provide the proof of concept for the use of the vitellogenin promoter for future genetic modification of chickens bioreactors with improved characteristics in terms of quality of the recombinant protein produced.
Collapse
|
46
|
|
47
|
Lee HJ, Yoon JW, Jung KM, Kim YM, Park JS, Lee KY, Park KJ, Hwang YS, Park YH, Rengaraj D, Han JY. Targeted gene insertion into Z chromosome of chicken primordial germ cells for avian sexing model development. FASEB J 2019; 33:8519-8529. [PMID: 30951374 DOI: 10.1096/fj.201802671r] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) have facilitated the production of genome-edited animals for use as models. Because of their unique developmental system, avian species offer many advantages as model vertebrates. Here, we report the development of novel chicken models using the CRISPR/Cas9-mediated nonhomologous end joining repair pathway in chicken primordial germ cells (PGCs). Through the introduction of a donor plasmid containing short guide RNA recognition sequences and CRISPR/Cas9 plasmids into chicken PGCs, exogenous genes of donor plasmids were precisely inserted into target loci, and production of transgenic chickens was accomplished through subsequent transplantation of the Z chromosome-targeted PGCs. Using this method, we successfully accomplished the targeted gene insertion to the chicken sex Z chromosome without detected off-target effects. The genome-modified chickens robustly expressed green fluorescent protein from the Z chromosome, which could then be used for easy sex identification during embryogenesis. Our results suggest that this powerful genome-editing method could be used to develop many chicken models and should significantly expand the application of genome-modified avians.-Lee, H. J., Yoon, J. W., Jung, K. M., Kim, Y. M., Park, J. S., Lee, K. Y., Park, K. J., Hwang, Y. S., Park, Y. H., Rengaraj, D., Han, J. Y. Targeted gene insertion into Z chromosome of chicken primordial germ cells for avian sexing model development.
Collapse
Affiliation(s)
- Hong Jo Lee
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jong Won Yoon
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Kyung Min Jung
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Young Min Kim
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jin Se Park
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Kyung Youn Lee
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Kyung Je Park
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Young Sun Hwang
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Young Hyun Park
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Deivendran Rengaraj
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jae Yong Han
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
48
|
Proudfoot C, Lillico S, Tait-Burkard C. Genome editing for disease resistance in pigs and chickens. Anim Front 2019; 9:6-12. [PMID: 32002257 PMCID: PMC6951997 DOI: 10.1093/af/vfz013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Chris Proudfoot
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Simon Lillico
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Christine Tait-Burkard
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| |
Collapse
|
49
|
Savvulidi F, Ptacek M, Savvulidi Vargova K, Stadnik L. Manipulation of spermatogonial stem cells in livestock species. J Anim Sci Biotechnol 2019; 10:46. [PMID: 31205688 PMCID: PMC6560896 DOI: 10.1186/s40104-019-0355-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/17/2019] [Indexed: 12/12/2022] Open
Abstract
We are entering an exciting epoch in livestock biotechnology during which the fundamental approaches (such as transgenesis, spermatozoa cryopreservation and artificial insemination) will be enhanced based on the modern understanding of the biology of spermatogonial stem cells (SSCs) combined with the outstanding recent advances in genomic editing technologies and in vitro cell culture systems. The general aim of this review is to outline comprehensively the promising applications of SSC manipulation that could in the nearest future find practical application in livestock breeding. Here, we will focus on 1) the basics of mammalian SSC biology; 2) the approaches for SSC isolation and purification; 3) the available in vitro systems for the stable expansion of isolated SSCs; 4) a discussion of how the manipulation of SSCs can accelerate livestock transgenesis; 5) a thorough overview of the techniques of SSC transplantation in livestock species (including the preparation of recipients for SSC transplantation, the ultrasonographic-guided SSC transplantation technique in large farm animals, and the perspectives to improve further the SSC transplantation efficiency), and finally, 6) why SSC transplantation is valuable to extend the techniques of spermatozoa cryopreservation and/or artificial insemination. For situations where no reliable data have yet been obtained for a particular livestock species, we will rely on the data obtained from studies conducted in rodents because the knowledge gained from rodent research is translatable to livestock species to a great extent. On the other hand, we will draw special attention to situations where such translation is not possible.
Collapse
Affiliation(s)
- Filipp Savvulidi
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Suchdol Czech Republic
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, U Nemocnice 5, 128 53 Prague, Czech Republic
| | - Martin Ptacek
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Suchdol Czech Republic
| | - Karina Savvulidi Vargova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, U Nemocnice 5, 128 53 Prague, Czech Republic
| | - Ludek Stadnik
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Suchdol Czech Republic
| |
Collapse
|
50
|
Hardy H, Prendergast JG, Patel A, Dutta S, Trejo-Reveles V, Kroeger H, Yung AR, Goodrich LV, Brooks B, Sowden JC, Rainger J. Detailed analysis of chick optic fissure closure reveals Netrin-1 as an essential mediator of epithelial fusion. eLife 2019; 8:43877. [PMID: 31162046 PMCID: PMC6606025 DOI: 10.7554/elife.43877] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 06/03/2019] [Indexed: 12/13/2022] Open
Abstract
Epithelial fusion underlies many vital organogenic processes during embryogenesis. Disruptions to these cause a significant number of human birth defects, including ocular coloboma. We provide robust spatial-temporal staging and unique anatomical detail of optic fissure closure (OFC) in the embryonic chick, including evidence for roles of apoptosis and epithelial remodelling. We performed complementary transcriptomic profiling and show that Netrin-1 (NTN1) is precisely expressed in the chick fissure margin during fusion but is immediately downregulated after fusion. We further provide a combination of protein localisation and phenotypic evidence in chick, humans, mice and zebrafish that Netrin-1 has an evolutionarily conserved and essential requirement for OFC, and is likely to have an important role in palate fusion. Our data suggest that NTN1 is a strong candidate locus for human coloboma and other multi-system developmental fusion defects, and show that chick OFC is a powerful model for epithelial fusion research. Our bodies are made of many different groups of cells, which are arranged into tissues that perform specific roles. As tissues form in the embryo they must adopt precise three-dimensional structures, depending on their position in the body. In many cases this involves two edges of tissue fusing together to prevent gaps being present in the final structure. In individuals with a condition called ocular coloboma some of the tissues in the eyes fail to merge together correctly, leading to wide gaps that can severely affect vision. There are currently no treatments available for ocular coloboma and in over 70% of patients the cause of the defect is not known. Identifying new genes that control how tissues fuse may help researchers to find what causes this condition and multiple other tissue fusion defects, and establish whether these may be preventable in the future. Much of what is currently known about how tissues fuse has come from studying mice and zebrafish embryos. Although the extensive genetic tools available in these ‘models’ have proved very useful, both offer only a limited time window for observing tissues as they fuse, and the regions involved are very small. Chick embryos, on the other hand, are much larger than mouse or zebrafish embryos and are easier to access from within their eggs. This led Hardy et al. to investigate whether the developing chick eye could be a more useful model for studying the precise details of how tissues merge. Examining chick embryos revealed that tissues in the base of their eyes fuse between five and eight days after the egg had been fertilised, a comparatively long time compared to existing models. Also, many of the genes that Hardy et al. found switched on in chick eyes as the tissues merged had previously been identified as being essential for tissue fusion in humans. However, several new genes were also shown to be involved in the fusing process. For example, Netrin-1 was important for tissues to fuse in the eyes as well as in other regions of the developing embryo. These findings demonstrate that the chick eye is an excellent new model system to study how tissues fuse in animals. Furthermore, the genes identified by Hardy et al. may help researchers to identify the genetic causes of ocular coloboma and other tissue fusion defects in humans.
Collapse
Affiliation(s)
- Holly Hardy
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - James Gd Prendergast
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Aara Patel
- Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Sunit Dutta
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Violeta Trejo-Reveles
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Hannah Kroeger
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Andrea R Yung
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Lisa V Goodrich
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Brian Brooks
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Jane C Sowden
- Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Joe Rainger
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| |
Collapse
|