1
|
Werneburg I, Bronzati M. Trifold origin of the reptilian ear ossicle and its relation to the evolutionary modification of the temporal skull region. J Anat 2025; 246:402-414. [PMID: 39297283 PMCID: PMC11828744 DOI: 10.1111/joa.14105] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 02/16/2025] Open
Abstract
Whereas mammals are characterized by the presence of three middle ear ossicles, reptiles have only one, the columella (stapes). Nevertheless, there is a great diversity of columellar anatomy among sauropsids, especially in the unique and cartilaginous "extracolumella"-portion. Molecular studies revealed the "columella" of chicken and quails to be formed within the second pharyngeal arch, although conflicting evidence exists for the columellar footplate and distal parts of the columella in these birds. We studied columellar development in four turtles, one lizard, and one caiman species and argue, using early blastematous stages, that, distally, the so-called "extracolumella" in turtles is mainly of quadrate, that is, first pharyngeal arch origin. Differently, the dorsal aspect of the "extracolumella" of the lizard and a part of the "dorsal columella process" of the caiman are likely quadrate-derived. This indicates only a partial homology of the distal columellar compartments among reptiles. Moreover, we observed in most species that, at early stages, the footplate differentiates from the otic capsule, which confirms widespread experimental findings of mesodermal cells contributing to the proximal part of the columella. We provide a hypothetical framework for the changes in the columella and quadrate morphology in reptilian evolution. Originally, as evidenced by the fossil record, the columella served as a stabilizing brace between the quadrate and braincase. Associated with changes in the feeding mode of late Permian taxa, the quadrate was integrated along the stress flows from biting, and in early development part of the quadrate differentiated to differently contribute to the distal part of the "columella-complex," which now contacts the tympanic membrane. In addition, part of the original otic capsule contributes to the footplate of the mobile columella, providing a connection with the inner ear.
Collapse
Affiliation(s)
- Ingmar Werneburg
- Paläontologische SammlungSenckenberg Centre for Human Evolution and Palaeoenvironment (SHEP) an der Universität TübingenTübingenGermany
- Fachbereich GeowissenschaftenUniversität TübingenTübingenGermany
| | - Mario Bronzati
- Paläontologische SammlungSenckenberg Centre for Human Evolution and Palaeoenvironment (SHEP) an der Universität TübingenTübingenGermany
| |
Collapse
|
2
|
Hudacova E, Abaffy P, Kaplan MM, Krausova M, Kubista M, Machon O. Single-cell transcriptomic resolution of osteogenesis during craniofacial morphogenesis. Bone 2025; 190:117297. [PMID: 39461490 DOI: 10.1016/j.bone.2024.117297] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024]
Abstract
Craniofacial morphogenesis depends on complex cell fate decisions during the differentiation of post-migratory cranial neural crest cells. Molecular mechanisms of cell differentiation of mesenchymal cells to developing bones, cartilage, teeth, tongue, and other craniofacial tissues are still poorly understood. We performed single-cell transcriptomic analysis of craniofacial mesenchymal cells derived from cranial NCCs in mouse embryo. Using FACS sorting of Wnt1-Cre2 progeny, we carefully mapped the cell heterogeneity in the craniofacial region during the initial stages of cartilage and bone formation. Transcriptomic data and in vivo validations identified molecular determinants of major cell populations involved in the development of lower and upper jaw, teeth, tongue, dermis, or periocular mesenchyme. Single-cell transcriptomic analysis of Meis2-deficient mice revealed critical gene expression differences, including increased osteogenic and cell adhesion markers. This leads to affected mesenchymal cell differentiation and increased ossification, resulting in impaired bone, cartilage, and tongue formation.
Collapse
Affiliation(s)
- Erika Hudacova
- Department of Developmental Biology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic; Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, 12000 Prague, Czech Republic.
| | - Pavel Abaffy
- Laboratory of Gene Expression, Institute of Biotechnology, Czech Academy of Sciences, Prumyslova 595, 25200 Vestec, Czech Republic.
| | - Mehmet Mahsum Kaplan
- Department of Developmental Biology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic.
| | - Michaela Krausova
- Department of Developmental Biology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic
| | - Mikael Kubista
- Laboratory of Gene Expression, Institute of Biotechnology, Czech Academy of Sciences, Prumyslova 595, 25200 Vestec, Czech Republic.
| | - Ondrej Machon
- Department of Developmental Biology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic.
| |
Collapse
|
3
|
Bronzati M, Vieceli FM, Botezelli VS, Godoy PL, Montefeltro FC, Nassif JPM, Luzete J, Ribeiro D, Yan CYI, Werneburg I, Kohlsdorf T. Deep-time origin of tympanic hearing in crown reptiles. Curr Biol 2024; 34:5334-5340.e5. [PMID: 39393352 DOI: 10.1016/j.cub.2024.09.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 10/13/2024]
Abstract
The invasion of terrestrial ecosystems by tetrapods (c. 375 million years [Ma]) represents one of the major evolutionary transitions in the history of life on Earth. The success of tetrapods on land is linked to evolutionary novelties. Among these, the evolution of a tympanic ear contributed to mitigating the problem of an impedance mismatch between the air and the fluid embedding sound-detecting hair cells in the inner ear.1,2,3 Pioneering studies advocated that similarities in the tympanic ear of tetrapods could only result from a single origin of this structure in the group,4,5 an idea later challenged by paleontological and developmental data.4,6,7,8 Current evidence suggests that this sensory structure evolved independently in amphibians, mammals, and reptiles,1,6 but it remains uncertain how many times tympanic hearing originated in crown reptiles.9,10 We combine developmental information with paleontological data to evaluate the evolution of the tympanic ear in reptiles from two complementary perspectives. Phylogenetically informed ancestral reconstruction analyses of a taxonomically broad sample of early reptiles point to the presence of a tympanic membrane as the ancestral condition of the crown group. Consistently, comparative analyses using embryos of lizards and crocodylians reveal similarities, including the formation of the tympanic membrane within the second pharyngeal arch, which has been previously reported for birds. Therefore, both our developmental and paleontological data suggest a single origin for the tympanic middle ear in the group, challenging the current paradigm of multiple acquisitions of tympanic hearing in living reptiles.
Collapse
Affiliation(s)
- Mario Bronzati
- Fachbereich Geowissenschaften der Eberhard Karls University Tübingen, Sigwartsraße 10, Tübingen 72076, Germany; Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo 14040-901, Brazil.
| | - Felipe M Vieceli
- Instituto de Química da Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo 05508-000, Brazil; Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas da Universidade de São Paulo, Av. Prof. Lineu Prestes 1524, São Paulo 05508-000, Brazil
| | - Vitoria S Botezelli
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas da Universidade de São Paulo, Av. Prof. Lineu Prestes 1524, São Paulo 05508-000, Brazil
| | - Pedro L Godoy
- Departamento de Zoologia do Instituto de Biociências da Universidade de São Paulo, Rua do Matão, travessa 14, nº. 101, São Paulo 05508-090, Brazil; Anatomical Sciences Department, Stony Brook University, Stony Brook, NY 11794-8081, USA
| | - Felipe C Montefeltro
- Departamento de Biologia e Zootecnia, Faculdade de Engenharia Unesp Câmpus de Ilha Solteira, Rua Monção 226, São Paulo 15385-086, Brazil
| | - Jann P M Nassif
- Department of Anatomy, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA
| | - Juliana Luzete
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Douglas Ribeiro
- Departamento de Biologia e Zootecnia, Faculdade de Engenharia Unesp Câmpus de Ilha Solteira, Rua Monção 226, São Paulo 15385-086, Brazil
| | - C Y Irene Yan
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas da Universidade de São Paulo, Av. Prof. Lineu Prestes 1524, São Paulo 05508-000, Brazil
| | - Ingmar Werneburg
- Fachbereich Geowissenschaften der Eberhard Karls University Tübingen, Sigwartsraße 10, Tübingen 72076, Germany; Senckenberg Center for Human Evolution and Palaeoenvironment (SHEP) an der Universität Tübingen, Sigwartsraße 10, Tübingen 72076, Germany
| | - Tiana Kohlsdorf
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo 14040-901, Brazil.
| |
Collapse
|
4
|
Fons JM, Mozaffari M, Malik D, Marshall AR, Connor S, Greene NDE, Tucker AS. Epithelial dynamics shed light on the mechanisms underlying ear canal defects. Development 2020; 147:dev.194654. [PMID: 33093151 PMCID: PMC7758633 DOI: 10.1242/dev.194654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022]
Abstract
Defects in ear canal development can cause severe hearing loss as sound waves fail to reach the middle ear. Here, we reveal new mechanisms that control human canal development and highlight for the first time the complex system of canal closure and reopening. These processes can be perturbed in mutant mice and in explant culture, mimicking the defects associated with canal atresia. The more superficial part of the canal forms from an open primary canal that closes and then reopens. In contrast, the deeper part of the canal forms from an extending solid meatal plate that opens later. Closure and fusion of the primary canal was linked to loss of periderm, with failure in periderm formation in Grhl3 mutant mice associated with premature closure of the canal. Conversely, inhibition of cell death in the periderm resulted in an arrest of closure. Once closed, re-opening of the canal occurred in a wave, triggered by terminal differentiation of the epithelium. Understanding these complex processes involved in canal development sheds light on the underlying causes of canal atresia. Highlighted Article: We reveal new mechanisms that control development of the ear canal and highlight for the first time the complex system of canal closure and reopening.
Collapse
Affiliation(s)
- Juan M Fons
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Mona Mozaffari
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Dean Malik
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Abigail R Marshall
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Steve Connor
- King's College Hospital NHS Foundation Trust, London SE5 9RS, UK.,School of Biomedical Engineering and Imaging Sciences Clinical Academic Group, King's College London, London SE1 9RT, UK
| | - Nicholas D E Greene
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Abigail S Tucker
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| |
Collapse
|
5
|
A comparative study of avian middle ear mechanics. Hear Res 2020; 395:108043. [DOI: 10.1016/j.heares.2020.108043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 07/02/2020] [Accepted: 07/08/2020] [Indexed: 11/20/2022]
|
6
|
Middle ear congenital cholesteatoma: systematic review, meta-analysis and insights on its pathogenesis. Eur Arch Otorhinolaryngol 2020; 277:987-998. [PMID: 31955213 DOI: 10.1007/s00405-020-05792-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/07/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE Congenital cholesteatoma (CC) presents as a white pearl-like lesion behind a normal tympanic membrane (TM), without a history of otorrhea, infection, perforation or previous otologic surgery. Several recent studies provided new data improving this pathology characterization. The aim of this paper is to expand the knowledge about CC and to provide new insights on its pathogenesis. METHODS The study consisted of two main research parts: (1) systematic review and meta-analysis; (2) medical literature review englobing anatomy, histology, embryology and congenital pathology of the ear. RESULTS The search strategy identified a total of 636 papers. Seventy retrospective studies were included. A total of 1497 cases were studied and the mean age was 6.58 years, with a male-female ratio of 3:1, 34% were asymptomatic, 26% had hearing loss and 2% had facial dysfunction/paralysis. The overall estimate for antero-superior quadrant involvement was 0.70 [95% confident interval (CI) 0.64-0.76], in the postero-superior quadrant was 0.60 (95% CI 0.52-0.69), in the antero-inferior quadrant was 0.32 (95% CI 0.23-0.41), in the postero-inferior quadrant was 0.38 (95% CI 0.29-0.47), in the attic was 0.53 (95% CI 0.43-0.63) and in the mastoid was 0.33 (95% CI 0.26-0.41). More advanced Potsic stages were present in older patients. The most likely inclusion place seems to be between the pars flaccida and the upper quadrants of the pars tensa. CONCLUSIONS During the last decades, a substantial improvement in CC diagnosis and management had been achieved. The presented mechanism seems to explain most of middle ear CC.
Collapse
|
7
|
Meng J, Mao F, Han G, Zheng X, Wang X, Wang Y. A comparative study on auditory and hyoid bones of Jurassic euharamiyidans and contrasting evidence for mammalian middle ear evolution. J Anat 2020; 236:50-71. [PMID: 31498899 PMCID: PMC6904648 DOI: 10.1111/joa.13083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2019] [Indexed: 12/31/2022] Open
Abstract
The holotypes of euharamiyidan Arboroharamiya allinhopsoni and Arboroharamiya jenkinsi preserve the auditory and hyoid bones, respectively. With additional structures revealed by micro-computerized tomography (CT) and X-ray micro-computed laminography (CL), we provide a detailed description of these minuscule bones. The stapes in the two species of Arboroharamiya are similar in having a strong process for insertion of the stapedius muscle. The incus is similar in having an almond-shaped body and a slim short process, in addition to a robust stapedial process with a short lenticular process preserved in A. allinhopsoni. The plate-like ectotympanic in the two species of Arboroharamiya is similar and comparable to that of Qishou jizantang. The surangular in the two species has a fan-shaped body and a needle-shaped anterior process. The malleus, ectotympanic, and surangular are fully detached from the dentary and should have functioned exclusively for hearing. All the auditory bones of Arboroharamiya display unique features unknown in other mammaliaforms. Moreover, hyoid elements are found in the two species of Arboroharamiya and co-exist with the five auditory bones in the holotype of A. allinhopsoni. The element interpreted as the stylohyal is similar to the bone identified as the ectotympanic in Vilevolodon. We reconstruct the auditory apparatus of Arboroharamiya and compare it with that of Vilevolodon as well as those in extant mammals and basal mammaliaforms. The comparison shows diverse morphological patterns of the auditory region in mammaliaforms. In particular, those of Vilevolodon and Arboroharamiya differ significantly: the former has a mandibular middle ear, whereas the latter possesses a definitive mammalian middle ear. It is puzzling that the two sympatric and dentally similar taxa have such different auditory apparatuses. In light of the available evidence, we argue that the mandibular middle ear reconstructed in Vilevolodon encounters many problems, and the so-called ectotympanic in Vilevolodon may be interpreted as a stylohyal; thus, the dilemma can be resolved.
Collapse
Affiliation(s)
- Jin Meng
- Division of PaleontologyAmerican Museum of Natural HistoryNew YorkNYUSA
- Earth and Environmental SciencesGraduate CenterCity University of New YorkNew YorkNYUSA
| | - Fangyuan Mao
- Division of PaleontologyAmerican Museum of Natural HistoryNew YorkNYUSA
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of SciencesInstitute of Vertebrate Paleontology and PaleoanthropologyChinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Life and PaleoenvironmentBeijingChina
| | - Gang Han
- Paleontology CenterBohai UniversityJinzhouChina
- Hainan Tropical Ocean UniversitySanyaChina
| | - Xiao‐Ting Zheng
- Institute of Geology and PaleontologyLinyi UniversityLinyiChina
- Shandong Tianyu Museum of NaturePingyiChina
| | - Xiao‐Li Wang
- Institute of Geology and PaleontologyLinyi UniversityLinyiChina
- Shandong Tianyu Museum of NaturePingyiChina
| | - Yuanqing Wang
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of SciencesInstitute of Vertebrate Paleontology and PaleoanthropologyChinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Life and PaleoenvironmentBeijingChina
| |
Collapse
|
8
|
Mozaffari M, Jiang D, Tucker AS. Developmental aspects of the tympanic membrane: Shedding light on function and disease. Genesis 2019; 58:e23348. [PMID: 31763764 PMCID: PMC7154630 DOI: 10.1002/dvg.23348] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/19/2022]
Abstract
The ear drum, or tympanic membrane (TM), is a key component in the intricate relay that transmits air-borne sound to our fluid-filled inner ear. Despite early belief that the mammalian ear drum evolved as a transformation of a reptilian drum, newer fossil data suggests a parallel and independent evolution of this structure in mammals. The term "drum" belies what is in fact a complex three-dimensional structure formed from multiple embryonic cell lineages. Intriguingly, disease affects the ear drum differently in its different parts, with the superior and posterior parts being much more frequently affected. This suggests a key role for the developmental details of TM formation in its final form and function, both in homeostasis and regeneration. Here we review recent studies in rodent models and humans that are beginning to address large knowledge gaps in TM cell dynamics from a developmental biologist's point of view. We outline the biological and clinical uncertainties that remain, with a view to guiding the indispensable contribution that developmental biology will be able to make to better understanding the TM.
Collapse
Affiliation(s)
- Mona Mozaffari
- Centre for Craniofacial and Regenerative Biology, King's College London, Guy's Hospital, London, UK
| | - Dan Jiang
- Centre for Craniofacial and Regenerative Biology, King's College London, Guy's Hospital, London, UK.,ENT Department, Guy's Hospital, London, UK
| | - Abigail S Tucker
- Centre for Craniofacial and Regenerative Biology, King's College London, Guy's Hospital, London, UK
| |
Collapse
|
9
|
The adhesion molecule cadherin 11 is essential for acquisition of normal hearing ability through middle ear development in the mouse. J Transl Med 2018; 98:1364-1374. [PMID: 29967341 DOI: 10.1038/s41374-018-0083-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 04/07/2018] [Accepted: 04/24/2018] [Indexed: 01/29/2023] Open
Abstract
Cadherin 11 (Cdh11), a member of the cadherin adhesion molecule family, is expressed in various regions of the brain as well as the head and ear. To gain further insights into the roles of Cdh11 in the development of the ear, we performed behavioral tests using Cdh11 knockout (KO) mice. KO mice showed reduced acoustic startle responses and increased thresholds for auditory brainstem responses, indicating moderate hearing loss. The auditory bulla volume and ratio of air-filled to non-air-filled space in the middle ear cavity were reduced in KO mice, potentially causing conductive hearing loss. Furthermore, residual mesenchymal and inflammatory cells were observed in the middle ear cavity of KO mice. Cdh11 was expressed in developing mesenchymal cells just before the start of cavitation, indicating that Cdh11 may be directly involved in middle ear cavitation. Since the auditory bulla is derived from the neural crest, the regulation of neural crest-derived cells by Cdh11 may be responsible for structural development. This mutant mouse may be a promising animal model for elucidating the causes of conductive hearing loss and otitis media.
Collapse
|