1
|
Tan YR, Roan HY, Chen CH. Zebrafish tailfin as an in vivo model for capturing tissue-scale cell dynamics. Semin Cell Dev Biol 2025; 166:29-35. [PMID: 39724824 DOI: 10.1016/j.semcdb.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024]
Abstract
The intricate control of collective cell dynamics is crucial for enabling organismic development and tissue regeneration. Despite the availability of various in vitro and in vivo models, studies on tissue-scale cell dynamics and associated emergent properties in living systems remain methodically challenging. Here, we describe key advantages of using the adult zebrafish tailfin (caudal fin) as a robust in vivo model for dissecting millimeter-scale collective cell dynamics during regeneration and wound healing in a complex tissue. For researchers considering this model system, we briefly introduce the tailfin anatomy, as well as available transgenic reporter tools and live-imaging setups that may be utilized to study epidermal cell behaviors. To highlight the unique strengths of the zebrafish tailfin model, we present an example project that was made possible by techniques for tracking cell dynamics at a millimeter scale with single-cell resolution in live animals. Finally, we discuss the research directions at the interface of collective cell dynamics and regenerative biology that most excite us and can be examined using the tailfin model.
Collapse
Affiliation(s)
- Yue Rong Tan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Hsiao-Yuh Roan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Chen-Hui Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
2
|
Chen Y, Hou Y, Zeng Q, Wang I, Shang M, Shin K, Hemauer C, Xing X, Kang J, Zhao G, Wang T. Common and specific gene regulatory programs in zebrafish caudal fin regeneration at single-cell resolution. Genome Res 2025; 35:202-218. [PMID: 39809530 PMCID: PMC11789645 DOI: 10.1101/gr.279372.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 11/04/2024] [Indexed: 01/16/2025]
Abstract
Following amputation, zebrafish regenerate their injured caudal fin through lineage-restricted reprogramming. Although previous studies have charted various genetic and epigenetic dimensions of this process, the intricate gene regulatory programs shared by, or unique to, different regenerating cell types remain underinvestigated. Here, we mapped the regulatory landscape of fin regeneration by applying paired snRNA-seq and snATAC-seq on uninjured and regenerating fins. This map delineates the regulatory dynamics of predominant cell populations at multiple stages of regeneration. We observe a marked increase in the accessibility of chromatin regions associated with regenerative and developmental processes at 1 dpa, followed by a gradual closure across major cell types at later stages. This pattern is distinct from that of transcriptomic dynamics, which is characterized by several waves of gene upregulation and downregulation. We identified and in vivo validated cell-type-specific and position-specific regeneration-responsive enhancers and constructed regulatory networks by cell type and stage. Our single-cell resolution transcriptomic and chromatin accessibility map across regenerative stages provides new insights into regeneration regulatory mechanisms and serves as a valuable resource for the community.
Collapse
Affiliation(s)
- Yujie Chen
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yiran Hou
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Qinglin Zeng
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Irene Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Meiru Shang
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Kwangdeok Shin
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin 53705, USA
| | - Christopher Hemauer
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Xiaoyun Xing
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Junsu Kang
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin 53705, USA
| | - Guoyan Zhao
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
3
|
Lewis VM, Fernandez RA, Horst SG, Stankunas K. Early exercise disrupts a pro-repair extracellular matrix program during zebrafish fin regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.15.623835. [PMID: 39605604 PMCID: PMC11601382 DOI: 10.1101/2024.11.15.623835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Understanding how mechanical stimulation from exercise influences cellular responses during tissue repair could enhance therapeutic strategies. We explored zebrafish caudal fin regeneration to study exercise impacts on a robust model of tissue regeneration. We used a swim tunnel to determine that exercise initiated during but not after blastema establishment impaired fin regeneration, including of the bony ray skeleton. Long-term tracking of fluorescently labeled cell lineages showed exercise disrupted blastemal mesenchyme formation. Transcriptomic profiling and section staining indicated exercise reduced an extracellular matrix (ECM) gene expression program, including for hyaluronic acid (HA) synthesis. Like exercise, HA synthesis inhibition or blastemal HA depletion disrupted blastema formation. We considered if injury-upregulated HA establishes a pro-regenerative environment facilitating mechanotransduction. HA density across the blastema correlated with nuclear localization of the mechanotransducer Yes-associated protein (Yap). Further, exercise loading or reducing HA decreased nuclear Yap and cell proliferation. We conclude early exercise during fin regeneration disrupts expression of an HA-rich ECM supporting blastema expansion. These results highlight the interface between mechanotransduction and ECM as consideration for timing exercise interventions and developing regenerative therapies. Significance Statement Controlled exercise promotes healing and recovery from severe skeletal injuries. However, properly timed interventions are essential to promote recovery and prevent further damage. We use zebrafish caudal fin regeneration to mechanistically study exercise impacts on a naturally robust and experimentally accessible model of tissue repair. We link detrimental early exercise effects during fin regeneration to impaired ECM synthesis, mechanotransduction, and cell proliferation. These insights could explain the value of delaying the onset of physical therapy and suggest pursuing therapies that maintain ECM integrity for regenerative rehabilitation.
Collapse
|
4
|
Bideau L, Velasquillo-Ramirez Z, Baduel L, Basso M, Gilardi-Hebenstreit P, Ribes V, Vervoort M, Gazave E. Variations in cell plasticity and proliferation underlie distinct modes of regeneration along the antero-posterior axis in the annelid Platynereis. Development 2024; 151:dev202452. [PMID: 38950937 DOI: 10.1242/dev.202452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 05/22/2024] [Indexed: 07/03/2024]
Abstract
The capacity to regenerate lost tissues varies significantly among animals. Some phyla, such as the annelids, display substantial regenerating abilities, although little is known about the cellular mechanisms underlying the process. To precisely determine the origin, plasticity and fate of the cells participating in blastema formation and posterior end regeneration after amputation in the annelid Platynereis dumerilii, we developed specific tools to track different cell populations. Using these tools, we find that regeneration is partly promoted by a population of proliferative gut cells whose regenerative potential varies as a function of their position along the antero-posterior axis of the worm. Gut progenitors from anterior differentiated tissues are lineage restricted, whereas gut progenitors from the less differentiated and more proliferative posterior tissues are much more plastic. However, they are unable to regenerate the stem cells responsible for the growth of the worms. Those stem cells are of local origin, deriving from the cells present in the segment abutting the amputation plane, as are most of the blastema cells. Our results favour a hybrid and flexible cellular model for posterior regeneration in Platynereis relying on different degrees of cell plasticity.
Collapse
Affiliation(s)
- Loïc Bideau
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | | | - Loeiza Baduel
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Marianne Basso
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | | | - Vanessa Ribes
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Michel Vervoort
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Eve Gazave
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| |
Collapse
|
5
|
Travnickova J, Muise S, Wojciechowska S, Brombin A, Zeng Z, Young AIJ, Wyatt C, Patton EE. Fate mapping melanoma persister cells through regression and into recurrent disease in adult zebrafish. Dis Model Mech 2022; 15:276219. [PMID: 35929478 PMCID: PMC9509888 DOI: 10.1242/dmm.049566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022] Open
Abstract
Melanoma heterogeneity and plasticity underlie therapy resistance. Some tumour cells possess innate resistance, while others reprogramme during drug exposure and survive to form persister cells, a source of potential cancer cells for recurrent disease. Tracing individual melanoma cell populations through tumour regression and into recurrent disease remains largely unexplored, in part, because complex animal models are required for live imaging of cell populations over time. Here, we applied tamoxifen-inducible creERt2/loxP lineage tracing to a zebrafish model of MITF-dependent melanoma regression and recurrence to image and trace cell populations in vivo through disease stages. Using this strategy, we show that melanoma persister cells at the minimal residual disease site originate from the primary tumour. Next, we fate mapped rare MITF-independent persister cells and demonstrate that these cells directly contribute to progressive disease. Multiplex immunohistochemistry confirmed that MITF-independent persister cells give rise to Mitfa+ cells in recurrent disease. Taken together, our work reveals a direct contribution of persister cell populations to recurrent disease, and provides a resource for lineage-tracing methodology in adult zebrafish cancer models. Summary: We fate map melanoma cells from the primary tumour into a persister cell state and show that persister cells directly contribute to recurrent disease.
Collapse
Affiliation(s)
- Jana Travnickova
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital Campus, EH4 2XU, Edinburgh, UK.,Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, EH4 2XU, Edinburgh, UK
| | - Sarah Muise
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital Campus, EH4 2XU, Edinburgh, UK.,Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, EH4 2XU, Edinburgh, UK
| | - Sonia Wojciechowska
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital Campus, EH4 2XU, Edinburgh, UK.,Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, EH4 2XU, Edinburgh, UK
| | - Alessandro Brombin
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital Campus, EH4 2XU, Edinburgh, UK.,Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, EH4 2XU, Edinburgh, UK
| | - Zhiqiang Zeng
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital Campus, EH4 2XU, Edinburgh, UK.,Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, EH4 2XU, Edinburgh, UK
| | - Adelaide I J Young
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital Campus, EH4 2XU, Edinburgh, UK.,Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, EH4 2XU, Edinburgh, UK
| | - Cameron Wyatt
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital Campus, EH4 2XU, Edinburgh, UK
| | - E Elizabeth Patton
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital Campus, EH4 2XU, Edinburgh, UK.,Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, EH4 2XU, Edinburgh, UK
| |
Collapse
|
6
|
Sehring I, Weidinger G. Zebrafish Fin: Complex Molecular Interactions and Cellular Mechanisms Guiding Regeneration. Cold Spring Harb Perspect Biol 2022; 14:a040758. [PMID: 34649924 PMCID: PMC9248819 DOI: 10.1101/cshperspect.a040758] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The zebrafish caudal fin has become a popular model to study cellular and molecular mechanisms of regeneration due to its high regenerative capacity, accessibility for experimental manipulations, and relatively simple anatomy. The formation of a regenerative epidermis and blastema are crucial initial events and tightly regulated. Both the regenerative epidermis and the blastema are highly organized structures containing distinct domains, and several signaling pathways regulate the formation and interaction of these domains. Bone is the major tissue regenerated from the progenitor cells of the blastema. Several cellular mechanisms can provide source cells for blastemal (pre-)osteoblasts, including dedifferentiation of differentiated osteoblasts and de novo formation from other cell types, providing intriguing examples of cellular plasticity. In recent years, omics analyses and single-cell approaches have elucidated genetic and epigenetic regulation, increasing our knowledge of the surprisingly complex coordination of various mechanisms to achieve successful restoration of a seemingly simple structure.
Collapse
Affiliation(s)
- Ivonne Sehring
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Gilbert Weidinger
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
7
|
Banu S, Gaur N, Nair S, Ravikrishnan T, Khan S, Mani S, Bharathi S, Mandal K, Kuram NA, Vuppaladadium S, Ravi R, Murthy CLN, Quoseena M, Babu NS, Idris MM. Transcriptomic and proteomic analysis of epimorphic regeneration in zebrafish caudal fin tissue. Genomics 2022; 114:110300. [DOI: 10.1016/j.ygeno.2022.110300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 01/13/2022] [Accepted: 02/01/2022] [Indexed: 11/26/2022]
|
8
|
Yue Z, Lei M, Paus R, Chuong CM. The global regulatory logic of organ regeneration: circuitry lessons from skin and its appendages. Biol Rev Camb Philos Soc 2021; 96:2573-2583. [PMID: 34145718 PMCID: PMC10874616 DOI: 10.1111/brv.12767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/17/2022]
Abstract
In organ regeneration, the regulatory logic at a systems level remains largely unclear. For example, what defines the quantitative threshold to initiate regeneration, and when does the regeneration process come to an end? What leads to the qualitatively different responses of regeneration, which restore the original structure, or to repair which only heals a wound? Here we discuss three examples in skin regeneration: epidermal recovery after radiation damage, hair follicle fate choice after chemotherapy damage, and wound-induced feather regeneration. We propose that the molecular regulatory circuitry is of paramount significance in organ regeneration. It is conceivable that defects in these controlling pathways may lead to failed regeneration and/or organ renewal, and understanding the underlying logic could help to identify novel therapeutic strategies.
Collapse
Affiliation(s)
- ZhiCao Yue
- Department of Cell Biology and Medical Genetics, Carson International Cancer Center, Guangdong Key Laboratory for Genome Stability and Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, China
| | - Mingxing Lei
- 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400038, China
| | - Ralf Paus
- Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, U.S.A
| | - Cheng-Ming Chuong
- Department of Pathology, University of Southern California, Los Angeles, CA, 90033, U.S.A
| |
Collapse
|
9
|
Stewart S, Le Bleu HK, Yette GA, Henner AL, Robbins AE, Braunstein JA, Stankunas K. longfin causes cis-ectopic expression of the kcnh2a ether-a-go-go K+ channel to autonomously prolong fin outgrowth. Development 2021; 148:dev199384. [PMID: 34061172 PMCID: PMC8217709 DOI: 10.1242/dev.199384] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/19/2021] [Indexed: 12/11/2022]
Abstract
Organs stop growing to achieve a characteristic size and shape in scale with the body of an animal. Likewise, regenerating organs sense injury extents to instruct appropriate replacement growth. Fish fins exemplify both phenomena through their tremendous diversity of form and remarkably robust regeneration. The classic zebrafish mutant longfint2 develops and regenerates dramatically elongated fins and underlying ray skeleton. We show longfint2 chromosome 2 overexpresses the ether-a-go-go-related voltage-gated potassium channel kcnh2a. Genetic disruption of kcnh2a in cis rescues longfint2, indicating longfint2 is a regulatory kcnh2a allele. We find longfint2 fin overgrowth originates from prolonged outgrowth periods by showing Kcnh2a chemical inhibition during late stage regeneration fully suppresses overgrowth. Cell transplantations demonstrate longfint2-ectopic kcnh2a acts tissue autonomously within the fin intra-ray mesenchymal lineage. Temporal inhibition of the Ca2+-dependent phosphatase calcineurin indicates it likewise entirely acts late in regeneration to attenuate fin outgrowth. Epistasis experiments suggest longfint2-expressed Kcnh2a inhibits calcineurin output to supersede growth cessation signals. We conclude ion signaling within the growth-determining mesenchyme lineage controls fin size by tuning outgrowth periods rather than altering positional information or cell-level growth potency.
Collapse
Affiliation(s)
- Scott Stewart
- Institute of Molecular Biology, University of Oregon, 273 Onyx Bridge, 1318 Franklin Blvd, Eugene, OR 97403-1229, USA
| | - Heather K. Le Bleu
- Institute of Molecular Biology, University of Oregon, 273 Onyx Bridge, 1318 Franklin Blvd, Eugene, OR 97403-1229, USA
- Department of Biology, University of Oregon, 77 Klamath Hall, Eugene, OR 97403-1210, USA
| | - Gabriel A. Yette
- Institute of Molecular Biology, University of Oregon, 273 Onyx Bridge, 1318 Franklin Blvd, Eugene, OR 97403-1229, USA
- Department of Biology, University of Oregon, 77 Klamath Hall, Eugene, OR 97403-1210, USA
| | - Astra L. Henner
- Institute of Molecular Biology, University of Oregon, 273 Onyx Bridge, 1318 Franklin Blvd, Eugene, OR 97403-1229, USA
| | - Amy E. Robbins
- Institute of Molecular Biology, University of Oregon, 273 Onyx Bridge, 1318 Franklin Blvd, Eugene, OR 97403-1229, USA
- Department of Biology, University of Oregon, 77 Klamath Hall, Eugene, OR 97403-1210, USA
| | - Joshua A. Braunstein
- Institute of Molecular Biology, University of Oregon, 273 Onyx Bridge, 1318 Franklin Blvd, Eugene, OR 97403-1229, USA
| | - Kryn Stankunas
- Institute of Molecular Biology, University of Oregon, 273 Onyx Bridge, 1318 Franklin Blvd, Eugene, OR 97403-1229, USA
- Department of Biology, University of Oregon, 77 Klamath Hall, Eugene, OR 97403-1210, USA
| |
Collapse
|
10
|
Tp53 Suppression Promotes Cardiomyocyte Proliferation during Zebrafish Heart Regeneration. Cell Rep 2021; 32:108089. [PMID: 32877671 PMCID: PMC7494019 DOI: 10.1016/j.celrep.2020.108089] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/06/2020] [Accepted: 08/07/2020] [Indexed: 01/04/2023] Open
Abstract
Zebrafish regenerate heart muscle through division of pre-existing cardiomyocytes. To discover underlying regulation, we assess transcriptome datasets for dynamic gene networks during heart regeneration and identify suppression of genes associated with the transcription factor Tp53. Cardiac damage leads to fluctuation of Tp53 protein levels, concomitant with induced expression of its central negative regulator, mdm2, in regenerating cardiomyocytes. Zebrafish lacking functional Tp53 display increased indicators of cardiomyocyte proliferation during regeneration, whereas transgenic Mdm2 blockade inhibits injury-induced cardiomyocyte proliferation. Induced myocardial overexpression of the mitogenic factors Nrg1 or Vegfaa in the absence of injury also upregulates mdm2 and suppresses Tp53 levels, and tp53 mutations augment the mitogenic effects of Nrg1. mdm2 induction is spatiotemporally associated with markers of de-differentiation in injury and growth contexts, suggesting a broad role in cardiogenesis. Our findings reveal myocardial Tp53 suppression by mitogen-induced Mdm2 as a regulatory component of innate cardiac regeneration.
Collapse
|
11
|
Bideau L, Kerner P, Hui J, Vervoort M, Gazave E. Animal regeneration in the era of transcriptomics. Cell Mol Life Sci 2021; 78:3941-3956. [PMID: 33515282 PMCID: PMC11072743 DOI: 10.1007/s00018-021-03760-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/04/2021] [Accepted: 01/09/2021] [Indexed: 12/27/2022]
Abstract
Animal regeneration, the ability to restore a lost body part, is a process that has fascinated scientists for centuries. In this review, we first present what regeneration is and how it relates to development, as well as the widespread and diverse nature of regeneration in animals. Despite this diversity, animal regeneration includes three common mechanistic steps: initiation, induction and activation of progenitors, and morphogenesis. In this review article, we summarize and discuss, from an evolutionary perspective, the recent data obtained for a variety of regeneration models which have allowed to identify key shared mechanisms that control these main steps of animal regeneration. This review also synthesizes the wealth of high-throughput mRNA sequencing data (bulk mRNA-seq) concerning regeneration which have been obtained in recent years, highlighting the major advances in the regeneration field that these studies have revealed. We stress out that, through a comparative approach, these data provide opportunities to further shed light on the evolution of regeneration in animals. Finally, we point out how the use of single-cell mRNA-seq technology and integration with epigenomic approaches may further help researchers to decipher mechanisms controlling regeneration and their evolution in animals.
Collapse
Affiliation(s)
- Loïc Bideau
- Université de Paris, CNRS, Institut Jacques Monod, 75006, Paris, France
| | - Pierre Kerner
- Université de Paris, CNRS, Institut Jacques Monod, 75006, Paris, France
| | - Jerome Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Michel Vervoort
- Université de Paris, CNRS, Institut Jacques Monod, 75006, Paris, France.
| | - Eve Gazave
- Université de Paris, CNRS, Institut Jacques Monod, 75006, Paris, France.
| |
Collapse
|
12
|
Ye L, Bae M, Cassilly CD, Jabba SV, Thorpe DW, Martin AM, Lu HY, Wang J, Thompson JD, Lickwar CR, Poss KD, Keating DJ, Jordt SE, Clardy J, Liddle RA, Rawls JF. Enteroendocrine cells sense bacterial tryptophan catabolites to activate enteric and vagal neuronal pathways. Cell Host Microbe 2020; 29:179-196.e9. [PMID: 33352109 DOI: 10.1016/j.chom.2020.11.011] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/08/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022]
Abstract
The intestinal epithelium senses nutritional and microbial stimuli using epithelial sensory enteroendocrine cells (EEC). EECs communicate nutritional information to the nervous system, but whether they also relay signals from intestinal microbes remains unknown. Using in vivo real-time measurements of EEC and nervous system activity in zebrafish, we discovered that the bacteria Edwardsiella tarda activate EECs through the receptor transient receptor potential ankyrin A1 (Trpa1) and increase intestinal motility. Microbial, pharmacological, or optogenetic activation of Trpa1+EECs directly stimulates vagal sensory ganglia and activates cholinergic enteric neurons by secreting the neurotransmitter 5-hydroxytryptamine (5-HT). A subset of indole derivatives of tryptophan catabolism produced by E. tarda and other gut microbes activates zebrafish EEC Trpa1 signaling. These catabolites also directly stimulate human and mouse Trpa1 and intestinal 5-HT secretion. These results establish a molecular pathway by which EECs regulate enteric and vagal neuronal pathways in response to microbial signals.
Collapse
Affiliation(s)
- Lihua Ye
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710, USA; Division of Gastroenterology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Munhyung Bae
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Chelsi D Cassilly
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Sairam V Jabba
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Daniel W Thorpe
- Flinders Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Alyce M Martin
- Flinders Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Hsiu-Yi Lu
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jinhu Wang
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - John D Thompson
- Department of Cell Biology, Regeneration Next, Duke University School of Medicine, Durham, NC 27710, USA
| | - Colin R Lickwar
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710, USA; Division of Gastroenterology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kenneth D Poss
- Department of Cell Biology, Regeneration Next, Duke University School of Medicine, Durham, NC 27710, USA
| | - Damien J Keating
- Flinders Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Sven-Eric Jordt
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Rodger A Liddle
- Division of Gastroenterology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Department of Veterans Affairs, Durham, NC 27705, USA
| | - John F Rawls
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710, USA; Division of Gastroenterology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
13
|
Hou Y, Lee HJ, Chen Y, Ge J, Osman FOI, McAdow AR, Mokalled MH, Johnson SL, Zhao G, Wang T. Cellular diversity of the regenerating caudal fin. SCIENCE ADVANCES 2020; 6:eaba2084. [PMID: 32851162 PMCID: PMC7423392 DOI: 10.1126/sciadv.aba2084] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 06/26/2020] [Indexed: 05/03/2023]
Abstract
Zebrafish faithfully regenerate their caudal fin after amputation. During this process, both differentiated cells and resident progenitors migrate to the wound site and undergo lineage-restricted, programmed cellular state transitions to populate the new regenerate. Until now, systematic characterizations of cells comprising the new regenerate and molecular definitions of their state transitions have been lacking. We hereby characterize the dynamics of gene regulatory programs during fin regeneration by creating single-cell transcriptome maps of both preinjury and regenerating fin tissues at 1/2/4 days post-amputation. We consistently identified epithelial, mesenchymal, and hematopoietic populations across all stages. We found common and cell type-specific cell cycle programs associated with proliferation. In addition to defining the processes of epithelial replenishment and mesenchymal differentiation, we also identified molecular signatures that could better distinguish epithelial and mesenchymal subpopulations in fish. The insights for natural cell state transitions during regeneration point to new directions for studying this regeneration model.
Collapse
Affiliation(s)
- Yiran Hou
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63108, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Hyung Joo Lee
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63108, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Yujie Chen
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63108, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Jiaxin Ge
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63108, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Fujr Osman Ibrahim Osman
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63108, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63108, USA
- Maryville University of St Louis, St. Louis, MO 63141, USA
| | - Anthony R. McAdow
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Mayssa H. Mokalled
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Stephen L. Johnson
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Guoyan Zhao
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63108, USA
- Corresponding author. (G.Z.); (T.W.)
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63108, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63108, USA
- Corresponding author. (G.Z.); (T.W.)
| |
Collapse
|
14
|
Pillai A, Patel S, Ranadive I, Desai I, Balakrishnan S. Fibroblast growth factor-2 signaling modulates matrix reorganization and cell cycle turnover rate in the regenerating tail of Hemidactylus flaviviridis. Acta Histochem 2020; 122:151464. [PMID: 31780191 DOI: 10.1016/j.acthis.2019.151464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 12/17/2022]
Abstract
Lizards restore their lost tail by the recruitment of multipotent cells which are selectively differentiated into varied cell types so as to sculpt a new tail. The precise coordination of the events involved in this complex process requires crosstalk between many signaling molecules and differential regulation of several mediators that facilitate the achievements of various milestones of regeneration. Fibroblast growth factor-2 is one such signaling molecule which activates a number of intracellular signaling pathways. Herein, the regulatory role of FGF2 during tail regeneration in Hemidactylus flaviviridis was investigated. Upon inhibition of FGFR using SU5402, the FGF2 levels were found to be significantly reduced at both transcript and protein level. Further, the compromised levels of the gelatinases, namely MMP2 and MMP9 in the tail tissues of treated lizards indicate that FGF2 regulates the activity of these enzymes perhaps to facilitate the recruitment of multipotent mesenchymal cells (blastema). The in vivo 5BrdU incorporation assay showed a lower cell proliferation rate in FGF2 signal inhibited animals during all the proliferative stages of regeneration studied. This observation was substantiated by decreased levels of PCNA in treated group. Moreover, from the combined results of Caspase-3 localization and its expression levels in the regenerates of control and SU5402 treated lizards it can be deduced that FGF2 signal regulates apoptosis as well during early stages of regeneration. Overall, the current study indicates beyond doubt that FGF2 signaling plays a pivotal role in orchestrating the matrix reorganization and cell cycle turnover during lizard tail regeneration.
Collapse
|
15
|
König D, Dagenais P, Senk A, Djonov V, Aegerter CM, Jaźwińska A. Distribution and Restoration of Serotonin-Immunoreactive Paraneuronal Cells During Caudal Fin Regeneration in Zebrafish. Front Mol Neurosci 2019; 12:227. [PMID: 31616250 PMCID: PMC6763699 DOI: 10.3389/fnmol.2019.00227] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 09/04/2019] [Indexed: 12/22/2022] Open
Abstract
Aquatic vertebrates possess diverse types of sensory cells in their skin to detect stimuli in the water. In the adult zebrafish, a common model organism, the presence of such cells in fins has only rarely been studied. Here, we identified scattered serotonin (5-HT)-positive cells in the epidermis of the caudal fin. These cells were distinct from keratinocytes as revealed by their low immunoreactivity for cytokeratin and desmosome markers. Instead, they were detected by Calretinin (Calbindin-2) and Synaptic vesicle glycoprotein 2 (SV2) antibodies, indicating a calcium-regulated neurosecretory activity. Consistently, electron microscopy revealed abundant secretory organelles in desmosome-negative cells in the fin epidermis. Based on the markers, 5-HT, Calretinin and SV2, we referred to these cells as HCS-cells. We found that HCS-cells were spread throughout the entire caudal fin at an average density of 140 cells per mm2 on each fin surface. These cells were strongly enriched at ray bifurcations in wild type fins, as well as in elongated fins of another longfin mutant fish. To determine whether hydrodynamics play a role in the distribution of HCS-cells, we used an interdisciplinary approach and performed kinematic analysis. Measurements of particle velocity with a fin model revealed differences in fluid velocities between bifurcated rods and adjacent non-bifurcated regions. Therefore the accumulation of HCS-cells near bone bifurcations may be a biological adaptation for sensing of water parameters. The significance of this HCS-cell pattern is reinforced by the fact, that it is reestablished in the regenerated fin after amputation. Regeneration of HCS-cells was not impaired by the chemical inhibition of serotonin synthesis, suggesting that this neurotransmitter is not essential for the restorative process. In conclusion, our study identified a specific population of solitary paraneurons in the zebrafish fin, whose distribution correlates with fluid dynamics.
Collapse
Affiliation(s)
- Désirée König
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Paule Dagenais
- Physik-Institut, University of Zurich, Zurich, Switzerland
| | - Anita Senk
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | | | | | - Anna Jaźwińska
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
16
|
Abstract
Every animal grows from a single fertilized egg into an intricate network of cell types and organ systems. This process is captured in a lineage tree: a diagram of every cell's ancestry back to the founding zygote. Biologists have long sought to trace this cell lineage tree in individual organisms and have developed a variety of technologies to map the progeny of specific cells. However, there are billions to trillions of cells in complex organisms, and conventional approaches can only map a limited number of clonal populations per experiment. A new generation of tools that use molecular recording methods integrated with single cell profiling technologies may provide a solution. Here, we summarize recent breakthroughs in these technologies, outline experimental and computational challenges, and discuss biological questions that can be addressed using single cell dynamic lineage tracing.
Collapse
Affiliation(s)
- Aaron McKenna
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - James A Gagnon
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
17
|
König D, Jaźwińska A. Zebrafish fin regeneration involves transient serotonin synthesis. Wound Repair Regen 2019; 27:375-385. [DOI: 10.1111/wrr.12719] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/13/2019] [Accepted: 04/02/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Désirée König
- Department of BiologyUniversity of Fribourg Chemin du Musée 10, 1700, Fribourg Switzerland
| | - Anna Jaźwińska
- Department of BiologyUniversity of Fribourg Chemin du Musée 10, 1700, Fribourg Switzerland
| |
Collapse
|
18
|
Alemany A, Florescu M, Baron CS, Peterson-Maduro J, van Oudenaarden A. Whole-organism clone tracing using single-cell sequencing. Nature 2018; 556:108-112. [PMID: 29590089 DOI: 10.1038/nature25969] [Citation(s) in RCA: 297] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 02/02/2018] [Indexed: 12/31/2022]
Abstract
Embryonic development is a crucial period in the life of a multicellular organism, during which limited sets of embryonic progenitors produce all cells in the adult body. Determining which fate these progenitors acquire in adult tissues requires the simultaneous measurement of clonal history and cell identity at single-cell resolution, which has been a major challenge. Clonal history has traditionally been investigated by microscopically tracking cells during development, monitoring the heritable expression of genetically encoded fluorescent proteins and, more recently, using next-generation sequencing technologies that exploit somatic mutations, microsatellite instability, transposon tagging, viral barcoding, CRISPR-Cas9 genome editing and Cre-loxP recombination. Single-cell transcriptomics provides a powerful platform for unbiased cell-type classification. Here we present ScarTrace, a single-cell sequencing strategy that enables the simultaneous quantification of clonal history and cell type for thousands of cells obtained from different organs of the adult zebrafish. Using ScarTrace, we show that a small set of multipotent embryonic progenitors generate all haematopoietic cells in the kidney marrow, and that many progenitors produce specific cell types in the eyes and brain. In addition, we study when embryonic progenitors commit to the left or right eye. ScarTrace reveals that epidermal and mesenchymal cells in the caudal fin arise from the same progenitors, and that osteoblast-restricted precursors can produce mesenchymal cells during regeneration. Furthermore, we identify resident immune cells in the fin with a distinct clonal origin from other blood cell types. We envision that similar approaches will have major applications in other experimental systems, in which the matching of embryonic clonal origin to adult cell type will ultimately allow reconstruction of how the adult body is built from a single cell.
Collapse
Affiliation(s)
- Anna Alemany
- Oncode Institute, Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Maria Florescu
- Oncode Institute, Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Chloé S Baron
- Oncode Institute, Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Josi Peterson-Maduro
- Oncode Institute, Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Alexander van Oudenaarden
- Oncode Institute, Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| |
Collapse
|