1
|
Liao Y, Zeng Z, Lin K, Jiang W, Wang J, Duan L, Liang X, Huang Y, Han Z, Hu H, Xu ZF, Ni J. Gibberellin promotes xylem expansion and cell lignification by regulating sugar accumulation and the expression of JcMYB43 and JcMYB63 in the woody plant Jatropha curcas. Int J Biol Macromol 2025; 294:139434. [PMID: 39756755 DOI: 10.1016/j.ijbiomac.2024.139434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/28/2024] [Accepted: 12/31/2024] [Indexed: 01/07/2025]
Abstract
Gibberellins (GAs) are a group of diterpene plant hormones that regulate various plant developmental processes, including wood formation. Nevertheless, the regulatory pattern and the downstream targets of GA in the regulation of xylem expansion and cell lignification in woody plants remain unclear. In transgenic Jatropha curcas with significantly increased or decreased bioactive GA content via separate overexpression of JcGA20ox1 or JcGA2ox6, comparative transcriptomic, metabolomic and physiological investigations were conducted on the young stems. Lignin quantification and ultrastructural investigations of the young stems at different development stages revealed that JcGA20ox1 plants presented much faster lignin deposition and xylem expansion even at early development stages. The transcriptomic results revealed that the majority of the differentially expressed genes (DEGs) in the JcGA20ox1 and JcGA2ox6 plants were mainly related to metabolic pathways. Analysis of the DEGs and the gene regulatory network revealed that the increased lignification in JcGA20ox1 plants was due to the activated expression of several key transcription factors and the structural genes in the lignin biosynthesis pathway, which was confirmed by the significantly increased precursors of lignin identified via metabolomic analysis. Interestingly, a total of 15 sugar-related metabolites were differentially regulated, most of which were increased in the xylem of JcGA20ox1, but decreased in JcGA2ox6 plants. Importantly, two key GA-responsive transcription factors JcMYB43 and JcMYB63 were identified to play dual roles in promoting both xylem expansion and cell lignification. Conclusively, this study provides novel insights into the molecular mechanisms of GA-regulated xylem development in the woody plants.
Collapse
Affiliation(s)
- Yuwu Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Zhiyu Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Kai Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Weixin Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Jianzhong Wang
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China; Guangxi Dongmen Forest Farm, Chongzuo 532108, China
| | - Lanjuan Duan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Xiuqing Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Yunkai Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Zeiwei Han
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Hao Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Zeng-Fu Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China.
| | - Jun Ni
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China.
| |
Collapse
|
2
|
Lechon T, Kent NA, Murray JAH, Scofield S. Regulation of meristem and hormone function revealed through analysis of directly-regulated SHOOT MERISTEMLESS target genes. Sci Rep 2025; 15:240. [PMID: 39747964 PMCID: PMC11696002 DOI: 10.1038/s41598-024-83985-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025] Open
Abstract
The Arabidopsis Knotted1-like homeobox (KNOX) gene SHOOT MERISTEMLESS (STM) encodes a homeodomain transcription factor that operates as a central component of the gene regulatory network (GRN) controlling shoot apical meristem formation and maintenance. It regulates the expression of target genes that include transcriptional regulators associated with meristem function, particularly those involved in pluripotency and cellular differentiation, as well as genes involved in hormone metabolism and signaling. Previous studies have identified KNOX-regulated genes and their associated cis-regulatory elements in several plant species. However, little is known about STM-DNA interactions in the regulatory regions of target genes in Arabidopsis. Here, we identify and map STM binding sites in the Arabidopsis genome using global ChIP-seq analysis to reveal potential directly-regulated STM target genes. We show that in the majority of target loci, STM binds within 1 kb upstream of the TSS, with other loci showing STM binding at more distal enhancer sites, and we reveal enrichment of DNA motifs containing a TGAC and/or TGAT core in STM-bound target gene cis-regulatory elements. We further demonstrate that many STM-bound genes are transcriptionally responsive to altered levels of STM activity, and show that among these, transcriptional regulators with key roles in meristem and hormone function are highly represented. Finally, we use a subset of these target genes to perform Bayesian network analysis to infer gene regulatory associations and to construct a refined GRN for STM-mediated control of meristem function.
Collapse
Affiliation(s)
- Tamara Lechon
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Nicholas A Kent
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - James A H Murray
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Simon Scofield
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK.
| |
Collapse
|
3
|
Carrió-Seguí À, Brunot-Garau P, Úrbez C, Miskolczi P, Vera-Sirera F, Tuominen H, Agustí J. Weight-induced radial growth in plant stems depends on PIN3. Curr Biol 2024; 34:4285-4293.e3. [PMID: 39260363 DOI: 10.1016/j.cub.2024.07.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/13/2024] [Accepted: 07/17/2024] [Indexed: 09/13/2024]
Abstract
How multiple growth programs coordinate during development is a fundamental question in biology. During plant stem development, radial growth is continuously adjusted in response to longitudinal-growth-derived weight increase to guarantee stability.1,2,3 Here, we demonstrate that weight-stimulated stem radial growth depends on the auxin efflux carrier PIN3, which, upon weight increase, expands its cellular localization from the lower to the lateral sides of xylem parenchyma, phloem, procambium, and starch sheath cells, imposing a radial auxin flux that results in radial growth. Using the protein synthesis inhibitor cycloheximide (CHX) or the fluorescent endocytic tracer FM4-64, we reveal that this expansion of the PIN3 cellular localization domain occurs because weight increase breaks the balance between PIN3 biosynthesis and removal, favoring PIN3 biosynthesis. Experimentation using brefeldin A (BFA) treatments or arg1 and arl2 mutants further supports this conclusion. Analyses of CRISPR-Cas9 lines for Populus PIN3 orthologs reveals that PIN3 dependence of weight-induced radial growth is conserved at least in these woody species. Altogether, our work sheds new light on how longitudinal and radial growth coordinate during stem development.
Collapse
Affiliation(s)
- Àngela Carrió-Seguí
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València, C/ Ingeniero Fausto Elio s/n, 46011 Valencia, Spain; Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Paula Brunot-Garau
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València, C/ Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - Cristina Úrbez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València, C/ Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - Pál Miskolczi
- Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Francisco Vera-Sirera
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València, C/ Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - Hannele Tuominen
- Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Javier Agustí
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València, C/ Ingeniero Fausto Elio s/n, 46011 Valencia, Spain.
| |
Collapse
|
4
|
Hunziker P, Greb T. Stem Cells and Differentiation in Vascular Tissues. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:399-425. [PMID: 38382908 DOI: 10.1146/annurev-arplant-070523-040525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Plant vascular tissues are crucial for the long-distance transport of water, nutrients, and a multitude of signal molecules throughout the plant body and, therefore, central to plant growth and development. The intricate development of vascular tissues is orchestrated by unique populations of dedicated stem cells integrating endogenous as well as environmental cues. This review summarizes our current understanding of vascular-related stem cell biology and of vascular tissue differentiation. We present an overview of the molecular and cellular mechanisms governing the maintenance and fate determination of vascular stem cells and highlight the interplay between intrinsic and external cues. In this context, we emphasize the role of transcription factors, hormonal signaling, and epigenetic modifications. We also discuss emerging technologies and the large repertoire of cell types associated with vascular tissues, which have the potential to provide unprecedented insights into cellular specialization and anatomical adaptations to distinct ecological niches.
Collapse
Affiliation(s)
- Pascal Hunziker
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany; ,
| | - Thomas Greb
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany; ,
| |
Collapse
|
5
|
Zhu Y, Hu S, Min J, Zhao Y, Yu H, Irfan M, Xu C. Transcriptomic analysis provides an insight into the function of CmGH9B3, a key gene of β-1, 4-glucanase, during the graft union healing of oriental melon scion grafted onto squash rootstock. Biotechnol J 2024; 19:e2400006. [PMID: 38581090 DOI: 10.1002/biot.202400006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 04/08/2024]
Abstract
The melon (Cucumis melo L.) is a globally cherished and economically significant crop. The grafting technique has been widely used in the vegetative propagation of melon to promote environmental tolerance and disease resistance. However, mechanisms governing graft healing and potential incompatibilities in melons following the grafting process remain unknown. To uncover the molecular mechanism of healing of grafted melon seedlings, melon wild type (Control) and TRV-CmGH9B3 lines were obtained and grafted onto the squash rootstocks (C. moschata). Anatomical differences indicated that the healing process of the TRV-CmGH9B3 plants was slower than that of the control. A total of 335 significantly differentially expressed genes (DEGs) were detected between two transcriptomes. Most of these DEGs were down-regulated in TRV-CmGH9B3 grafted seedlings. GO and KEGG analysis showed that many metabolic, physiological, and hormonal responses were involved in graft healing, including metabolic processes, plant hormone signaling, plant MAPK pathway, and sucrose starch pathway. During the healing process of TRV-CmGH9B3 grafted seedlings, gene synthesis related to hormone signal transduction (auxin, cytokinin, gibberellin, brassinolide) was delayed. At the same time, it was found that most of the DEGs related to the sucrose pathway were down-regulated in TRV-CmGH9B3 grafted seedlings. The results showed that sugar was also involved in the healing process of melon grafted onto squash. These results deepened our understanding of the molecular mechanism of GH9B3, a key gene of β-1, 4-glucanase. It also provided a reference for elucidating the gene mechanism and function analysis of CmGH9B3 in the process of graft union healing.
Collapse
Affiliation(s)
- Yulei Zhu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang, China
- Modern Protected Horticultural Engineering & Technology Center, Shenyang, China
| | - Shengwei Hu
- Hermiston Agricultural Research and Extension Station, Oregon State University, Hermiston, Oregon, USA
| | - Jiahuan Min
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang, China
- Modern Protected Horticultural Engineering & Technology Center, Shenyang, China
| | - Yingtong Zhao
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang, China
- Modern Protected Horticultural Engineering & Technology Center, Shenyang, China
| | - Hanqi Yu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang, China
- Modern Protected Horticultural Engineering & Technology Center, Shenyang, China
| | - Muhammad Irfan
- Department of Biotechnology, Faculty of science, University of Sargodha Pakistan, Sargodha, Pakistan
| | - Chuanqiang Xu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang, China
- Modern Protected Horticultural Engineering & Technology Center, Shenyang, China
- Key Laboratory of Horticultural Equipment (Ministry of Agriculture and Rural Affairs), Shenyang, China
| |
Collapse
|
6
|
Serrano-Mislata A, Brumós J. Clearing of Vascular Tissue in Arabidopsis thaliana for Reporter Analysis of Gene Expression. Methods Mol Biol 2024; 2722:227-239. [PMID: 37897610 DOI: 10.1007/978-1-0716-3477-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
To study the gene regulatory mechanisms modulating development is essential to visualize gene expression patterns at cellular resolution. However, this kind of analysis has been limited as a consequence of the plant tissues' opacity. In the last years, ClearSee has been increasingly used to obtain high-quality imaging of plant tissue anatomy combined with the visualization of gene expression patterns. ClearSee is established as a major tissue clearing technique due to its simplicity and versatility.In this chapter, we outline an easy-to-follow ClearSee protocol to analyze gene expression of reporters using either β-glucuronidase (GUS) or fluorescent protein (FP) tags, compatible with different dyes to stain cell walls. We detail materials, equipment, solutions, and procedures to easily implement ClearSee for the study of vascular development in Arabidopsis thaliana, but the protocol can be easily adapted to a variety of plant tissues in a wide range of plant species.
Collapse
Affiliation(s)
- Antonio Serrano-Mislata
- Instituto de Biología Molecular y Celular de Plantas, (CSIC-Universitat Politècnica de València), Valencia, Spain.
| | - Javier Brumós
- Instituto de Biología Molecular y Celular de Plantas, (CSIC-Universitat Politècnica de València), Valencia, Spain.
| |
Collapse
|
7
|
Zhang Y, Wang L, Wu Y, Wang D, He XQ. Gibberellin promotes cambium reestablishment during secondary vascular tissue regeneration after girdling in an auxin-dependent manner in Populus. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:86-102. [PMID: 38051026 DOI: 10.1111/jipb.13591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/04/2023] [Indexed: 12/07/2023]
Abstract
Secondary vascular tissue (SVT) development and regeneration are regulated by phytohormones. In this study, we used an in vitro SVT regeneration system to demonstrate that gibberellin (GA) treatment significantly promotes auxin-induced cambium reestablishment. Altering GA content by overexpressing or knocking down ent-kaurene synthase (KS) affected secondary growth and SVT regeneration in poplar. The poplar DELLA gene GIBBERELLIC ACID INSENSITIVE (PtoGAI) is expressed in a specific pattern during secondary growth and cambium regeneration after girdling. Overexpression of PtoGAI disrupted poplar growth and inhibited cambium regeneration, and the inhibition of cambium regeneration could be partially restored by GA application. Further analysis of the PtaDR5:GUS transgenic plants, the localization of PIN-FORMED 1 (PIN1) and the expression of auxin-related genes found that an additional GA treatment could enhance the auxin response as well as the expression of PIN1, which mediates auxin transport during SVT regeneration. Taken together, these findings suggest that GA promotes cambium regeneration by stimulating auxin signal transduction.
Collapse
Affiliation(s)
- Yufei Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Lingyan Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yuexin Wu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Donghui Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Xin-Qiang He
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
8
|
Wang Y, Li Y, He SP, Xu SW, Li L, Zheng Y, Li XB. The transcription factor ERF108 interacts with AUXIN RESPONSE FACTORs to mediate cotton fiber secondary cell wall biosynthesis. THE PLANT CELL 2023; 35:4133-4154. [PMID: 37542517 PMCID: PMC10615210 DOI: 10.1093/plcell/koad214] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/02/2023] [Accepted: 07/01/2023] [Indexed: 08/07/2023]
Abstract
Phytohormones play indispensable roles in plant growth and development. However, the molecular mechanisms underlying phytohormone-mediated regulation of fiber secondary cell wall (SCW) formation in cotton (Gossypium hirsutum) remain largely underexplored. Here, we provide mechanistic evidence for functional interplay between the APETALA2/ethylene response factor (AP2/ERF) transcription factor GhERF108 and auxin response factors GhARF7-1 and GhARF7-2 in dictating the ethylene-auxin signaling crosstalk that regulates fiber SCW biosynthesis. Specifically, in vitro cotton ovule culture revealed that ethylene and auxin promote fiber SCW deposition. GhERF108 RNA interference (RNAi) cotton displayed remarkably reduced cell wall thickness compared with controls. GhERF108 interacted with GhARF7-1 and GhARF7-2 to enhance the activation of the MYB transcription factor gene GhMYBL1 (MYB domain-like protein 1) in fibers. GhARF7-1 and GhARF7-2 respond to auxin signals that promote fiber SCW thickening. GhMYBL1 RNAi and GhARF7-1 and GhARF7-2 virus-induced gene silencing (VIGS) cotton displayed similar defects in fiber SCW formation as GhERF108 RNAi cotton. Moreover, the ethylene and auxin responses were reduced in GhMYBL1 RNAi plants. GhMYBL1 directly binds to the promoters of GhCesA4-1, GhCesA4-2, and GhCesA8-1 and activates their expression to promote cellulose biosynthesis, thereby boosting fiber SCW formation. Collectively, our findings demonstrate that the collaboration between GhERF108 and GhARF7-1 or GhARF7-2 establishes ethylene-auxin signaling crosstalk to activate GhMYBL1, ultimately leading to the activation of fiber SCW biosynthesis.
Collapse
Affiliation(s)
- Yao Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079,China
| | - Yang Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079,China
| | - Shao-Ping He
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079,China
| | - Shang-Wei Xu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079,China
| | - Li Li
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070,China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070,China
| | - Yong Zheng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079,China
| | - Xue-Bao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079,China
| |
Collapse
|
9
|
Cao Y, Koh SS, Han Y, Tan JJ, Kim D, Chua NH, Urano D, Marelli B. Drug Delivery in Plants Using Silk Microneedles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205794. [PMID: 36245320 DOI: 10.1002/adma.202205794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/04/2022] [Indexed: 06/16/2023]
Abstract
New systems for agrochemical delivery in plants will foster precise agricultural practices and provide new tools to study plants and design crop traits, as standard spray methods suffer from elevated loss and limited access to remote plant tissues. Silk-based microneedles can circumvent these limitations by deploying a known amount of payloads directly in plants' deep tissues. However, plant response to microneedles' application and microneedles' efficacy in deploying physiologically relevant biomolecules are unknown. Here, it is shown that gene expression associated with Arabidopsis thaliana wounding response decreases within 24 h post microneedles' application. Additionally, microinjection of gibberellic acid (GA3 ) in A. thaliana mutant ft-10 provides a more effective and efficient mean than spray to activate GA3 pathways, accelerating bolting and inhibiting flower formation. Microneedle efficacy in delivering GA3 is also observed in several monocot and dicot crop species, i.e., tomato (Solanum lycopersicum), lettuce (Lactuca sativa), spinach (Spinacia oleracea), rice (Oryza Sativa), maize (Zea mays), barley (Hordeum vulgare), and soybean (Glycine max). The wide range of plants that can be successfully targeted with microinjectors opens the doors to their use in plant science and agriculture.
Collapse
Affiliation(s)
- Yunteng Cao
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sally Shuxian Koh
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, 119077, Singapore
| | - Yangyang Han
- Singapore-MIT Alliance for Research and Technology, Singapore, 119077, Singapore
| | - Javier Jingheng Tan
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, 117604, Singapore
| | - Doyoon Kim
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Nam-Hai Chua
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, 117604, Singapore
- Singapore-MIT Alliance for Research and Technology, Singapore, 119077, Singapore
| | - Daisuke Urano
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, 119077, Singapore
- Singapore-MIT Alliance for Research and Technology, Singapore, 119077, Singapore
| | - Benedetto Marelli
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Singapore-MIT Alliance for Research and Technology, Singapore, 119077, Singapore
| |
Collapse
|
10
|
Jiang H, Chen Y, Liu Y, Shang J, Sun X, Du J. Multifaceted roles of the ERECTA family in plant organ morphogenesis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7208-7218. [PMID: 36056777 DOI: 10.1093/jxb/erac353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Receptor-like kinases (RLKs) can participate in multiple signalling pathways and are considered one of the most critical components of the early events of intercellular signalling. As an RLK, the ERECTA family (ERf), which comprises ERECTA (ER), ERECTA-Like1 (ERL1), and ERECTA-Like2 (ERL2) in Arabidopsis, regulates multiple signalling pathways in plant growth and development. Despite its indispensability, detailed information on ERf-manipulated signalling pathways remains elusive. In this review, we attempt to summarize the essential roles of the ERf in plant organ morphogenesis, including shoot apical meristem, stem, and reproductive organ development.
Collapse
Affiliation(s)
- Hengke Jiang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
- Research Center for Modern Agriculture of the Middle East, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuhui Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
- Research Center for Modern Agriculture of the Middle East, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuhan Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
- Research Center for Modern Agriculture of the Middle East, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jing Shang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
- Research Center for Modern Agriculture of the Middle East, Sichuan Agricultural University, Chengdu 611130, China
| | - Xin Sun
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
- Research Center for Modern Agriculture of the Middle East, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Junbo Du
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
- Research Center for Modern Agriculture of the Middle East, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
11
|
Ou X, Wang Y, Li J, Zhang J, Xie Z, He B, Jiang Z, Wang Y, Su W, Song S, Hao Y, Chen R. Genome-wide identification of the KNOTTED HOMEOBOX gene family and their involvement in stalk development in flowering Chinese cabbage. FRONTIERS IN PLANT SCIENCE 2022; 13:1019884. [PMID: 36438132 PMCID: PMC9686407 DOI: 10.3389/fpls.2022.1019884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Gibberellin and cytokinin synergistically regulate the stalk development in flowering Chinese cabbage. KNOX proteins were reported to function as important regulators of the shoot apex to promote meristem activity by synchronously inducing CTK and suppressing GA biosynthesis, while their regulatory mechanism in the bolting and flowering is unknown. In this study, 9 BcKNOX genes were identified and mapped unevenly on 6 out of 10 flowering Chinese cabbage chromosomes. The BcKNOXs were divided into three subfamilies on the basis of sequences and gene structure. The proteins contain four conserved domains except for BcKNATM. Three BcKNOX TFs (BcKNOX1, BcKNOX3, and BcKNOX5) displayed high transcription levels on tested tissues at various stages. The major part of BcKNOX genes showed preferential expression patterns in response to low-temperature, zeatin (ZT), and GA3 treatment, indicating that they were involved in bud differentiation and bolting. BcKNOX1 and BcKNOX5 showed high correlation level with gibberellins synthetase, and CTK metabolic genes. BcKONX1 also showed high correlation coefficients within BcRGA1 and BcRGL1 which are negative regulators of GA signaling. In addition, BcKNOX1 interacted with BcRGA1 and BcRGL1, as confirmed by yeast two-hybrid (Y2H) and biomolecular fluorescence complementation assay (BiFC). This analysis has provided useful foundation for the future functional roles' analysis of flowering Chinese cabbage KNOX genes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yanwei Hao
- *Correspondence: Yanwei Hao, ; Riyuan Chen,
| | | |
Collapse
|
12
|
Gómez-Soto D, Allona I, Perales M. FLOWERING LOCUS T2 Promotes Shoot Apex Development and Restricts Internode Elongation via the 13-Hydroxylation Gibberellin Biosynthesis Pathway in Poplar. FRONTIERS IN PLANT SCIENCE 2022; 12:814195. [PMID: 35185961 PMCID: PMC8853612 DOI: 10.3389/fpls.2021.814195] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/22/2021] [Indexed: 06/11/2023]
Abstract
The adaptation and survival of boreal and temperate perennials relies on the precise demarcation of the growing season. Seasonal growth and development are defined by day length and temperature signals. Under long-day conditions in spring, poplar FLOWERING LOCUS T2 (FT2) systemically induces shoot growth. In contrast, FT2 downregulation induced by autumnal short days triggers growth cessation and bud set. However, the molecular role of FT2 in local and long-range signaling is not entirely understood. In this study, the CRISPR/Cas9 editing tool was used to generate FT2 loss of function lines of hybrid poplar. Results indicate that FT2 is essential to promote shoot apex development and restrict internode elongation under conditions of long days. The application of bioactive gibberellins (GAs) to apical buds in FT2 loss of function lines was able to rescue bud set. Expression analysis of GA sensing and metabolic genes and hormone quantification revealed that FT2 boosts the 13-hydroxylation branch of the GA biosynthesis pathway in the shoot apex. Paclobutrazol treatment of WT leaves led to limited internode growth in the stem elongation zone. In mature leaves, FT2 was found to control the GA 13-hydroxylation pathway by increasing GA2ox1 and reducing GA3ox2 expression, causing reduced GA1 levels. We here show that in poplar, the FT2 signal promotes shoot apex development and restricts internode elongation through the GA 13-hydroxylation pathway.
Collapse
Affiliation(s)
- Daniela Gómez-Soto
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria, CNINIA (CSIC), Madrid, Spain
| | - Isabel Allona
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria, CNINIA (CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Mariano Perales
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria, CNINIA (CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
13
|
Tao X, Liu M, Yuan Y, Liu R, Qi K, Xie Z, Bao J, Zhang S, Shiratake K, Tao S. Transcriptome provides potential insights into how calcium affects the formation of stone cell in Pyrus. BMC Genomics 2021; 22:831. [PMID: 34789145 PMCID: PMC8600858 DOI: 10.1186/s12864-021-08161-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022] Open
Abstract
Background The content of stone cells in pears has a great influence on taste. Stone cells are formed by the accumulation of lignin. The treatment of exogenous calcium can affect the lignin synthesis, but this Ca-mediated mechanism is still unclear. In this study, the author performed a comparative transcriptomic analysis of callus of pears (Pyrus x bretschneideri) treated with calcium nitrate Ca (NO3)2 to investigate the role of calcium in lignin synthesis. Results There were 2889 differentially expressed genes (DEGs) detected between the Control and Ca (NO3)2 treatment in total. Among these 2889 DEGs, not only a large number of genes related to Ca single were found, but also many genes were enriched in secondary metabolic pathway, especially in lignin synthesis. Most of them were up-regulated during the development of callus after Ca (NO3)2 treatment. In order to further explore how calcium nitrate treatment affects lignin synthesis, the author screened genes associated with transduction of calcium signal in DEGs, and finally found CAM, CML, CDPK, CBL and CIPK. Then the author identified the PbCML3 in pears and conducted relevant experiments finding the overexpression of PbCML3 would increase the content of pear stone cells, providing potential insights into how Ca treatment enhances the stone cell in pears. Conclusions Our deep analysis reveals the effects of exogenous calcium on calcium signal and lignin biosynthesis pathway. The function of PbCML3 on stone cells formation was verified in pear. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08161-5.
Collapse
Affiliation(s)
- Xingyu Tao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Min Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yazhou Yuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruonan Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kaijie Qi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhihua Xie
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianping Bao
- College of Plant Science, Tarim University, Ala'er, China
| | - Shaoling Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | | | - Shutian Tao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
14
|
Sarwar R, Jiang T, Ding P, Gao Y, Tan X, Zhu K. Genome-wide analysis and functional characterization of the DELLA gene family associated with stress tolerance in B. napus. BMC PLANT BIOLOGY 2021; 21:286. [PMID: 34157966 PMCID: PMC8220683 DOI: 10.1186/s12870-021-03054-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/13/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND Brassica napus is an essential crop for oil and livestock feed. Eventually, this crop's economic interest is at the most risk due to anthropogenic climate change. DELLA proteins constitute a significant repressor of plant growth to facilitate survival under constant stress conditions. DELLA proteins lack DNA binding domain but can interact with various transcription factors or transcription regulators of different hormonal families. Significant progress has been made on Arabidopsis and cereal plants. However, no comprehensive study regarding DELLA proteins has been delineated in rapeseed. RESULTS In our study, we have identified 10 BnaDELLA genes. All of the BnaDELLA genes are closely related to five AtDELLA genes, suggesting a relative function and structure. Gene duplication and synteny relationship among Brassica. napus, Arabidopsis. thaliana, Brassica rapa, Brassica oleracea, and Brassica nigra genomes were also predicted to provide valuable insights into the BnaDELLA gene family evolutionary characteristics. Chromosomal mapping revealed the uneven distribution of BnaDELLA genes on eight chromosomes, and site-specific selection assessment proposes BnaDELLA genes purifying selection. The motifs composition in all BnaDELLA genes is inconsistent; however, every BnaDELLA gene contains 12 highly conserved motifs, encoding DELLA and GRAS domains. The two known miRNAs (bna-miR6029 and bna-miR603) targets BnaC07RGA and BnaA09GAI, were also predicted. Furthermore, quantitative real-time PCR (qRT-PCR) analysis has exhibited the BnaDELLA genes diverse expression patterns in the root, mature-silique, leaf, flower, flower-bud, stem, shoot-apex, and seed. Additionally, cis-acting element prediction shows that all BnaDELLA genes contain light, stress, and hormone-responsive elements on their promoters. The gene ontology (GO) enrichment report indicated that the BnaDELLA gene family might regulate stress responses. Combine with transcriptomic data used in this study, we detected the distinct expression patterns of BnaDELLA genes under biotic and abiotic stresses. CONCLUSION In this study, we investigate evolution feature, genomic structure, miRNAs targets, and expression pattern of the BnaDELLA gene family in B. napus, which enrich our understanding of BnaDELLA genes in B. napus and suggests modulating individual BnaDELLA expression is a promising way to intensify rapeseed stress tolerance and harvest index.
Collapse
Affiliation(s)
- Rehman Sarwar
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ting Jiang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Peng Ding
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Yue Gao
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xiaoli Tan
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Keming Zhu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
15
|
Carlsbecker A, Augstein F. Xylem versus phloem in secondary growth: a balancing act mediated by gibberellins. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3489-3492. [PMID: 33948652 PMCID: PMC8096596 DOI: 10.1093/jxb/erab148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This article comments on: Ben-Targem M, Ripper D, Bayer M, Ragni L. 2021. Auxin and gibberellin signaling cross-talk promotes hypocotyl xylem expansion and cambium homeostasis. Journal of Experimental Botany 72, 3647–3660.
Collapse
Affiliation(s)
- Annelie Carlsbecker
- Department of Organismal Biology, Physiological Botany, Linnean Centre for Plant Biology, Uppsala University, Ullsv. 24E, SE-756 51, Uppsala, Sweden
| | - Frauke Augstein
- Department of Organismal Biology, Physiological Botany, Linnean Centre for Plant Biology, Uppsala University, Ullsv. 24E, SE-756 51, Uppsala, Sweden
| |
Collapse
|
16
|
Rüscher D, Corral JM, Carluccio AV, Klemens PAW, Gisel A, Stavolone L, Neuhaus HE, Ludewig F, Sonnewald U, Zierer W. Auxin signaling and vascular cambium formation enable storage metabolism in cassava tuberous roots. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3688-3703. [PMID: 33712830 PMCID: PMC8096603 DOI: 10.1093/jxb/erab106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/04/2021] [Indexed: 05/10/2023]
Abstract
Cassava storage roots are among the most important root crops worldwide, and represent one of the most consumed staple foods in sub-Saharan Africa. The vegetatively propagated tropical shrub can form many starchy tuberous roots from its stem. These storage roots are formed through the activation of secondary root growth processes. However, the underlying genetic regulation of storage root development is largely unknown. Here we report distinct structural and transcriptional changes occurring during the early phases of storage root development. A pronounced increase in auxin-related transcripts and the transcriptional activation of secondary growth factors, as well as a decrease in gibberellin-related transcripts were observed during the early stages of secondary root growth. This was accompanied by increased cell wall biosynthesis, most notably increased during the initial xylem expansion within the root vasculature. Starch storage metabolism was activated only after the formation of the vascular cambium. The formation of non-lignified xylem parenchyma cells and the activation of starch storage metabolism coincided with increased expression of the KNOX/BEL genes KNAT1, PENNYWISE, and POUND-FOOLISH, indicating their importance for proper xylem parenchyma function.
Collapse
Affiliation(s)
- David Rüscher
- Friedrich-Alexander-University Erlangen-Nuremberg, Department of Biology, Division of Biochemistry, Staudtstrasse 5, Erlangen, Germany
| | - José María Corral
- Friedrich-Alexander-University Erlangen-Nuremberg, Department of Biology, Division of Biochemistry, Staudtstrasse 5, Erlangen, Germany
| | - Anna Vittoria Carluccio
- International Institute for Tropical Agriculture, Ibadan, Oyo State, Nigeria
- Institute for Sustainable Plant Protection, CNR, Bari, Italy
| | - Patrick A W Klemens
- Technical University Kaiserslautern, Department of Biology, Division of Plant Physiology, Erwin-Schrödinger-Str. 22, Kaiserslautern, Germany
| | - Andreas Gisel
- International Institute for Tropical Agriculture, Ibadan, Oyo State, Nigeria
- Institute for Biomedical Technologies, CNR, Bari, Italy
| | - Livia Stavolone
- International Institute for Tropical Agriculture, Ibadan, Oyo State, Nigeria
- Institute for Sustainable Plant Protection, CNR, Bari, Italy
| | - H Ekkehard Neuhaus
- Technical University Kaiserslautern, Department of Biology, Division of Plant Physiology, Erwin-Schrödinger-Str. 22, Kaiserslautern, Germany
| | - Frank Ludewig
- Friedrich-Alexander-University Erlangen-Nuremberg, Department of Biology, Division of Biochemistry, Staudtstrasse 5, Erlangen, Germany
- Present address: KWS Saat SE, Grimsehlstraße 31, D-37574 Einbeck, Germany
| | - Uwe Sonnewald
- Friedrich-Alexander-University Erlangen-Nuremberg, Department of Biology, Division of Biochemistry, Staudtstrasse 5, Erlangen, Germany
| | - Wolfgang Zierer
- Friedrich-Alexander-University Erlangen-Nuremberg, Department of Biology, Division of Biochemistry, Staudtstrasse 5, Erlangen, Germany
- Correspondence:
| |
Collapse
|
17
|
Ben-Targem M, Ripper D, Bayer M, Ragni L. Auxin and gibberellin signaling cross-talk promotes hypocotyl xylem expansion and cambium homeostasis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3647-3660. [PMID: 33619529 DOI: 10.1093/jxb/erab089] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/19/2021] [Indexed: 05/04/2023]
Abstract
During secondary growth, the thickening of plant organs, wood (xylem) and bast (phloem) is continuously produced by the vascular cambium. In Arabidopsis hypocotyl and root, we can distinguish two phases of secondary growth based on cell morphology and production rate. The first phase, in which xylem and phloem are equally produced, precedes the xylem expansion phase in which xylem formation is enhanced and xylem fibers differentiate. It is known that gibberellins (GA) trigger this developmental transition via degradation of DELLA proteins and that the cambium master regulator BREVIPEDICELLUS/KNAT1 (BP/KNAT1) and receptor like kinases ERECTA and ERL1 regulate this process downstream of GA. However, our understanding of the regulatory network underlying GA-mediated secondary growth is still limited. Here, we demonstrate that DELLA-mediated xylem expansion in Arabidopsis hypocotyl is mainly achieved through DELLA family members RGA and GAI, which promote cambium senescence. We further show that AUXIN RESPONSE FACTOR 6 (ARF6) and ARF8, which physically interact with DELLAs, specifically repress phloem proliferation and induce cambium senescence during the xylem expansion phase. Moreover, the inactivation of BP in arf6 arf8 background revealed an essential role for ARF6 and ARF8 in cambium establishment and maintenance. Overall, our results shed light on a pivotal hormone cross-talk between GA and auxin in the context of plant secondary growth.
Collapse
Affiliation(s)
- Mehdi Ben-Targem
- ZMBP - Center for Plant Molecular Biology, University of Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| | - Dagmar Ripper
- ZMBP - Center for Plant Molecular Biology, University of Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| | - Martin Bayer
- Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Laura Ragni
- ZMBP - Center for Plant Molecular Biology, University of Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| |
Collapse
|
18
|
Singh RK, Bhalerao RP, Eriksson ME. Growing in time: exploring the molecular mechanisms of tree growth. TREE PHYSIOLOGY 2021; 41:657-678. [PMID: 32470114 PMCID: PMC8033248 DOI: 10.1093/treephys/tpaa065] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/31/2020] [Accepted: 05/27/2020] [Indexed: 05/31/2023]
Abstract
Trees cover vast areas of the Earth's landmasses. They mitigate erosion, capture carbon dioxide, produce oxygen and support biodiversity, and also are a source of food, raw materials and energy for human populations. Understanding the growth cycles of trees is fundamental for many areas of research. Trees, like most other organisms, have evolved a circadian clock to synchronize their growth and development with the daily and seasonal cycles of the environment. These regular changes in light, daylength and temperature are perceived via a range of dedicated receptors and cause resetting of the circadian clock to local time. This allows anticipation of daily and seasonal fluctuations and enables trees to co-ordinate their metabolism and physiology to ensure vital processes occur at the optimal times. In this review, we explore the current state of knowledge concerning the regulation of growth and seasonal dormancy in trees, using information drawn from model systems such as Populus spp.
Collapse
Affiliation(s)
- Rajesh Kumar Singh
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå SE-901 87, Sweden
| | - Rishikesh P Bhalerao
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå SE-901 82, Sweden
| | - Maria E Eriksson
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå SE-901 87, Sweden
| |
Collapse
|
19
|
Wang Y, Yu W, Ran L, Chen Z, Wang C, Dou Y, Qin Y, Suo Q, Li Y, Zeng J, Liang A, Dai Y, Wu Y, Ouyang X, Xiao Y. DELLA-NAC Interactions Mediate GA Signaling to Promote Secondary Cell Wall Formation in Cotton Stem. FRONTIERS IN PLANT SCIENCE 2021; 12:655127. [PMID: 34305962 PMCID: PMC8299300 DOI: 10.3389/fpls.2021.655127] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/18/2021] [Indexed: 05/04/2023]
Abstract
Gibberellins (GAs) promote secondary cell wall (SCW) development in plants, but the underlying molecular mechanism is still to be elucidated. Here, we employed a new system, the first internode of cotton, and the virus-induced gene silencing method to address this problem. We found that knocking down major DELLA genes via VIGS phenocopied GA treatment and significantly enhanced SCW formation in the xylem and phloem of cotton stems. Cotton DELLA proteins were found to interact with a wide range of SCW-related NAC proteins, and virus-induced gene silencing of these NAC genes inhibited SCW development with downregulated biosynthesis and deposition of lignin. The findings indicated a framework for the GA regulation of SCW formation; that is, the interactions between DELLA and NAC proteins mediated GA signaling to regulate SCW formation in cotton stems.
Collapse
|
20
|
Zhang X, Zhao J, Wu X, Hu G, Fan S, Ma Q. Evolutionary Relationships and Divergence of KNOTTED1-Like Family Genes Involved in Salt Tolerance and Development in Cotton ( Gossypium hirsutum L.). FRONTIERS IN PLANT SCIENCE 2021; 12:774161. [PMID: 34970288 PMCID: PMC8712452 DOI: 10.3389/fpls.2021.774161] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/25/2021] [Indexed: 05/16/2023]
Abstract
The KNOX (KNOTTED1-like homeobox) transcription factors play an important role in leaf, shoot apical meristem and seed development and respond to biotic and abiotic stresses. In this study, we analyzed the diversity and evolutionary history of the KNOX gene family in the genome of tetraploid cotton (Gossypium hirsutum). Forty-four putative KNOX genes were identified. All KNOX genes from seven higher plant species were classified into KNOXI, KNOXII, and KNATM clades based on a phylogenetic analysis. Chromosomal localization and collinearity analysis suggested that whole-genome duplication and a polyploidization event contributed to the expansion of the cotton KNOX gene family. Analyses of expression profiles revealed that the GhKNOX genes likely responded to diverse stresses and were involved in cotton growth developmental processes. Silencing of GhKNOX2 enhanced the salt tolerance of cotton seedlings, whereas silencing of GhKNOX10 and GhKNOX14 reduced seedling tolerance to salt stress. Silencing of GhSTM3 influenced the cotton flowering time and plant development. These findings clarify the evolution of the cotton KNOX gene family and provide a foundation for future functional studies of KNOX proteins in cotton growth and development and response to abiotic stresses.
Collapse
Affiliation(s)
- Xiaohong Zhang
- Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Junjie Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Xiangyuan Wu
- Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Genhai Hu
- Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Shuli Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
- *Correspondence: Shuli Fan,
| | - Qifeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
- Qifeng Ma,
| |
Collapse
|
21
|
Agustí J, Blázquez MA. Plant vascular development: mechanisms and environmental regulation. Cell Mol Life Sci 2020; 77:3711-3728. [PMID: 32193607 PMCID: PMC11105054 DOI: 10.1007/s00018-020-03496-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022]
Abstract
Plant vascular development is a complex process culminating in the generation of xylem and phloem, the plant transporting conduits. Xylem and phloem arise from specialized stem cells collectively termed (pro)cambium. Once developed, xylem transports mainly water and mineral nutrients and phloem transports photoassimilates and signaling molecules. In the past few years, major advances have been made to characterize the molecular, genetic and physiological aspects that govern vascular development. However, less is known about how the environment re-shapes the process, which molecular mechanisms link environmental inputs with developmental outputs, which gene regulatory networks facilitate the genetic adaptation of vascular development to environmental niches, or how the first vascular cells appeared as an evolutionary innovation. In this review, we (1) summarize the current knowledge of the mechanisms involved in vascular development, focusing on the model species Arabidopsis thaliana, (2) describe the anatomical effect of specific environmental factors on the process, (3) speculate about the main entry points through which the molecular mechanisms controlling of the process might be altered by specific environmental factors, and (4) discuss future research which could identify the genetic factors underlying phenotypic plasticity of vascular development.
Collapse
Affiliation(s)
- Javier Agustí
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universitat Politècnica de València, 46022, Valencia, Spain.
| | - Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universitat Politècnica de València, 46022, Valencia, Spain.
| |
Collapse
|
22
|
Chiang MH, Greb T. How to organize bidirectional tissue production? CURRENT OPINION IN PLANT BIOLOGY 2019; 51:15-21. [PMID: 31003119 DOI: 10.1016/j.pbi.2019.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 05/27/2023]
Abstract
The cambium is a plant-borne stem cell system producing wood and bast, two distinct types of vascular tissues, in strictly opposite directions. Thereby, the cambium contributes substantially to terrestrial biomass accumulation and represents the basis for the formation of large plant bodies. Although the bidirectional mode of tissue production by a common stem cell pool holds interesting implications for developmental biology, functional domains of the cambium, and their interaction remained poorly defined for decades. Here, we summarize recent findings on domain organization of the cambium and discuss potential mechanisms important for its bipartite organization. By highlighting the conceptual implication for stem cell biology, we integrate our understanding of cambium regulation into a larger context.
Collapse
Affiliation(s)
- Min-Hao Chiang
- Centre for Organismal Studies, Heidelberg University, Germany
| | - Thomas Greb
- Centre for Organismal Studies, Heidelberg University, Germany.
| |
Collapse
|
23
|
SOBIR1/EVR prevents precocious initiation of fiber differentiation during wood development through a mechanism involving BP and ERECTA. Proc Natl Acad Sci U S A 2019; 116:18710-18716. [PMID: 31444299 DOI: 10.1073/pnas.1807863116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In plants, secondary growth results in radial expansion of stems and roots, generating large amounts of biomass in the form of wood. Using genome-wide association studies (GWAS)-guided reverse genetics in Arabidopsis thaliana, we discovered SOBIR1/EVR, previously known to control plant immunoresponses and abscission, as a regulator of secondary growth. We present anatomical, genetic, and molecular evidence indicating that SOBIR1/EVR prevents the precocious differentiation of xylem fiber, a key cell type for wood development. SOBIR1/EVR acts through a mechanism that involves BREVIPEDICELLUS (BP) and ERECTA (ER), 2 proteins previously known to regulate xylem fiber development. We demonstrate that BP binds SOBIR1/EVR promoter and that SOBIR1/EVR expression is enhanced in bp mutants, suggesting a direct, negative regulation of BP over SOBIR1/EVR expression. We show that SOBIR1/EVR physically interacts with ER and that defects caused by the sobir1/evr mutation are aggravated by mutating ER, indicating that SOBIR1/EVR and ERECTA act together in the control of the precocious formation of xylem fiber development.
Collapse
|