1
|
Quirion L, Robert A, Boulais J, Huang S, Bernal Astrain G, Strakhova R, Jo CH, Kherdjemil Y, Faubert D, Thibault MP, Kmita M, Baskin JM, Gingras AC, Smith MJ, Côté JF. Mapping the global interactome of the ARF family reveals spatial organization in cellular signaling pathways. J Cell Sci 2024; 137:jcs262140. [PMID: 38606629 PMCID: PMC11166204 DOI: 10.1242/jcs.262140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024] Open
Abstract
The ADP-ribosylation factors (ARFs) and ARF-like (ARL) GTPases serve as essential molecular switches governing a wide array of cellular processes. In this study, we used proximity-dependent biotin identification (BioID) to comprehensively map the interactome of 28 out of 29 ARF and ARL proteins in two cellular models. Through this approach, we identified ∼3000 high-confidence proximal interactors, enabling us to assign subcellular localizations to the family members. Notably, we uncovered previously undefined localizations for ARL4D and ARL10. Clustering analyses further exposed the distinctiveness of the interactors identified with these two GTPases. We also reveal that the expression of the understudied member ARL14 is confined to the stomach and intestines. We identified phospholipase D1 (PLD1) and the ESCPE-1 complex, more precisely, SNX1, as proximity interactors. Functional assays demonstrated that ARL14 can activate PLD1 in cellulo and is involved in cargo trafficking via the ESCPE-1 complex. Overall, the BioID data generated in this study provide a valuable resource for dissecting the complexities of ARF and ARL spatial organization and signaling.
Collapse
Affiliation(s)
- Laura Quirion
- Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada
- Molecular Biology Programs, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Amélie Robert
- Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada
| | - Jonathan Boulais
- Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada
| | - Shiying Huang
- Department of Chemistry and Chemical Biology and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Gabriela Bernal Astrain
- Molecular Biology Programs, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Regina Strakhova
- Molecular Biology Programs, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Chang Hwa Jo
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Yacine Kherdjemil
- Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada
| | - Denis Faubert
- Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada
| | | | - Marie Kmita
- Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada
- Molecular Biology Programs, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Department of Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Department of Experimental Medicine, McGill University, Montréal, QC H3G 2M1, Canada
| | - Jeremy M. Baskin
- Department of Chemistry and Chemical Biology and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Matthew J. Smith
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Jean-François Côté
- Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada
- Molecular Biology Programs, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Department of Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada
| |
Collapse
|
2
|
Quirion L, Robert A, Boulais J, Huang S, Bernal Astrain G, Strakhova R, Jo CH, Kherdjemil Y, Thibault MP, Faubert D, Kmita M, Baskin JM, Gingras AC, Smith MJ, Cote JF. Mapping the global interactome of the ARF family reveals spatial organization in cellular signaling pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.01.530598. [PMID: 36909472 PMCID: PMC10002736 DOI: 10.1101/2023.03.01.530598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The ADP-ribosylation factors (ARFs) and ARF-like (ARLs) GTPases serve as essential molecular switches governing a wide array of cellular processes. In this study, we utilized proximity-dependent biotin identification (BioID) to comprehensively map the interactome of 28 out of 29 ARF and ARL proteins in two cellular models. Through this approach, we identified ~3000 high-confidence proximal interactors, enabling us to assign subcellular localizations to the family members. Notably, we uncovered previously undefined localizations for ARL4D and ARL10. Clustering analyses further exposed the distinctiveness of the interactors identified with these two GTPases. We also reveal that the expression of the understudied member ARL14 is confined to the stomach and intestines. We identified phospholipase D1 (PLD1) and the ESCPE-1 complex, more precisely SNX1, as proximity interactors. Functional assays demonstrated that ARL14 can activate PLD1 in cellulo and is involved in cargo trafficking via the ESCPE-1 complex. Overall, the BioID data generated in this study provide a valuable resource for dissecting the complexities of ARF and ARL spatial organization and signaling.
Collapse
|
3
|
Zhong T, Gongye X, Wang M, Yu J. Understanding the underlying mechanisms governing spindle orientation: How far are we from there? J Cell Mol Med 2022; 26:4904-4910. [PMID: 36029193 PMCID: PMC9549511 DOI: 10.1111/jcmm.17526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022] Open
Abstract
Proper spindle orientation is essential for cell fate determination and tissue morphogenesis. Recently, accumulating studies have elucidated several factors that regulate spindle orientation, including geometric, internal and external cues. Abnormality in these factors generally leads to defects in the physiological functions of various organs and the development of severe diseases. Herein, we first review models that are commonly used for studying spindle orientation. We then review a conservative heterotrimeric complex critically involved in spindle orientation regulation in different models. Finally, we summarize some cues that affect spindle orientation and explore whether we can establish a model that precisely elucidates the effects of spindle orientation without interfusing other spindle functions. We aim to summarize current models used in spindle orientation studies and discuss whether we can build a model that disturbs spindle orientation alone. This can substantially improve our understanding of how spindle orientation is regulated and provide insights to investigate this complex event.
Collapse
Affiliation(s)
- Tao Zhong
- Medical Integration and Practice Center, Cheeloo College of MedicineShandong UniversityJinanChina
- Shandong Cancer Hospital and InstituteShandong First Medical University, Shandong Academy of Medical SciencesJinanChina
| | - Xiaoxiao Gongye
- Medical Integration and Practice Center, Cheeloo College of MedicineShandong UniversityJinanChina
- Shandong Cancer Hospital and InstituteShandong First Medical University, Shandong Academy of Medical SciencesJinanChina
| | - Minglei Wang
- Shandong Cancer Hospital and InstituteShandong First Medical University, Shandong Academy of Medical SciencesJinanChina
| | - Jinming Yu
- Medical Integration and Practice Center, Cheeloo College of MedicineShandong UniversityJinanChina
- Shandong Cancer Hospital and InstituteShandong First Medical University, Shandong Academy of Medical SciencesJinanChina
| |
Collapse
|
4
|
Primary cilia in satellite cells are the mechanical sensors for muscle hypertrophy. Proc Natl Acad Sci U S A 2022; 119:e2103615119. [PMID: 35671424 PMCID: PMC9214504 DOI: 10.1073/pnas.2103615119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Skeletal muscle atrophy is commonly associated with aging, immobilization, muscle unloading, and congenital myopathies. Generation of mature muscle cells from skeletal muscle satellite cells (SCs) is pivotal in repairing muscle tissue. Exercise therapy promotes muscle hypertrophy and strength. Primary cilium is implicated as the mechanical sensor in some mammalian cells, but its role in skeletal muscle cells remains vague. To determine mechanical sensors for exercise-induced muscle hypertrophy, we established three SC-specific cilium dysfunctional mouse models-Myogenic factor 5 (Myf5)-Arf-like Protein 3 (Arl3)-/-, Paired box protein Pax-7 (Pax7)-Intraflagellar transport protein 88 homolog (Ift88)-/-, and Pax7-Arl3-/--by specifically deleting a ciliary protein ARL3 in MYF5-expressing SCs, or IFT88 in PAX7-expressing SCs, or ARL3 in PAX7-expressing SCs, respectively. We show that the Myf5-Arl3-/- mice develop grossly the same as WT mice. Intriguingly, mechanical stimulation-induced muscle hypertrophy or myoblast differentiation is abrogated in Myf5-Arl3-/- and Pax7-Arl3-/- mice or primary isolated Myf5-Arl3-/- and Pax7-Ift88-/- myoblasts, likely due to defective cilia-mediated Hedgehog (Hh) signaling. Collectively, we demonstrate SC cilia serve as mechanical sensors and promote exercise-induced muscle hypertrophy via Hh signaling pathway.
Collapse
|
5
|
Rice G, Rompolas P. Advances in resolving the heterogeneity and dynamics of keratinocyte differentiation. Curr Opin Cell Biol 2020; 67:92-98. [PMID: 33091828 PMCID: PMC7736530 DOI: 10.1016/j.ceb.2020.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023]
Abstract
The mammalian skin is equipped with a highly dynamic stratified epithelium. The maintenance and regeneration of this epithelium is supported by basally located keratinocytes, which display stem cell properties, including lifelong proliferative potential and the ability to undergo diverse differentiation trajectories. Keratinocytes support not just the surface of the skin, called the epidermis, but also a range of ectodermal structures including hair follicles, sebaceous glands, and sweat glands. Recent studies have shed light on the hitherto underappreciated heterogeneity of keratinocytes by employing state-of-the-art imaging technologies and single-cell genomic approaches. In this mini review, we highlight major recent discoveries that illuminate the dynamics and cellular mechanisms that govern keratinocyte differentiation in the live mammalian skin and discuss the broader implications of these findings for our understanding of epithelial and stem cell biology in general.
Collapse
Affiliation(s)
- Gabriella Rice
- Department of Dermatology, Institute for Regenerative Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Panteleimon Rompolas
- Department of Dermatology, Institute for Regenerative Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
6
|
Su S, Begum S, Ezratty EJ. An IFT20 mechanotrafficking axis is required for integrin recycling, focal adhesion dynamics, and polarized cell migration. Mol Biol Cell 2020; 31:1917-1930. [PMID: 32520638 PMCID: PMC7525813 DOI: 10.1091/mbc.e20-04-0232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/22/2020] [Accepted: 06/01/2020] [Indexed: 01/16/2023] Open
Abstract
Directional cell migration drives embryonic development, cancer metastasis, and tissue repair and regeneration. Here, we examine the role of intraflagellar transport (IFT) 20 (Ift20) during polarized migration of epidermal cells. IFT20 is implicated in regulating cell migration independently of the primary cilium, but how IFT proteins integrate with the cell migration machinery is poorly understood. We show that genetic ablation of IFT20 in vitro slows keratinocyte migration during wound healing. We find that this phenotype is independent of the primary cilium and instead can be attributed to alterations in integrin-mediated mechanotransduction and focal adhesion (FA) dynamics. Loss of Ift20 resulted in smaller and less numerous FAs and reduced the levels of activated FA kinase. Studies of FA dynamics during microtubule-induced FA turnover demonstrated that Ift20 loss specifically impaired the reformation, but not the disassembly, of FAs. In the absence of Ift20 function, β1 integrins endocytosed during FA disassembly are not transferred out of Rab5 (+) endosomes. This defective transit from the early endosome disrupts eventual recycling of β1 integrins back to the cell surface, resulting in defective FA reformation. In vivo, conditional ablation of Ift20 in hair follicle stem cells (HF-SCs) similarly impairs their ability to invade and migrate during epidermal wound healing. Using explant studies, lineage tracing, and clonal analysis, we demonstrate that Ift20 is required for HF-SC migration and their contribution to epidermal regeneration. This work identifies a new Ift20 mechanotrafficking mechanism required for polarized cell migration and stem cell-driven tissue repair.
Collapse
Affiliation(s)
- Steven Su
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, NY 10032
| | - Salma Begum
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, NY 10032
| | - Ellen J. Ezratty
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, NY 10032
| |
Collapse
|
7
|
Franco M, Carmena A. Eph signaling in mitotic spindle orientation: what´s your angle here? Cell Cycle 2019; 18:2590-2597. [PMID: 31475621 DOI: 10.1080/15384101.2019.1658479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The orientation of the mitotic spindle is a crucial process during development and adult tissue homeostasis and multiple mechanisms have been shown to intrinsically regulate this process. However, much less is known about the extrinsic cues involved in modulating spindle orientation. We have recently uncovered a novel function of Eph intercellular signaling in regulating spindle alignment by ultimately ensuring the correct cortical distribution of central components within the intrinsic spindle orientation machinery. Here, we comment on these results, novel questions that they open and potential additional research to address in the future.
Collapse
Affiliation(s)
- Maribel Franco
- Developmental Neurobiology Unit, Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas/Universidad Miguel Hernández , Alicante , Spain
| | - Ana Carmena
- Developmental Neurobiology Unit, Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas/Universidad Miguel Hernández , Alicante , Spain
| |
Collapse
|
8
|
Mathewson AW, Berman DG, Moens CB. Microtubules are required for the maintenance of planar cell polarity in monociliated floorplate cells. Dev Biol 2019; 452:21-33. [PMID: 31029691 PMCID: PMC6661169 DOI: 10.1016/j.ydbio.2019.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/06/2019] [Accepted: 04/09/2019] [Indexed: 11/21/2022]
Abstract
The asymmetric localization of planar cell polarity (PCP) proteins is essential for the establishment of many planar polarized cellular processes, but the mechanisms that maintain these asymmetric distributions remain poorly understood. A body of evidence has tied oriented subapical microtubules (MTs) to the establishment of PCP protein polarity, yet recent studies have suggested that the MT cytoskeleton is later dispensable for the maintenance of this asymmetry. As MTs underlie the vesicular trafficking of membrane-bound proteins within cells, the requirement for MTs in the maintenance of PCP merited further investigation. We investigated the complex interactions between PCP proteins and the MT cytoskeleton in the polarized context of the floorplate of the zebrafish neural tube. We demonstrated that the progressive posterior polarization of the primary cilia of floorplate cells requires not only Vangl2 but also Fzd3a. We determined that GFP-Vangl2 asymmetrically localizes to anterior membranes whereas Fzd3a-GFP does not polarize on anterior or posterior membranes but maintains a cytosolic enrichment at the base of the primary cilium. Vesicular Fzd3a-GFP is rapidly trafficked along MTs primarily toward the apical membrane during a period of PCP maintenance, whereas vesicular GFP-Vangl2 is less frequently observed. Nocodazole-induced loss of MT polymerization disrupts basal body positioning as well as GFP-Vangl2 localization and reduces cytosolic Fzd3a-GFP movements. Removal of nocodazole after MT disruption restores MT polymerization but does not restore basal body polarity. Interestingly, GFP-Vangl2 repolarizes to anterior membranes and vesicular Fzd3a-GFP dynamics recover after multiple hours of recovery, even in the context of unpolarized basal bodies. Together our findings challenge previous work by revealing an ongoing role for MT-dependent transport of PCP proteins in maintaining both cellular and PCP protein asymmetry during development.
Collapse
Affiliation(s)
- Andrew W Mathewson
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA
| | - Daniel G Berman
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Biology Graduate Program, University of Washington, Seattle, WA, USA
| | - Cecilia B Moens
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA; Biology Graduate Program, University of Washington, Seattle, WA, USA.
| |
Collapse
|