1
|
Szemes T, Sabaté San José A, Azouz A, Sitte M, Salinas G, Achouri Y, Kricha S, Ris L, Red-Horse K, Bellefroid EJ, Desiderio S. Temporal refinement of Dach1 expression contributes to the development of somatosensory neurons. EMBO J 2025; 44:2882-2905. [PMID: 40205161 DOI: 10.1038/s44318-025-00427-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 04/11/2025] Open
Abstract
During somatosensory neurogenesis, neurons are born in an unspecialized transcriptional state. Several transcription factors in these cells follow a broad-to-restricted expression trajectory as development proceeds, giving rise to neuron subtypes with different identities. The relevance of this temporal refinement of transcription factor expression remains unclear as the functions of transcription factors with broad-to-restricted expression patterns have been mostly studied in those neuron subtypes in which they remain active. Here we show that Dach1 encodes a bona fide transcription factor with a broad-to-restricted expression pattern retained and required in tactile somatosensory neurons. In developing nociceptors, Prdm12 contributes to Dach1 silencing. Using genetic approaches to prevent its temporal restriction during mouse somatosensory development, we reveal that Dach1 expression refinement is a prerequisite for the acquisition of an appropriate transcriptional profile in those somatosensory neuron subtypes in which it becomes ultimately silenced. These findings highlight the essential role played by Dach1 during somatosensory neuron development and demonstrate that the temporal pattern of broad-to-restricted expression followed by several transcription factors is physiologically important for the development of somatosensory neurons.
Collapse
Affiliation(s)
- Tünde Szemes
- Department of Molecular Biology, ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
- Laboratory of Neuroscience, UMONS Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Alba Sabaté San José
- Department of Molecular Biology, ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Abdulkader Azouz
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
- ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium
| | - Maren Sitte
- NGS Integrative Genomics, Institute of Pathology at the University Medical Center Göttingen (UMG), 37075, Göttingen, Germany
| | - Gabriela Salinas
- NGS Integrative Genomics, Institute of Pathology at the University Medical Center Göttingen (UMG), 37075, Göttingen, Germany
| | - Younes Achouri
- Transgenesis Platform, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Sadia Kricha
- Department of Molecular Biology, ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Laurence Ris
- Laboratory of Neuroscience, UMONS Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Kristy Red-Horse
- Department of Biology, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford, CA, USA
| | - Eric J Bellefroid
- Department of Molecular Biology, ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Gosselies, Belgium.
| | - Simon Desiderio
- Department of Molecular Biology, ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Gosselies, Belgium.
| |
Collapse
|
2
|
Gwilliam K, Sperber M, Perry K, Rose KP, Ginsberg L, Paladugu N, Song Y, Milon B, Elkon R, Hertzano R. A cell type-specific approach to elucidate the role of miR-96 in inner ear hair cells. FRONTIERS IN AUDIOLOGY AND OTOLOGY 2024; 2:1400576. [PMID: 38826689 PMCID: PMC11141775 DOI: 10.3389/fauot.2024.1400576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Introduction Mutations in microRNA-96 (miR-96), a microRNA expressed within the hair cells (HCs) of the inner ear, result in progressive hearing loss in both mouse models and humans. In this study, we present the first HC-specific RNA-sequencing (RNA-seq) dataset from newborn Mir96Dmdo heterozygous, homozygous mutant, and wildtype mice. Methods Bulk RNA-seq was performed on HCs of newborn Mir96Dmdo heterozygous, homozygous mutant, and wildtype mice. Differentially expressed gene analysis was conducted on Mir96Dmdo homozygous mutant HCs compared to wildtype littermate controls, followed by GO term and protein-protein interaction analysis on these differentially expressed genes. Results We identify 215 upregulated and 428 downregulated genes in the HCs of the Mir96Dmdo homozygous mutant mice compared to their wildtype littermate controls. Many of the significantly downregulated genes in Mir96Dmdo homozygous mutant HCs have established roles in HC development and/or known roles in deafness including Myo15a, Myo7a, Ush1c, Gfi1, and Ptprq and have enrichment in gene ontology (GO) terms with biological functions such as sensory perception of sound. Interestingly, upregulated genes in Mir96Dmdo homozygous mutants, including possible miR-96 direct targets, show higher wildtype expression in supporting cells compared to HCs. Conclusion Our data further support a role for miR-96 in HC development, possibly as a repressor of supporting cell transcriptional programs in HCs. The HC-specific Mir96Dmdo RNA-seq data set generated from this manuscript are now publicly available in a dedicated profile in the gene expression analysis resource (gEAR-https://umgear.org/p?l=miR96).
Collapse
Affiliation(s)
- Kathleen Gwilliam
- Section on Omics and Translational Science of Hearing, Neurotology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Michal Sperber
- Department of Human Molecular Genetics and Biochemistry, Tel Aviv University School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Katherine Perry
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Kevin P. Rose
- Section on Omics and Translational Science of Hearing, Neurotology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Laura Ginsberg
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Nikhil Paladugu
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Yang Song
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Beatrice Milon
- Section on Omics and Translational Science of Hearing, Neurotology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Ran Elkon
- Department of Human Molecular Genetics and Biochemistry, Tel Aviv University School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ronna Hertzano
- Section on Omics and Translational Science of Hearing, Neurotology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
3
|
Tavares-Ferreira D, Shiers S, Ray PR, Wangzhou A, Jeevakumar V, Sankaranarayanan I, Cervantes AM, Reese JC, Chamessian A, Copits BA, Dougherty PM, Gereau RW, Burton MD, Dussor G, Price TJ. Spatial transcriptomics of dorsal root ganglia identifies molecular signatures of human nociceptors. Sci Transl Med 2022; 14:eabj8186. [PMID: 35171654 PMCID: PMC9272153 DOI: 10.1126/scitranslmed.abj8186] [Citation(s) in RCA: 238] [Impact Index Per Article: 79.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Nociceptors are specialized sensory neurons that detect damaging or potentially damaging stimuli and are found in the dorsal root ganglia (DRG) and trigeminal ganglia. These neurons are critical for the generation of neuronal signals that ultimately create the perception of pain. Nociceptors are also primary targets for treating acute and chronic pain. Single-cell transcriptomics on mouse nociceptors has transformed our understanding of pain mechanisms. We sought to generate equivalent information for human nociceptors with the goal of identifying transcriptomic signatures of nociceptors, identifying species differences and potential drug targets. We used spatial transcriptomics to molecularly characterize transcriptomes of single DRG neurons from eight organ donors. We identified 12 clusters of human sensory neurons, 5 of which are C nociceptors, as well as 1 C low-threshold mechanoreceptors (LTMRs), 1 Aβ nociceptor, 2 Aδ, 2 Aβ, and 1 proprioceptor subtypes. By focusing on expression profiles for ion channels, G protein-coupled receptors (GPCRs), and other pharmacological targets, we provided a rich map of potential drug targets in the human DRG with direct comparison to mouse sensory neuron transcriptomes. We also compared human DRG neuronal subtypes to nonhuman primates showing conserved patterns of gene expression among many cell types but divergence among specific nociceptor subsets. Last, we identified sex differences in human DRG subpopulation transcriptomes, including a marked increase in calcitonin-related polypeptide alpha (CALCA) expression in female pruritogen receptor-enriched nociceptors. This comprehensive spatial characterization of human nociceptors might open the door to development of better treatments for acute and chronic pain disorders.
Collapse
Affiliation(s)
- Diana Tavares-Ferreira
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX 75080, USA.,Corresponding author: (T.J.P.); (D.T.-F.)
| | - Stephanie Shiers
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX 75080, USA
| | - Pradipta R. Ray
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX 75080, USA
| | - Andi Wangzhou
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX 75080, USA
| | - Vivekanand Jeevakumar
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX 75080, USA
| | - Ishwarya Sankaranarayanan
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX 75080, USA
| | | | | | - Alexander Chamessian
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO 63110, USA
| | - Bryan A. Copits
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO 63110, USA
| | - Patrick M. Dougherty
- Department of Pain Medicine, Division of Anesthesiology and Critical Care, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert W. Gereau
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO 63110, USA
| | - Michael D. Burton
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX 75080, USA
| | - Gregory Dussor
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX 75080, USA
| | - Theodore J. Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX 75080, USA.,Corresponding author: (T.J.P.); (D.T.-F.)
| |
Collapse
|
4
|
Tavares-Ferreira D, Shiers S, Ray PR, Wangzhou A, Jeevakumar V, Sankaranarayanan I, Cervantes AM, Reese JC, Chamessian A, Copits BA, Dougherty PM, Gereau RW, Burton MD, Dussor G, Price TJ. Spatial transcriptomics of dorsal root ganglia identifies molecular signatures of human nociceptors. Sci Transl Med 2022. [DOI: 10.1126/scitranslmed.abj8186\] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Nociceptors are specialized sensory neurons that detect damaging or potentially damaging stimuli and are found in the dorsal root ganglia (DRG) and trigeminal ganglia. These neurons are critical for the generation of neuronal signals that ultimately create the perception of pain. Nociceptors are also primary targets for treating acute and chronic pain. Single-cell transcriptomics on mouse nociceptors has transformed our understanding of pain mechanisms. We sought to generate equivalent information for human nociceptors with the goal of identifying transcriptomic signatures of nociceptors, identifying species differences and potential drug targets. We used spatial transcriptomics to molecularly characterize transcriptomes of single DRG neurons from eight organ donors. We identified 12 clusters of human sensory neurons, 5 of which are C nociceptors, as well as 1 C low-threshold mechanoreceptors (LTMRs), 1 Aβ nociceptor, 2 Aδ, 2 Aβ, and 1 proprioceptor subtypes. By focusing on expression profiles for ion channels, G protein–coupled receptors (GPCRs), and other pharmacological targets, we provided a rich map of potential drug targets in the human DRG with direct comparison to mouse sensory neuron transcriptomes. We also compared human DRG neuronal subtypes to nonhuman primates showing conserved patterns of gene expression among many cell types but divergence among specific nociceptor subsets. Last, we identified sex differences in human DRG subpopulation transcriptomes, including a marked increase in calcitonin-related polypeptide alpha (
CALCA
) expression in female pruritogen receptor–enriched nociceptors. This comprehensive spatial characterization of human nociceptors might open the door to development of better treatments for acute and chronic pain disorders.
Collapse
Affiliation(s)
- Diana Tavares-Ferreira
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX 75080, USA
| | - Stephanie Shiers
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX 75080, USA
| | - Pradipta R. Ray
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX 75080, USA
| | - Andi Wangzhou
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX 75080, USA
| | - Vivekanand Jeevakumar
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX 75080, USA
| | - Ishwarya Sankaranarayanan
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX 75080, USA
| | | | | | - Alexander Chamessian
- Department of Anesthesiology , Washington University Pain Center, St. Louis, MO 63110, USA
| | - Bryan A. Copits
- Department of Anesthesiology , Washington University Pain Center, St. Louis, MO 63110, USA
| | - Patrick M. Dougherty
- Department of Pain Medicine, Division of Anesthesiology and Critical Care, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert W. Gereau
- Department of Anesthesiology , Washington University Pain Center, St. Louis, MO 63110, USA
| | - Michael D. Burton
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX 75080, USA
| | - Gregory Dussor
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX 75080, USA
| | - Theodore J. Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX 75080, USA
| |
Collapse
|
5
|
Abstract
Hundreds of microRNAs (miRNAs) are expressed in distinct spatial and temporal patterns during embryonic and postnatal mouse development. The loss of all miRNAs through the deletion of critical miRNA biogenesis factors results in early lethality. The function of each miRNA stems from their cumulative negative regulation of multiple mRNA targets expressed in a particular cell type. During development, miRNAs often coordinate the timing and direction of cell fate transitions. In adults, miRNAs frequently contribute to organismal fitness through homeostatic roles in physiology. Here, we review how the recent dissection of miRNA-knockout phenotypes in mice as well as advances related to their targets, dosage, and interactions have collectively informed our understanding of the roles of miRNAs in mammalian development and adaptive responses.
Collapse
|
6
|
Zolboot N, Du JX, Zampa F, Lippi G. MicroRNAs Instruct and Maintain Cell Type Diversity in the Nervous System. Front Mol Neurosci 2021; 14:646072. [PMID: 33994943 PMCID: PMC8116551 DOI: 10.3389/fnmol.2021.646072] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Characterizing the diverse cell types that make up the nervous system is essential for understanding how the nervous system is structured and ultimately how it functions. The astonishing range of cellular diversity found in the nervous system emerges from a small pool of neural progenitor cells. These progenitors and their neuronal progeny proceed through sequential gene expression programs to produce different cell lineages and acquire distinct cell fates. These gene expression programs must be tightly regulated in order for the cells to achieve and maintain the proper differentiated state, remain functional throughout life, and avoid cell death. Disruption of developmental programs is associated with a wide range of abnormalities in brain structure and function, further indicating that elucidating their contribution to cellular diversity will be key to understanding brain health. A growing body of evidence suggests that tight regulation of developmental genes requires post-transcriptional regulation of the transcriptome by microRNAs (miRNAs). miRNAs are small non-coding RNAs that function by binding to mRNA targets containing complementary sequences and repressing their translation into protein, thereby providing a layer of precise spatial and temporal control over gene expression. Moreover, the expression profiles and targets of miRNAs show great specificity for distinct cell types, brain regions and developmental stages, suggesting that they are an important parameter of cell type identity. Here, we provide an overview of miRNAs that are critically involved in establishing neural cell identities, focusing on how miRNA-mediated regulation of gene expression modulates neural progenitor expansion, cell fate determination, cell migration, neuronal and glial subtype specification, and finally cell maintenance and survival.
Collapse
Affiliation(s)
- Norjin Zolboot
- The Scripps Research Institute, La Jolla, CA, United States
| | - Jessica X. Du
- The Scripps Research Institute, La Jolla, CA, United States
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - Federico Zampa
- The Scripps Research Institute, La Jolla, CA, United States
| | - Giordano Lippi
- The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
7
|
Vermeiren S, Bellefroid EJ, Desiderio S. Vertebrate Sensory Ganglia: Common and Divergent Features of the Transcriptional Programs Generating Their Functional Specialization. Front Cell Dev Biol 2020; 8:587699. [PMID: 33195244 PMCID: PMC7649826 DOI: 10.3389/fcell.2020.587699] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
Sensory fibers of the peripheral nervous system carry sensation from specific sense structures or use different tissues and organs as receptive fields, and convey this information to the central nervous system. In the head of vertebrates, each cranial sensory ganglia and associated nerves perform specific functions. Sensory ganglia are composed of different types of specialized neurons in which two broad categories can be distinguished, somatosensory neurons relaying all sensations that are felt and visceral sensory neurons sensing the internal milieu and controlling body homeostasis. While in the trunk somatosensory neurons composing the dorsal root ganglia are derived exclusively from neural crest cells, somato- and visceral sensory neurons of cranial sensory ganglia have a dual origin, with contributions from both neural crest and placodes. As most studies on sensory neurogenesis have focused on dorsal root ganglia, our understanding of the molecular mechanisms underlying the embryonic development of the different cranial sensory ganglia remains today rudimentary. However, using single-cell RNA sequencing, recent studies have made significant advances in the characterization of the neuronal diversity of most sensory ganglia. Here we summarize the general anatomy, function and neuronal diversity of cranial sensory ganglia. We then provide an overview of our current knowledge of the transcriptional networks controlling neurogenesis and neuronal diversification in the developing sensory system, focusing on cranial sensory ganglia, highlighting specific aspects of their development and comparing it to that of trunk sensory ganglia.
Collapse
Affiliation(s)
- Simon Vermeiren
- ULB Neuroscience Institute, Université Libre de Bruxelles, Gosselies, Belgium
| | - Eric J Bellefroid
- ULB Neuroscience Institute, Université Libre de Bruxelles, Gosselies, Belgium
| | - Simon Desiderio
- Institute for Neurosciences of Montpellier, INSERM U1051, University of Montpellier, Montpellier, France
| |
Collapse
|
8
|
Banks SA, Pierce ML, Soukup GA. Sensational MicroRNAs: Neurosensory Roles of the MicroRNA-183 Family. Mol Neurobiol 2019; 57:358-371. [DOI: 10.1007/s12035-019-01717-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/19/2019] [Indexed: 12/20/2022]
|