1
|
Körner MB, Velluva A, Bundalian L, Krohn K, Schön K, Schumann I, Kromp J, Thum AS, Garten A, Hentschel J, Abou Jamra R, Mrestani A, Scholz N, Langenhan T, Le Duc D. Drosophila WDFY3/ Bchs overexpression impairs neural function. J Neurogenet 2025; 39:23-38. [PMID: 40000652 DOI: 10.1080/01677063.2025.2465536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/06/2025] [Indexed: 02/27/2025]
Abstract
Pathogenic variants in WDFY3, a gene encoding for an autophagy adaptor termed ALFY, are linked to neurodevelopmental delay and altered brain size in human probands. While the role of WDFY3 loss-of-function is extensively studied in neurons, little is known about the effects of WDFY3 upregulation in different cell types of the central nervous system (CNS). We show that overexpression of the Drosophila melanogaster WDFY3 ortholog, Bchs, in either glia or neurons impaired autophagy and locomotion. Bchs glial overexpression also increased VNC size and glial nuclei number significantly, whereas neuronal Bchs overexpression affected wing and thorax morphology. We identified 79 genes that were differentially expressed and overlapped in flies that overexpress Bchs in glial and neuronal cells, respectively. Additionally, upon neuronal Bchs overexpression differentially expressed genes clustered in gene ontology categories associated with autophagy and mitochondrial function. Our data indicate that glial as well as neuronal Bchs upregulation can have detrimental outcomes on neural function.
Collapse
Affiliation(s)
- Marek B Körner
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Leipzig University, Leipzig, Germany
| | - Akhil Velluva
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Linnaeus Bundalian
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Knut Krohn
- Core Unit DNA-Technologies, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Kathleen Schön
- Core Unit DNA-Technologies, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Isabell Schumann
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Jessica Kromp
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Department of Genetics, Institute of Biology, Leipzig University, Leipzig, Germany
| | - Andreas S Thum
- Department of Genetics, Institute of Biology, Leipzig University, Leipzig, Germany
| | - Antje Garten
- Pediatric Research Center, University Hospital for Children and Adolescents, Leipzig University, Leipzig, Germany
| | - Julia Hentschel
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Achmed Mrestani
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Leipzig University, Leipzig, Germany
- Department of Neurology, University of Leipzig Medical Center, Leipzig, Germany
| | - Nicole Scholz
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Leipzig University, Leipzig, Germany
| | - Tobias Langenhan
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Leipzig University, Leipzig, Germany
| | - Diana Le Duc
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
2
|
Zhao Y, He S, Zhao M, Huang Q. Surviving the Storm: The Role of Poly- and Depolyploidization in Tissues and Tumors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306318. [PMID: 38629780 PMCID: PMC11199982 DOI: 10.1002/advs.202306318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 03/18/2024] [Indexed: 06/27/2024]
Abstract
Polyploidization and depolyploidization are critical processes in the normal development and tissue homeostasis of diploid organisms. Recent investigations have revealed that polyaneuploid cancer cells (PACCs) exploit this ploidy variation as a survival strategy against anticancer treatment and for the repopulation of tumors. Unscheduled polyploidization and chromosomal instability in PACCs enhance malignancy and treatment resistance. However, their inability to undergo mitosis causes catastrophic cellular death in most PACCs. Adaptive ploid reversal mechanisms, such as multipolar mitosis, centrosome clustering, meiosis-like division, and amitosis, counteract this lethal outcome and drive cancer relapse. The purpose of this work is to focus on PACCs induced by cytotoxic therapy, highlighting the latest discoveries in ploidy dynamics in physiological and pathological contexts. Specifically, by emphasizing the role of "poly-depolyploidization" in tumor progression, the aim is to identify novel therapeutic targets or paradigms for combating diseases associated with aberrant ploidies.
Collapse
Affiliation(s)
- Yucui Zhao
- Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
- Department of Radiation OncologySecond Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
| | - Sijia He
- Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Minghui Zhao
- Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
- Department of Radiation OncologyFirst Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
| | - Qian Huang
- Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
- Shanghai Key Laboratory of Pancreatic DiseasesShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| |
Collapse
|
3
|
Contreras EG, Kautzmann S, Klämbt C. The Drosophila blood-brain barrier invades the nervous system in a GPCR-dependent manner. Front Cell Neurosci 2024; 18:1397627. [PMID: 38846639 PMCID: PMC11153769 DOI: 10.3389/fncel.2024.1397627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/07/2024] [Indexed: 06/09/2024] Open
Abstract
The blood-brain barrier (BBB) represents a crucial interface between the circulatory system and the brain. In Drosophila melanogaster, the BBB is composed of perineurial and subperineurial glial cells. The perineurial glial cells are small mitotically active cells forming the outermost layer of the nervous system and are engaged in nutrient uptake. The subperineurial glial cells form occluding septate junctions to prevent paracellular diffusion of macromolecules into the nervous system. To address whether the subperineurial glia just form a simple barrier or whether they establish specific contacts with both the perineurial glial cells and inner central nervous system (CNS) cells, we undertook a detailed morphological analysis. Using genetically encoded markers alongside with high-resolution laser scanning confocal microscopy and transmission electron microscopy, we identified thin cell processes extending into the perineurial layer and into the CNS cortex. Interestingly, long cell processes were observed reaching the glia ensheathing the neuropil of the central brain. GFP reconstitution experiments highlighted multiple regions of membrane contacts between subperineurial and ensheathing glia. Furthermore, we identify the G-protein-coupled receptor (GPCR) Moody as negative regulator of the growth of subperineurial cell processes. Loss of moody triggered a massive overgrowth of subperineurial cell processes into the CNS cortex and, moreover, affected the polarized localization of the xenobiotic transporter Mdr65. Finally, we found that GPCR signaling, but not septate junction formation, is responsible for controlling membrane overgrowth. Our findings support the notion that the Drosophila BBB is able to bridge the communication gap between circulation and synaptic regions of the brain by long cell processes.
Collapse
Affiliation(s)
| | | | - Christian Klämbt
- Multiscale Imaging Center, Institute of Neuro- and Behavioral Biology, University of Münster, Münster, Germany
| |
Collapse
|
4
|
Wu Q, Jiang X, Wang LX, Liu ZY, Yang WY, Jing C, Xiao Y, Zhu Y, Dong ZQ, Lu C, Pan MH, Chen P. Bombyx moriSuppressor of Hairless is involved in the regulation of the silkworm cell cycle and endoreplication of the silk glands. Int J Biol Macromol 2024; 268:131819. [PMID: 38688334 DOI: 10.1016/j.ijbiomac.2024.131819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 05/02/2024]
Abstract
The Notch signaling pathway is important in cell cycle regulation and cell proliferation. The transcriptional repressor Suppressor of Hairless [Su(H)] is a molecular switch for downstream target genes of the Notch signaling pathway but the regulatory mechanism of the Su(H) gene in the cell cycle is unclear. We determined the function of the Notch signaling pathway and Bombyx mori Su(H) [BmSu(H)] in the regulation of the silkworm cell cycle. Inhibition of Notch signaling promoted the replication of DNA in silkworm gland cells and expression of the BmSu(H) gene was significantly reduced. Overexpression of the BmSu(H) gene inhibited DNA replication and cell proliferation of silkworm cells, whereas knockout of the BmSu(H) gene promoted DNA replication and cell proliferation. Knockout of the BmSu(H) in silkworms improved the efficiency of silk gland cell endoreplication and increased important economic traits. We demonstrated that BmSu(H) protein can directly bind to the promoters of BmCyclinA, BmCyclinE and BmCDK1 genes, inhibiting or promoting their transcription at the cell and individual level. This study identified molecular targets for genetic improvement of the silkworm and also provided insights into the regulatory mechanism of the cell cycle.
Collapse
Affiliation(s)
- Qiao Wu
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Xia Jiang
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Lan-Xing Wang
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Zhen-Ye Liu
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Wen-Yu Yang
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Cai Jing
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Yu Xiao
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Yan Zhu
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Zhan-Qi Dong
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Cheng Lu
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Min-Hui Pan
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China.
| | - Peng Chen
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China.
| |
Collapse
|
5
|
Darmasaputra GS, van Rijnberk LM, Galli M. Functional consequences of somatic polyploidy in development. Development 2024; 151:dev202392. [PMID: 38415794 PMCID: PMC10946441 DOI: 10.1242/dev.202392] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Polyploid cells contain multiple genome copies and arise in many animal tissues as a regulated part of development. However, polyploid cells can also arise due to cell division failure, DNA damage or tissue damage. Although polyploidization is crucial for the integrity and function of many tissues, the cellular and tissue-wide consequences of polyploidy can be very diverse. Nonetheless, many polyploid cell types and tissues share a remarkable similarity in function, providing important information about the possible contribution of polyploidy to cell and tissue function. Here, we review studies on polyploid cells in development, underlining parallel functions between different polyploid cell types, as well as differences between developmentally-programmed and stress-induced polyploidy.
Collapse
Affiliation(s)
- Gabriella S. Darmasaputra
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| | - Lotte M. van Rijnberk
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| | - Matilde Galli
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| |
Collapse
|
6
|
Fernandes VM, Auld V, Klämbt C. Glia as Functional Barriers and Signaling Intermediaries. Cold Spring Harb Perspect Biol 2024; 16:a041423. [PMID: 38167424 PMCID: PMC10759988 DOI: 10.1101/cshperspect.a041423] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Glia play a crucial role in providing metabolic support to neurons across different species. To do so, glial cells isolate distinct neuronal compartments from systemic signals and selectively transport specific metabolites and ions to support neuronal development and facilitate neuronal function. Because of their function as barriers, glial cells occupy privileged positions within the nervous system and have also evolved to serve as signaling intermediaries in various contexts. The fruit fly, Drosophila melanogaster, has significantly contributed to our understanding of glial barrier development and function. In this review, we will explore the formation of the glial sheath, blood-brain barrier, and nerve barrier, as well as the significance of glia-extracellular matrix interactions in barrier formation. Additionally, we will delve into the role of glia as signaling intermediaries in regulating nervous system development, function, and response to injury.
Collapse
Affiliation(s)
- Vilaiwan M Fernandes
- Department of Cell and Developmental Biology, University College London, London UC1E 6DE, United Kingdom
| | - Vanessa Auld
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Christian Klämbt
- Institute for Neuro- and Behavioral Biology, University of Münster, Münster 48149, Germany
| |
Collapse
|
7
|
Zhou XL, Wei Y, Chen P, Yang X, Lu C, Pan MH. A novel transcription factor, BmZFP67, regulates endomitosis switch by controlling the expression of cyclin B in silk glands. Int J Biol Macromol 2023:124931. [PMID: 37263320 DOI: 10.1016/j.ijbiomac.2023.124931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/25/2023] [Accepted: 05/06/2023] [Indexed: 06/03/2023]
Abstract
Endomitosis is involved in developmental processes associated with an increase in metabolic cell activity, which is characterized by repeated rounds of DNA replication without cytokinesis. Endomitosis cells are widespread in protozoa, plants, animals and humans. Endomitosis cell cycle is currently viewed as a variation of the canonical cell cycle and transformed from mitotic cell cycle. However, the meaningful question about how endomitosis transformed from mitosis is still unclear. Herein, we identified a novel transcription factor in silk glands, ZFP67, which is gradually reduced in silk glands during the transition of mitosis to endomitosis. In addition, over-expressed ZFP67 in silk glands led to the transition delayed. And, knock-out of ZFP67 led to abnormal chromatin division and unsuccessful cell division. These data reveled that ZFP67 played an important role in transition of mitosis to endomitosis. Furthermore, ZFP67 can regulate the transcription of cyclin B, a key cyclin related to cell division and G2/M phase, which is demonstrated by chromatin immunoprecipitation and dual luciferase reporter system in this article. In conclusion, it can be speculated that the decreasing expression of ZFP67 in silk glands during the transition stage of mitosis-to-endomitosis resulted in the lack of cyclin B, which further led to unsuccessful cytokinesis and then promoted the transition from mitosis to endomitosis of silk gland cells.
Collapse
Affiliation(s)
- Xiao-Lin Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Yi Wei
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China
| | - Xi Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China.
| | - Min-Hui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China.
| |
Collapse
|
8
|
Corty MM, Coutinho-Budd J. Drosophila glia take shape to sculpt the nervous system. Curr Opin Neurobiol 2023; 79:102689. [PMID: 36822142 PMCID: PMC10023329 DOI: 10.1016/j.conb.2023.102689] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/19/2022] [Accepted: 01/10/2023] [Indexed: 02/23/2023]
Abstract
The importance of glial cells has become increasingly apparent over the past 20 years, yet compared to neurons we still know relatively little about these essential cells. Most critical glial cell functions are conserved in Drosophila glia, often using the same key molecular players as their vertebrate counterparts. The relative simplicity of the Drosophila nervous system, combined with a vast array of powerful genetic tools, allows us to further dissect the molecular composition and functional roles of glia in ways that would be much more cumbersome or not possible in higher vertebrate systems. Importantly, Drosophila genetics allow for in vivo manipulation, and their transparent body wall enables in vivo imaging of glia in intact animals throughout early development. Here we discuss recent advances in Drosophila glial development detailing how these cells take on their mature morphologies and interact with neurons to perform their important functional roles in the nervous system.
Collapse
Affiliation(s)
- Megan M Corty
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA. https://twitter.com/@megancphd
| | - Jaeda Coutinho-Budd
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
9
|
Contreras EG, Klämbt C. The Drosophila blood-brain barrier emerges as a model for understanding human brain diseases. Neurobiol Dis 2023; 180:106071. [PMID: 36898613 DOI: 10.1016/j.nbd.2023.106071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/24/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
The accurate regulation of the microenvironment within the nervous system is one of the key features characterizing complex organisms. To this end, neural tissue has to be physically separated from circulation, but at the same time, mechanisms must be in place to allow controlled transport of nutrients and macromolecules into and out of the brain. These roles are executed by cells of the blood-brain barrier (BBB) found at the interface of circulation and neural tissue. BBB dysfunction is observed in several neurological diseases in human. Although this can be considered as a consequence of diseases, strong evidence supports the notion that BBB dysfunction can promote the progression of brain disorders. In this review, we compile the recent evidence describing the contribution of the Drosophila BBB to the further understanding of brain disease features in human patients. We discuss the function of the Drosophila BBB during infection and inflammation, drug clearance and addictions, sleep, chronic neurodegenerative disorders and epilepsy. In summary, this evidence suggests that the fruit fly, Drosophila melanogaster, can be successfully employed as a model to disentangle mechanisms underlying human diseases.
Collapse
Affiliation(s)
- Esteban G Contreras
- University of Münster, Institute of Neuro- and Behavioral Biology, Badestr. 9, Münster, Germany.
| | - Christian Klämbt
- University of Münster, Institute of Neuro- and Behavioral Biology, Badestr. 9, Münster, Germany.
| |
Collapse
|
10
|
Ma M, Zhang X, Zheng Y, Lu S, Pan X, Mao X, Pan H, Chung HL, Wang H, Guo H, Bellen HJ. The fly homolog of SUPT16H, a gene associated with neurodevelopmental disorders, is required in a cell-autonomous fashion for cell survival. Hum Mol Genet 2023; 32:984-997. [PMID: 36255738 PMCID: PMC9991001 DOI: 10.1093/hmg/ddac259] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/22/2022] [Accepted: 10/14/2022] [Indexed: 11/14/2022] Open
Abstract
SUPT16H encodes the large subunit of the FAcilitate Chromatin Transcription (FACT) complex, which functions as a nucleosome organizer during transcription. We identified two individuals from unrelated families carrying de novo missense variants in SUPT16H. The probands exhibit global developmental delay, intellectual disability, epilepsy, facial dysmorphism and brain structural abnormalities. We used Drosophila to characterize two variants: p.T171I and p.G808R. Loss of the fly ortholog, dre4, causes lethality at an early developmental stage. RNAi-mediated knockdown of dre4 in either glia or neurons causes severely reduced eclosion and longevity. Tissue-specific knockdown of dre4 in the eye or wing leads to the loss of these tissues, whereas overexpression of SUPT16H has no dominant effect. Moreover, expression of the reference SUPT16H significantly rescues the loss-of-function phenotypes in the nervous system as well as wing and eye. In contrast, expression of SUPT16H p.T171I or p.G808R rescues the phenotypes poorly, indicating that the variants are partial loss-of-function alleles. While previous studies argued that the developmental arrest caused by loss of dre4 is due to impaired ecdysone production in the prothoracic gland, our data show that dre4 is required for proper cell growth and survival in multiple tissues in a cell-autonomous manner. Altogether, our data indicate that the de novo loss-of-function variants in SUPT16H are indeed associated with developmental and neurological defects observed in the probands.
Collapse
Affiliation(s)
- Mengqi Ma
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Xi Zhang
- National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yiming Zheng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Xueyang Pan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Xiao Mao
- National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, Hunan 410008, China
| | - Hongling Pan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Hyung-lok Chung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Hua Wang
- National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China
- Department of Medical Genetics, Hunan Children’s Hospital, Changsha, Hunan 410007, China
| | - Hong Guo
- Department of Medical Genetics, Army Medical University, Chongqing 400038, China
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| |
Collapse
|
11
|
Delta/Notch signaling in glia maintains motor nerve barrier function and synaptic transmission by controlling matrix metalloproteinase expression. Proc Natl Acad Sci U S A 2022; 119:e2110097119. [PMID: 35969789 PMCID: PMC9407389 DOI: 10.1073/pnas.2110097119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have made a surprising discovery linking Delta/Notch signaling in subperineurial glia (SPG) to the regulation of nerve ensheathment and neurotransmitter release at the Drosophila neuromuscular junction (NMJ). SPG, the counterpart of the endothelial layer in the vertebrate blood–brain barrier, form the key cellular layer that is critical for axonal ensheathment and the blood–brain barrier in Drosophila. Our findings demonstrate that Delta/Notch signaling exerts a constitutive negative inhibition on JNK signaling in SPG, thereby limiting the expression of Mmp1, a matrix metalloproteinase. SPG-specific and temporally regulated knockdown of Delta leads to breakdown of barrier function and compromises neurotransmitter release at the NMJ. Our results provide a mechanistic insight into the biology of barrier function and glia–neuron interactions. While the role of barrier function in establishing a protective, nutrient-rich, and ionically balanced environment for neurons has been appreciated for some time, little is known about how signaling cues originating in barrier-forming cells participate in maintaining barrier function and influence synaptic activity. We have identified Delta/Notch signaling in subperineurial glia (SPG), a crucial glial type for Drosophila motor axon ensheathment and the blood–brain barrier, to be essential for controlling the expression of matrix metalloproteinase 1 (Mmp1), a major regulator of the extracellular matrix (ECM). Our genetic analysis indicates that Delta/Notch signaling in SPG exerts an inhibitory control on Mmp1 expression. In the absence of this inhibition, abnormally enhanced Mmp1 activity disrupts septate junctions and glial ensheathment of peripheral motor nerves, compromising neurotransmitter release at the neuromuscular junction (NMJ). Temporally controlled and cell type–specific transgenic analysis shows that Delta/Notch signaling inhibits transcription of Mmp1 by inhibiting c-Jun N-terminal kinase (JNK) signaling in SPG. Our results provide a mechanistic insight into the regulation of neuronal health and function via glial-initiated signaling and open a framework for understanding the complex relationship between ECM regulation and the maintenance of barrier function.
Collapse
|
12
|
Pogodalla N, Winkler B, Klämbt C. Glial Tiling in the Insect Nervous System. Front Cell Neurosci 2022; 16:825695. [PMID: 35250488 PMCID: PMC8891220 DOI: 10.3389/fncel.2022.825695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/06/2022] [Indexed: 11/30/2022] Open
Abstract
The Drosophila nervous system comprises a small number of well characterized glial cell classes. The outer surface of the central nervous system (CNS) is protected by a glial derived blood-brain barrier generated by perineurial and subperineurial glia. All neural stem cells and all neurons are engulfed by cortex glial cells. The inner neuropil region, that harbors all synapses and dendrites, is covered by ensheathing glia and infiltrated by astrocyte-like glial cells. All these glial cells show a tiled organization with an often remarkable plasticity where glial cells of one cell type invade the territory of the neighboring glial cell type upon its ablation. Here, we summarize the different glial tiling patterns and based on the different modes of cell-cell contacts we hypothesize that different molecular mechanisms underlie tiling of the different glial cell types.
Collapse
|
13
|
Tubular Cell Cycle Response upon AKI: Revising Old and New Paradigms to Identify Novel Targets for CKD Prevention. Int J Mol Sci 2021; 22:ijms222011093. [PMID: 34681750 PMCID: PMC8537394 DOI: 10.3390/ijms222011093] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 02/07/2023] Open
Abstract
Acute kidney injury (AKI) is characterized by a rapid deterioration of kidney function, representing a global healthcare concern. In addition, AKI survivors frequently develop chronic kidney disease (CKD), contributing to a substantial proportion of disease burden globally. Yet, over the past 30 years, the burden of CKD has not declined to the same extent as many other important non-communicable diseases, implying a substantial deficit in the understanding of the disease progression. The assumption that the kidney response to AKI is based on a high proliferative potential of proximal tubular cells (PTC) caused a critical confounding factor, which has led to a limited development of strategies to prevent AKI and halt progression toward CKD. In this review, we discuss the latest findings on multiple mechanisms of response related to cell cycle behavior of PTC upon AKI, with a specific focus on their biological relevance. Collectively, we aim to (1) provide a new perspective on interpreting cell cycle progression of PTC in response to damage and (2) discuss how this knowledge can be used to choose the right therapeutic window of treatment for preserving kidney function while avoiding CKD progression.
Collapse
|
14
|
Bailey EC, Kobielski S, Park J, Losick VP. Polyploidy in Tissue Repair and Regeneration. Cold Spring Harb Perspect Biol 2021; 13:a040881. [PMID: 34187807 PMCID: PMC8485745 DOI: 10.1101/cshperspect.a040881] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Polyploidy is defined as a cell with three or more whole genome sets and enables cell growth across the kingdoms of life. Studies in model organisms have revealed that polyploid cell growth can be required for optimal tissue repair and regeneration. In mammals, polyploid cell growth contributes to repair of many tissues, including the liver, heart, kidney, bladder, and eye, and similar strategies have been identified in Drosophila and zebrafish tissues. This review discusses the heterogeneity and versatility of polyploidy in tissue repair and regeneration. Polyploidy has been shown to restore tissue mass and maintain organ size as well as protect against oncogenic insults and genotoxic stress. Polyploid cells can also serve as a reservoir for new diploid cells in regeneration. The numerous mechanisms to generate polyploid cells provide an unlimited resource for tissues to exploit to undergo repair or regeneration.
Collapse
Affiliation(s)
- Erin C Bailey
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Sara Kobielski
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - John Park
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Vicki P Losick
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| |
Collapse
|
15
|
Almeida Machado Costa C, Wang XF, Ellsworth C, Deng WM. Polyploidy in development and tumor models in Drosophila. Semin Cancer Biol 2021; 81:106-118. [PMID: 34562587 DOI: 10.1016/j.semcancer.2021.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 09/03/2021] [Accepted: 09/18/2021] [Indexed: 12/26/2022]
Abstract
Polyploidy, a cell status defined as more than two sets of genomic DNA, is a conserved strategy across species that can increase cell size and biosynthetic production, but the functional aspects of polyploidy are nuanced and vary across cell types. Throughout Drosophila developmental stages (embryo, larva, pupa and adult), polyploid cells are present in numerous organs and help orchestrate development while contributing to normal growth, well-being and homeostasis of the organism. Conversely, increasing evidence has shown that polyploid cells are prevalent in Drosophila tumors and play important roles in tumor growth and invasiveness. Here, we summarize the genes and pathways involved in polyploidy during normal and tumorigenic development, the mechanisms underlying polyploidization, and the functional aspects of polyploidy in development, homeostasis and tumorigenesis in the Drosophila model.
Collapse
Affiliation(s)
- Caique Almeida Machado Costa
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, United States
| | - Xian-Feng Wang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, United States
| | - Calder Ellsworth
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, United States
| | - Wu-Min Deng
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, United States.
| |
Collapse
|
16
|
Li X, Fetter R, Schwabe T, Jung C, Liu L, Steller H, Gaul U. The cAMP effector PKA mediates Moody GPCR signaling in Drosophila blood-brain barrier formation and maturation. eLife 2021; 10:68275. [PMID: 34382936 PMCID: PMC8390003 DOI: 10.7554/elife.68275] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/11/2021] [Indexed: 01/01/2023] Open
Abstract
The blood-brain barrier (BBB) of Drosophila comprises a thin epithelial layer of subperineural glia (SPG), which ensheath the nerve cord and insulate it against the potassium-rich hemolymph by forming intercellular septate junctions (SJs). Previously, we identified a novel Gi/Go protein-coupled receptor (GPCR), Moody, as a key factor in BBB formation at the embryonic stage. However, the molecular and cellular mechanisms of Moody signaling in BBB formation and maturation remain unclear. Here, we identify cAMP-dependent protein kinase A (PKA) as a crucial antagonistic Moody effector that is required for the formation, as well as for the continued SPG growth and BBB maintenance in the larva and adult stage. We show that PKA is enriched at the basal side of the SPG cell and that this polarized activity of the Moody/PKA pathway finely tunes the enormous cell growth and BBB integrity. Moody/PKA signaling precisely regulates the actomyosin contractility, vesicle trafficking, and the proper SJ organization in a highly coordinated spatiotemporal manner. These effects are mediated in part by PKA's molecular targets MLCK and Rho1. Moreover, 3D reconstruction of SJ ultrastructure demonstrates that the continuity of individual SJ segments, and not their total length, is crucial for generating a proper paracellular seal. Based on these findings, we propose that polarized Moody/PKA signaling plays a central role in controlling the cell growth and maintaining BBB integrity during the continuous morphogenesis of the SPG secondary epithelium, which is critical to maintain tissue size and brain homeostasis during organogenesis.
Collapse
Affiliation(s)
- Xiaoling Li
- Tianjin Cancer Hospital Airport Hospital, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China.,Department of Biochemistry, Gene Center, Center of Integrated Protein Science (CIPSM), University of Munich, Munich, Germany.,Rockefeller University, New York, United States
| | - Richard Fetter
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Tina Schwabe
- Department of Biochemistry, Gene Center, Center of Integrated Protein Science (CIPSM), University of Munich, Munich, Germany
| | - Christophe Jung
- Department of Biochemistry, Gene Center, Center of Integrated Protein Science (CIPSM), University of Munich, Munich, Germany
| | - Liren Liu
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy; Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | | | - Ulrike Gaul
- Department of Biochemistry, Gene Center, Center of Integrated Protein Science (CIPSM), University of Munich, Munich, Germany.,Rockefeller University, New York, United States
| |
Collapse
|
17
|
The Serine Protease Homolog, Scarface, Is Sensitive to Nutrient Availability and Modulates the Development of the Drosophila Blood-Brain Barrier. J Neurosci 2021; 41:6430-6448. [PMID: 34210781 PMCID: PMC8318086 DOI: 10.1523/jneurosci.0452-20.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 02/08/2021] [Accepted: 03/14/2021] [Indexed: 01/21/2023] Open
Abstract
The adaptable transcriptional response to changes in food availability not only ensures animal survival but also lets embryonic development progress. Interestingly, the CNS is preferentially protected from periods of malnutrition, a phenomenon known as “brain sparing.” However, the mechanisms that mediate this response remain poorly understood. To get a better understanding of this, we used Drosophila melanogaster as a model, analyzing the transcriptional response of neural stem cells (neuroblasts) and glia of the blood–brain barrier (BBB) from larvae of both sexes during nutrient restriction using targeted DamID. We found differentially expressed genes in both neuroblasts and glia of the BBB, although the effect of nutrient deficiency was primarily observed in the BBB. We characterized the function of a nutritional sensitive gene expressed in the BBB, the serine protease homolog, scarface (scaf). Scaf is expressed in subperineurial glia in the BBB in response to nutrition. Tissue-specific knockdown of scaf increases subperineurial glia endoreplication and proliferation of perineurial glia in the blood–brain barrier. Furthermore, neuroblast proliferation is diminished on scaf knockdown in subperineurial glia. Interestingly, reexpression of Scaf in subperineurial glia is able to enhance neuroblast proliferation and brain growth of animals in starvation. Finally, we show that loss of scaf in the blood–brain barrier increases sensitivity to drugs in adulthood, suggesting a physiological impairment. We propose that Scaf integrates the nutrient status to modulate the balance between neurogenesis and growth of the BBB, preserving the proper equilibrium between the size of the barrier and the brain. SIGNIFICANCE STATEMENT The Drosophila BBB separates the CNS from the open circulatory system. The BBB glia are not only acting as a physical segregation of tissues but participate in the regulation of the metabolism and neurogenesis during development. Here we analyze the transcriptional response of the BBB glia to nutrient deprivation during larval development, a condition in which protective mechanisms are switched on in the brain. Our findings show that the gene scarface reduces growth in the BBB while promoting the proliferation of neural stem, assuring the balanced growth of the larval brain. Thus, Scarface would link animal nutrition with brain development, coordinating neurogenesis with the growth of the BBB.
Collapse
|
18
|
Evaluation of endopolyploidy patterns in selected Capsicum and Nicotiana species (Solanaceae). Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00704-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Nandakumar S, Rozich E, Buttitta L. Cell Cycle Re-entry in the Nervous System: From Polyploidy to Neurodegeneration. Front Cell Dev Biol 2021; 9:698661. [PMID: 34249947 PMCID: PMC8264763 DOI: 10.3389/fcell.2021.698661] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/19/2021] [Indexed: 12/15/2022] Open
Abstract
Terminally differentiated cells of the nervous system have long been considered to be in a stable non-cycling state and are often considered to be permanently in G0. Exit from the cell cycle during development is often coincident with the differentiation of neurons, and is critical for neuronal function. But what happens in long lived postmitotic tissues that accumulate cell damage or suffer cell loss during aging? In other contexts, cells that are normally non-dividing or postmitotic can or re-enter the cell cycle and begin replicating their DNA to facilitate cellular growth in response to cell loss. This leads to a state called polyploidy, where cells contain multiple copies of the genome. A growing body of literature from several vertebrate and invertebrate model organisms has shown that polyploidy in the nervous system may be more common than previously appreciated and occurs under normal physiological conditions. Moreover, it has been found that neuronal polyploidization can play a protective role when cells are challenged with DNA damage or oxidative stress. By contrast, work over the last two and a half decades has discovered a link between cell-cycle reentry in neurons and several neurodegenerative conditions. In this context, neuronal cell cycle re-entry is widely considered to be aberrant and deleterious to neuronal health. In this review, we highlight historical and emerging reports of polyploidy in the nervous systems of various vertebrate and invertebrate organisms. We discuss the potential functions of polyploidization in the nervous system, particularly in the context of long-lived cells and age-associated polyploidization. Finally, we attempt to reconcile the seemingly disparate associations of neuronal polyploidy with both neurodegeneration and neuroprotection.
Collapse
Affiliation(s)
| | | | - Laura Buttitta
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
20
|
Zhang J, Qiao Q, Xu H, Zhou R, Liu X. Human cell polyploidization: The good and the evil. Semin Cancer Biol 2021; 81:54-63. [PMID: 33839294 DOI: 10.1016/j.semcancer.2021.04.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023]
Abstract
Therapeutic resistance represents a major cause of death for most lethal cancers. However, the underlying mechanisms of such resistance have remained unclear. The polyploid cells are due to an increase in DNA content, commonly associated with cell enlargement. In human, they play a variety of roles in physiology and pathologic conditions and perform the specialized functions during development, inflammation, and cancer. Recent work shows that cancer cells can be induced into polyploid giant cancer cells (PGCCs) that leads to reprogramming of surviving cancer cells to acquire resistance. In this article, we will review the polyploidy involved in development and inflammation, and the process of PGCCs formation and propagation that benefits to cell survival. We will discuss the potential opportunities in fighting resistant cancers. The increased knowledge of PGCCs will offer a completely new paradigm to explore the therapeutic intervention for lethal cancers.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Qing Qiao
- Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Hong Xu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Ru Zhou
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xinzhe Liu
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
21
|
Nussinov R, Jang H, Nir G, Tsai CJ, Cheng F. A new precision medicine initiative at the dawn of exascale computing. Signal Transduct Target Ther 2021; 6:3. [PMID: 33402669 PMCID: PMC7785737 DOI: 10.1038/s41392-020-00420-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 12/14/2022] Open
Abstract
Which signaling pathway and protein to select to mitigate the patient's expected drug resistance? The number of possibilities facing the physician is massive, and the drug combination should fit the patient status. Here, we briefly review current approaches and data and map an innovative patient-specific strategy to forecast drug resistance targets that centers on parallel (or redundant) proliferation pathways in specialized cells. It considers the availability of each protein in each pathway in the specific cell, its activating mutations, and the chromatin accessibility of its encoding gene. The construction of the resulting Proliferation Pathway Network Atlas will harness the emerging exascale computing and advanced artificial intelligence (AI) methods for therapeutic development. Merging the resulting set of targets, pathways, and proteins, with current strategies will augment the choice for the attending physicians to thwart resistance.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD, 21702, USA.
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD, 21702, USA
| | - Guy Nir
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
- Department of Biochemistry & Molecular Biology, Department of Neuroscience, Cell Biology and Anatomy, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD, 21702, USA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA
| |
Collapse
|
22
|
Communal living: the role of polyploidy and syncytia in tissue biology. Chromosome Res 2021; 29:245-260. [PMID: 34075512 PMCID: PMC8169410 DOI: 10.1007/s10577-021-09664-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/10/2021] [Accepted: 05/16/2021] [Indexed: 01/22/2023]
Abstract
Multicellular organisms are composed of tissues with diverse cell sizes. Whether a tissue primarily consists of numerous, small cells as opposed to fewer, large cells can impact tissue development and function. The addition of nuclear genome copies within a common cytoplasm is a recurring strategy to manipulate cellular size within a tissue. Cells with more than two genomes can exist transiently, such as in developing germlines or embryos, or can be part of mature somatic tissues. Such nuclear collectives span multiple levels of organization, from mononuclear or binuclear polyploid cells to highly multinucleate structures known as syncytia. Here, we review the diversity of polyploid and syncytial tissues found throughout nature. We summarize current literature concerning tissue construction through syncytia and/or polyploidy and speculate why one or both strategies are advantageous.
Collapse
|
23
|
Tagal V, Roth MG. Loss of Aurora Kinase Signaling Allows Lung Cancer Cells to Adopt Endoreplication and Form Polyploid Giant Cancer Cells That Resist Antimitotic Drugs. Cancer Res 2020; 81:400-413. [PMID: 33172929 DOI: 10.1158/0008-5472.can-20-1693] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/10/2020] [Accepted: 11/05/2020] [Indexed: 11/16/2022]
Abstract
Polyploid giant cancer cells (PGCC) are common in tumors and have been associated with resistance to cancer therapy, tumor relapse, malignancy, immunosuppression, metastasis, cancer stem cell production, and modulation of the tumor microenvironment. However, the molecular mechanisms that cause these cells to form are not yet known. In this study, we discover that Aurora kinases are synergistic determinants of a switch from the proliferative cell cycle to polyploid growth and multinucleation in lung cancer cell lines. When Aurora kinases were inhibited together, lung cancer cells uniformly grew into multinucleated PGCCs. These cells adopted an endoreplication in which the genome replicates, mitosis is omitted, and cells grow in size. Consequently, such cells continued to safely grow in the presence of antimitotic agents. These PGCC re-entered the proliferative cell cycle and grew in cell number when treatment was terminated. Thus, PGCC formation might represent a fundamental cellular response to Aurora kinase inhibitors and contributes to therapy resistance or tumor relapse. SIGNIFICANCE: These findings provide a novel insight about how cancer cells respond to Aurora kinase inhibitors and identify a new mechanism responsible for resistance to these agents and other antimitotic drugs.
Collapse
Affiliation(s)
- Vural Tagal
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas.
| | - Michael G Roth
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas.,Harold Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
24
|
Willms RJ, Zeng J, Campbell SD. Myt1 Kinase Couples Mitotic Cell Cycle Exit with Differentiation in Drosophila. Cell Rep 2020; 33:108400. [DOI: 10.1016/j.celrep.2020.108400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 09/03/2020] [Accepted: 10/27/2020] [Indexed: 12/16/2022] Open
|
25
|
Gemble S, Basto R. CHRONOCRISIS: When Cell Cycle Asynchrony Generates DNA Damage in Polyploid Cells. Bioessays 2020; 42:e2000105. [PMID: 32885500 DOI: 10.1002/bies.202000105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/19/2020] [Indexed: 12/16/2022]
Abstract
Polyploid cells contain multiple copies of all chromosomes. Polyploidization can be developmentally programmed to sustain tissue barrier function or to increase metabolic potential and cell size. Programmed polyploidy is normally associated with terminal differentiation and poor proliferation capacity. Conversely, non-programmed polyploidy can give rise to cells that retain the ability to proliferate. This can fuel rapid genome rearrangements and lead to diseases like cancer. Here, the mechanisms that generate polyploidy are reviewed and the possible challenges upon polyploid cell division are discussed. The discussion is framed around a recent study showing that asynchronous cell cycle progression (an event that is named "chronocrisis") of different nuclei from a polyploid cell can generate DNA damage at mitotic entry. The potential mechanisms explaining how mitosis in non-programmed polyploid cells can generate abnormal karyotypes and genetic instability are highlighted.
Collapse
Affiliation(s)
- Simon Gemble
- Biology of Centrosomes and Genetic Instability Lab, Institut Curie, PSL Research University, CNRS UMR144, 12 rue Lhomond, Paris, 75005, France
| | - Renata Basto
- Biology of Centrosomes and Genetic Instability Lab, Institut Curie, PSL Research University, CNRS UMR144, 12 rue Lhomond, Paris, 75005, France
| |
Collapse
|
26
|
Nandakumar S, Grushko O, Buttitta LA. Polyploidy in the adult Drosophila brain. eLife 2020; 9:e54385. [PMID: 32840209 PMCID: PMC7447450 DOI: 10.7554/elife.54385] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
Long-lived cells such as terminally differentiated postmitotic neurons and glia must cope with the accumulation of damage over the course of an animal's lifespan. How long-lived cells deal with ageing-related damage is poorly understood. Here we show that polyploid cells accumulate in the adult fly brain and that polyploidy protects against DNA damage-induced cell death. Multiple types of neurons and glia that are diploid at eclosion, become polyploid in the adult Drosophila brain. The optic lobes exhibit the highest levels of polyploidy, associated with an elevated DNA damage response in this brain region. Inducing oxidative stress or exogenous DNA damage leads to an earlier onset of polyploidy, and polyploid cells in the adult brain are more resistant to DNA damage-induced cell death than diploid cells. Our results suggest polyploidy may serve a protective role for neurons and glia in adult Drosophila melanogaster brains.
Collapse
Affiliation(s)
- Shyama Nandakumar
- Molecular, Cellular, and Developmental Biology, University of MichiganAnn ArborUnited States
| | - Olga Grushko
- Molecular, Cellular, and Developmental Biology, University of MichiganAnn ArborUnited States
| | - Laura A Buttitta
- Molecular, Cellular, and Developmental Biology, University of MichiganAnn ArborUnited States
| |
Collapse
|
27
|
Qian W, Li Z, Song W, Zhao T, Wang W, Peng J, Wei L, Xia Q, Cheng D. A novel transcriptional cascade is involved in Fzr-mediated endoreplication. Nucleic Acids Res 2020; 48:4214-4229. [PMID: 32182338 PMCID: PMC7192621 DOI: 10.1093/nar/gkaa158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/29/2020] [Indexed: 01/08/2023] Open
Abstract
Endoreplication, known as endocycle, is a variant of the cell cycle that differs from mitosis and occurs in specific tissues of different organisms. Endoreplicating cells generally undergo multiple rounds of genome replication without chromosome segregation. Previous studies demonstrated that Drosophila fizzy-related protein (Fzr) and its mammalian homolog Cdh1 function as key regulators of endoreplication entrance by activating the anaphase-promoting complex/cyclosome to initiate the ubiquitination and subsequent degradation of cell cycle factors such as Cyclin B (CycB). However, the molecular mechanism underlying Fzr-mediated endoreplication is not completely understood. In this study, we demonstrated that the transcription factor Myc acts downstream of Fzr during endoreplication in Drosophila salivary gland. Mechanistically, Fzr interacts with chromatin-associated histone H2B to enhance H2B ubiquitination in the Myc promoter and promotes Myc transcription. In addition to negatively regulating CycB transcription, the Fzr-ubiquitinated H2B (H2Bub)-Myc signaling cascade also positively regulates the transcription of the MCM6 gene that is involved in DNA replication by directly binding to specific motifs within their promoters. We further found that the Fzr-H2Bub-Myc signaling cascade regulating endoreplication progression is conserved between insects and mammalian cells. Altogether, our work uncovers a novel transcriptional cascade that is involved in Fzr-mediated endoreplication.
Collapse
Affiliation(s)
- Wenliang Qian
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China.,Chongqing Key Laboratory of Sericultural Science, Chongqing engineering and technology research center for novel silk materials, Southwest University, Chongqing 400715, China
| | - Zheng Li
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China.,Chongqing Key Laboratory of Sericultural Science, Chongqing engineering and technology research center for novel silk materials, Southwest University, Chongqing 400715, China
| | - Wei Song
- Medical Research Institute, Wuhan University, Wuhan 430071, China.,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Tujing Zhao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China.,Chongqing Key Laboratory of Sericultural Science, Chongqing engineering and technology research center for novel silk materials, Southwest University, Chongqing 400715, China
| | - Weina Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China.,Chongqing Key Laboratory of Sericultural Science, Chongqing engineering and technology research center for novel silk materials, Southwest University, Chongqing 400715, China
| | - Jian Peng
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China.,Chongqing Key Laboratory of Sericultural Science, Chongqing engineering and technology research center for novel silk materials, Southwest University, Chongqing 400715, China
| | - Ling Wei
- School of Life Science, Southwest University, Chongqing 400715, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China.,Chongqing Key Laboratory of Sericultural Science, Chongqing engineering and technology research center for novel silk materials, Southwest University, Chongqing 400715, China
| | - Daojun Cheng
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China.,Chongqing Key Laboratory of Sericultural Science, Chongqing engineering and technology research center for novel silk materials, Southwest University, Chongqing 400715, China
| |
Collapse
|
28
|
Rotelli MD, Policastro RA, Bolling AM, Killion AW, Weinberg AJ, Dixon MJ, Zentner GE, Walczak CE, Lilly MA, Calvi BR. A Cyclin A-Myb-MuvB-Aurora B network regulates the choice between mitotic cycles and polyploid endoreplication cycles. PLoS Genet 2019; 15:e1008253. [PMID: 31291240 PMCID: PMC6645565 DOI: 10.1371/journal.pgen.1008253] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 07/22/2019] [Accepted: 06/18/2019] [Indexed: 12/30/2022] Open
Abstract
Endoreplication is a cell cycle variant that entails cell growth and periodic genome duplication without cell division, and results in large, polyploid cells. Cells switch from mitotic cycles to endoreplication cycles during development, and also in response to conditional stimuli during wound healing, regeneration, aging, and cancer. In this study, we use integrated approaches in Drosophila to determine how mitotic cycles are remodeled into endoreplication cycles, and how similar this remodeling is between induced and developmental endoreplicating cells (iECs and devECs). Our evidence suggests that Cyclin A / CDK directly activates the Myb-MuvB (MMB) complex to induce transcription of a battery of genes required for mitosis, and that repression of CDK activity dampens this MMB mitotic transcriptome to promote endoreplication in both iECs and devECs. iECs and devECs differed, however, in that devECs had reduced expression of E2F1-dependent genes that function in S phase, whereas repression of the MMB transcriptome in iECs was sufficient to induce endoreplication without a reduction in S phase gene expression. Among the MMB regulated genes, knockdown of AurB protein and other subunits of the chromosomal passenger complex (CPC) induced endoreplication, as did knockdown of CPC-regulated cytokinetic, but not kinetochore, proteins. Together, our results indicate that the status of a CycA-Myb-MuvB-AurB network determines the decision to commit to mitosis or switch to endoreplication in both iECs and devECs, and suggest that regulation of different steps of this network may explain the known diversity of polyploid cycle types in development and disease.
Collapse
Affiliation(s)
- Michael D. Rotelli
- Department of Biology. Indiana University, Bloomington, Indiana, United States of America
- Melvin and Bren Simon Cancer Center, Indianapolis, Indiana, United States of America
| | - Robert A. Policastro
- Department of Biology. Indiana University, Bloomington, Indiana, United States of America
- Melvin and Bren Simon Cancer Center, Indianapolis, Indiana, United States of America
| | - Anna M. Bolling
- Department of Biology. Indiana University, Bloomington, Indiana, United States of America
- Melvin and Bren Simon Cancer Center, Indianapolis, Indiana, United States of America
| | - Andrew W. Killion
- Department of Biology. Indiana University, Bloomington, Indiana, United States of America
- Melvin and Bren Simon Cancer Center, Indianapolis, Indiana, United States of America
| | - Abraham J. Weinberg
- Department of Biology. Indiana University, Bloomington, Indiana, United States of America
- Melvin and Bren Simon Cancer Center, Indianapolis, Indiana, United States of America
| | - Michael J. Dixon
- Department of Biology. Indiana University, Bloomington, Indiana, United States of America
- Melvin and Bren Simon Cancer Center, Indianapolis, Indiana, United States of America
| | - Gabriel E. Zentner
- Department of Biology. Indiana University, Bloomington, Indiana, United States of America
- Melvin and Bren Simon Cancer Center, Indianapolis, Indiana, United States of America
| | - Claire E. Walczak
- Melvin and Bren Simon Cancer Center, Indianapolis, Indiana, United States of America
- Indiana University School of Medicine, Bloomington, Indiana, United States of America
| | - Mary A. Lilly
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Brian R. Calvi
- Department of Biology. Indiana University, Bloomington, Indiana, United States of America
- Melvin and Bren Simon Cancer Center, Indianapolis, Indiana, United States of America
- Indiana University School of Medicine, Bloomington, Indiana, United States of America
| |
Collapse
|
29
|
Coutinho-Budd J. Adapting to Barriers: Glial Septate Junctions Stretch to Keep Up. Dev Cell 2019; 47:688-689. [PMID: 30562510 DOI: 10.1016/j.devcel.2018.11.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The blood brain barrier (BBB) is critical to ensure proper nervous system function and organismal health. In this issue of Developmental Cell, Babatz and colleagues explore the mechanisms of BBB maintenance and uncover a potential evolutionary link by which BBB glia construct paracellular barriers to ensure uninterrupted protection throughout development.
Collapse
|
30
|
Gjelsvik KJ, Besen-McNally R, Losick VP. Solving the Polyploid Mystery in Health and Disease. Trends Genet 2019; 35:6-14. [PMID: 30470486 PMCID: PMC6457904 DOI: 10.1016/j.tig.2018.10.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/12/2018] [Accepted: 10/22/2018] [Indexed: 01/12/2023]
Abstract
Polyploidy (the more than doubling of a cell's genome) frequently arises during organogenesis, tissue repair, and age-associated diseases. Despite its prevalence, major gaps exist in how polyploid cells emerge and affect tissue function. Studies have begun to elucidate the signals required for polyploid cell growth as well as the advantages and disadvantages of polyploidy in health and disease. This review highlights the recent advances on the role and regulation of polyploidy in Drosophila and vertebrate models. The newly discovered versatility of polyploid cells has the potential to provide alternative strategies to promote tissue growth and repair, while limiting disease and dysfunction.
Collapse
Affiliation(s)
- K J Gjelsvik
- MDI Biological Laboratory, 159 Old Bar Harbor Road, Bar Harbor, ME 04609, USA
| | - R Besen-McNally
- MDI Biological Laboratory, 159 Old Bar Harbor Road, Bar Harbor, ME 04609, USA
| | - V P Losick
- MDI Biological Laboratory, 159 Old Bar Harbor Road, Bar Harbor, ME 04609, USA.
| |
Collapse
|
31
|
Yildirim K, Petri J, Kottmeier R, Klämbt C. Drosophila glia: Few cell types and many conserved functions. Glia 2018; 67:5-26. [DOI: 10.1002/glia.23459] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/25/2018] [Accepted: 05/04/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Kerem Yildirim
- Institute for Neuro and Behavioral Biology; University of Münster; Badestraße 9, 48149 Münster Germany
| | - Johanna Petri
- Institute for Neuro and Behavioral Biology; University of Münster; Badestraße 9, 48149 Münster Germany
| | - Rita Kottmeier
- Institute for Neuro and Behavioral Biology; University of Münster; Badestraße 9, 48149 Münster Germany
| | - Christian Klämbt
- Institute for Neuro and Behavioral Biology; University of Münster; Badestraße 9, 48149 Münster Germany
| |
Collapse
|
32
|
Babatz F, Naffin E, Klämbt C. The Drosophila Blood-Brain Barrier Adapts to Cell Growth by Unfolding of Pre-existing Septate Junctions. Dev Cell 2018; 47:697-710.e3. [PMID: 30482667 DOI: 10.1016/j.devcel.2018.10.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 08/07/2018] [Accepted: 10/01/2018] [Indexed: 12/18/2022]
Abstract
The blood-brain barrier is crucial for nervous system function. It is established early during development and stays intact during growth of the brain. In invertebrates, septate junctions are the occluding junctions of this barrier. Here, we used Drosophila to address how septate junctions grow during larval stages when brain size increases dramatically. We show that septate junctions are preassembled as long, highly folded strands during embryonic stages, connecting cell vertices. During subsequent cell growth, these corrugated strands are stretched out and stay intact during larval life with very little protein turnover. The G-protein coupled receptor Moody orchestrates the continuous organization of junctional strands in a process requiring F-actin. Consequently, in moody mutants, septate junction strands cannot properly stretch out during cell growth. To compensate for the loss of blood-brain barrier function, moody mutants form interdigitating cell-cell protrusions, resembling the evolutionary ancient barrier type found in primitive vertebrates or invertebrates such as cuttlefish.
Collapse
Affiliation(s)
- Felix Babatz
- University of Münster, Institute for Neuro and Behavioral Biology, Badestr. 9, 48149 Münster, Germany
| | - Elke Naffin
- University of Münster, Institute for Neuro and Behavioral Biology, Badestr. 9, 48149 Münster, Germany
| | - Christian Klämbt
- University of Münster, Institute for Neuro and Behavioral Biology, Badestr. 9, 48149 Münster, Germany.
| |
Collapse
|
33
|
Cohen E, Allen SR, Sawyer JK, Fox DT. Fizzy-Related dictates A cell cycle switch during organ repair and tissue growth responses in the Drosophila hindgut. eLife 2018; 7:e38327. [PMID: 30117808 PMCID: PMC6130973 DOI: 10.7554/elife.38327] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 08/16/2018] [Indexed: 12/21/2022] Open
Abstract
Ploidy-increasing cell cycles drive tissue growth in many developing organs. Such cycles, including endocycles, are increasingly appreciated to drive tissue growth following injury or activated growth signaling in mature organs. In these organs, the regulation and distinct roles of different cell cycles remains unclear. Here, we uncover a programmed switch between cell cycles in the Drosophila hindgut pylorus. Using an acute injury model, we identify mitosis as the response in larval pyloric cells, whereas endocycles occur in adult pyloric cells. By developing a novel genetic method, DEMISE (Dual-Expression-Method-for-Induced-Site-specific-Eradication), we show the cell cycle regulator Fizzy-related dictates the decision between mitosis and endocycles. After injury, both cycles accurately restore tissue mass and genome content. However, in response to sustained growth signaling, only endocycles preserve epithelial architecture. Our data reveal distinct cell cycle programming in response to similar stimuli in mature vs. developmental states and reveal a tissue-protective role of endocycles.
Collapse
Affiliation(s)
- Erez Cohen
- Department of Cell BiologyDuke University School of MedicineDurhamUnited States
| | - Scott R Allen
- Department of Cell BiologyDuke University School of MedicineDurhamUnited States
| | - Jessica K Sawyer
- Department of Pharmacology & Cancer BiologyDuke University School of MedicineDurhamUnited States
| | - Donald T Fox
- Department of Cell BiologyDuke University School of MedicineDurhamUnited States
- Department of Pharmacology & Cancer BiologyDuke University School of MedicineDurhamUnited States
- Regeneration Next InitiativeDuke University School of MedicineDurhamUnited States
| |
Collapse
|
34
|
Abstract
Polyploid cells, which contain multiple copies of the typically diploid genome, are widespread in plants and animals. Polyploidization can be developmentally programmed or stress induced, and arises from either cell-cell fusion or a process known as endoreplication, in which cells replicate their DNA but either fail to complete cytokinesis or to progress through M phase entirely. Polyploidization offers cells several potential fitness benefits, including the ability to increase cell size and biomass production without disrupting cell and tissue structure, and allowing improved cell longevity through higher tolerance to genomic stress and apoptotic signals. Accordingly, recent studies have uncovered crucial roles for polyploidization in compensatory cell growth during tissue regeneration in the heart, liver, epidermis and intestine. Here, we review current knowledge of the molecular pathways that generate polyploidy and discuss how polyploidization is used in tissue repair and regeneration.
Collapse
Affiliation(s)
| | - Bruce A Edgar
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA
| |
Collapse
|
35
|
Identification of raw as a regulator of glial development. PLoS One 2018; 13:e0198161. [PMID: 29813126 PMCID: PMC5973607 DOI: 10.1371/journal.pone.0198161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 05/15/2018] [Indexed: 12/18/2022] Open
Abstract
Glial cells perform numerous functions to support neuron development and function, including axon wrapping, formation of the blood brain barrier, and enhancement of synaptic transmission. We have identified a novel gene, raw, which functions in glia of the central and peripheral nervous systems in Drosophila. Reducing Raw levels in glia results in morphological defects in the brain and ventral nerve cord, as well as defects in neuron function, as revealed by decreased locomotion in crawling assays. Examination of the number of glia along peripheral nerves reveals a reduction in glial number upon raw knockdown. The reduced number of glia along peripheral nerves occurs as a result of decreased glial proliferation. As Raw has been shown to negatively regulate Jun N-terminal kinase (JNK) signaling in other developmental contexts, we examined the expression of a JNK reporter and the downstream JNK target, matrix metalloproteinase 1 (mmp1), and found that raw knockdown results in increased reporter activity and Mmp1 levels. These results are consistent with previous studies showing increased Mmp levels lead to nerve cord defects similar to those observed upon raw knockdown. In addition, knockdown of puckered, a negative feedback regulator of JNK signaling, also causes a decrease in glial number. Thus, our studies have resulted in the identification of a new regulator of gliogenesis, and demonstrate that increased JNK signaling negatively impacts glial development.
Collapse
|