1
|
Singh D, Ramaswamy S, Jolly MK, Rizvi MS. Emergence of planar cell polarity from the interplay of local interactions and global gradients. eLife 2024; 13:e84053. [PMID: 39450855 PMCID: PMC11602187 DOI: 10.7554/elife.84053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
Planar cell polarity (PCP) - tissue-scale alignment of the direction of asymmetric localization of proteins at the cell-cell interface - is essential for embryonic development and physiological functions. Abnormalities in PCP can result in developmental imperfections, including neural tube closure defects and misaligned hair follicles. Decoding the mechanisms responsible for PCP establishment and maintenance remains a fundamental open question. While the roles of various molecules - broadly classified into 'global' and 'local' modules - have been well-studied, their necessity and sufficiency in explaining PCP and connecting their perturbations to experimentally observed patterns have not been examined. Here, we develop a minimal model that captures the proposed features of PCP establishment - a global tissue-level gradient and local asymmetric distribution of protein complexes. The proposed model suggests that while polarity can emerge without a gradient, the gradient not only acts as a global cue but also increases the robustness of PCP against stochastic perturbations. We also recapitulated and quantified the experimentally observed features of swirling patterns and domineering non-autonomy, using only three free model parameters - rate of protein binding to membrane, the concentration of PCP proteins, and the gradient steepness. We explain how self-stabilizing asymmetric protein localizations in the presence of tissue-level gradient can lead to robust PCP patterns and reveal minimal design principles for a polarized system.
Collapse
Affiliation(s)
- Divyoj Singh
- Department of Bioengineering, Indian Institute of ScienceBangaloreIndia
| | - Sriram Ramaswamy
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of ScienceBengaloreIndia
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of ScienceBangaloreIndia
| | - Mohd Suhail Rizvi
- Department of Biomedical Engineering, Indian Institute of TechnologyHyderabadIndia
| |
Collapse
|
2
|
Glazenburg MM, Hettema NM, Laan L, Remy O, Laloux G, Brunet T, Chen X, Tee YH, Wen W, Rizvi MS, Jolly MK, Riddell M. Perspectives on polarity - exploring biological asymmetry across scales. J Cell Sci 2024; 137:jcs261987. [PMID: 38441500 PMCID: PMC11382653 DOI: 10.1242/jcs.261987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
In this Perspective, Journal of Cell Science invited researchers working on cell and tissue polarity to share their thoughts on unique, emerging or open questions relating to their field. The goal of this article is to feature 'voices' from scientists around the world and at various career stages, to bring attention to innovative and thought-provoking topics of interest to the cell biology community. These voices discuss intriguing questions that consider polarity across scales, evolution, development and disease. What can yeast and protists tell us about the evolution of cell and tissue polarity in animals? How are cell fate and development influenced by emerging dynamics in cell polarity? What can we learn from atypical and extreme polarity systems? How can we arrive at a more unified biophysical understanding of polarity? Taken together, these pieces demonstrate the broad relevance of the fascinating phenomenon of cell polarization to diverse fundamental biological questions.
Collapse
Affiliation(s)
- Marieke Margaretha Glazenburg
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, 2629 HZ, The Netherlands
| | - Nynke Marije Hettema
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, 2629 HZ, The Netherlands
| | - Liedewij Laan
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, 2629 HZ, The Netherlands
| | - Ophélie Remy
- Institut de Duve, UCLouvain, 75 avenue Hippocrate, 1200 Brussels, Belgium
| | - Géraldine Laloux
- Institut de Duve, UCLouvain, 75 avenue Hippocrate, 1200 Brussels, Belgium
| | - Thibaut Brunet
- Institut Pasteur, Université Paris-Cité, CNRS UMR 3691, Evolutionary Cell Biology and Evolution of Morphogenesis Unit, 25-28 rue du docteur Roux, 75015 Paris, France
| | - Xin Chen
- Howard Hughes Medical Institute and Department of Biology, Johns Hopkins University, Levi Hall 137, 3400 North Charles Street, Baltimore, MD 21218-2685, USA
| | - Yee Han Tee
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Wenyu Wen
- Department of Neurosurgery, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Mohd Suhail Rizvi
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Sangareddy 502284, India
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Meghan Riddell
- Department of Physiology and Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| |
Collapse
|
3
|
Cetera M, Sharan R, Hayward-Lara G, Phillips B, Biswas A, Halley M, Beall E, vonHoldt B, Devenport D. Region-specific reversal of epidermal planar polarity in the rosette fancy mouse. Development 2023; 150:dev202078. [PMID: 37622728 PMCID: PMC10499026 DOI: 10.1242/dev.202078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
The planar cell polarity (PCP) pathway collectively orients cells with respect to a body axis. Hair follicles of the murine epidermis provide a striking readout of PCP activity in their uniform alignment across the skin. Here, we characterize, from the molecular to tissue-scale, PCP establishment in the rosette fancy mouse, a natural variant with posterior-specific whorls in its fur, to understand how epidermal polarity is coordinated across the tissue. We find that rosette hair follicles emerge with reversed orientations specifically in the posterior region, creating a mirror image of epidermal polarity. The rosette trait is associated with a missense mutation in the core PCP gene Fzd6, which alters a consensus site for N-linked glycosylation, inhibiting its membrane localization. Unexpectedly, the Fzd6 trafficking defect does not block asymmetric localization of the other PCP proteins. Rather, the normally uniform axis of PCP asymmetry rotates where the PCP-directed cell movements that orient follicles are reversed, suggesting the PCP axis rotates 180°. Collectively, our multiscale analysis of epidermal polarity reveals PCP patterning can be regionally decoupled to produce posterior whorls in the rosette fancy mouse.
Collapse
Affiliation(s)
- Maureen Cetera
- Department of Genetics, Cell Biology and Development, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Rishabh Sharan
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| | | | - Brooke Phillips
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Abhishek Biswas
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
- Research Computing, Office of Information Technology, Princeton University, Princeton, NJ 08540, USA
| | - Madalene Halley
- Department of Genetics, Cell Biology and Development, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Evalyn Beall
- Department of Genetics, Cell Biology and Development, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Bridgett vonHoldt
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08540, USA
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| |
Collapse
|
4
|
Casal J, Storer F, Lawrence PA. Planar cell polarity: intracellular asymmetry and supracellular gradients of Frizzled. Open Biol 2023; 13:230105. [PMID: 37311537 PMCID: PMC10264100 DOI: 10.1098/rsob.230105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/23/2023] [Indexed: 06/15/2023] Open
Abstract
Planar cell polarity (PCP), the coordinated orientation of structures such as cilia, mammalian hairs or insect bristles, depends on at least two molecular systems. We have argued that these two systems use similar mechanisms; each depending on a supracellular gradient of concentration that spans a field of cells. In a linked paper, we studied the Dachsous/Fat system. We found a graded distribution of Dachsous in vivo in a segment of the pupal epidermis in the abdomen of Drosophila. Here we report a similar study of the key molecule for the Starry Night/Frizzled or 'core' system. We measure the distribution of the receptor Frizzled on the cell membranes of all cells of one segment in the living pupal abdomen of Drosophila. We find a supracellular gradient that falls about 17% in concentration from the front to the rear of the segment. We present some evidence that the gradient then resets in the most anterior cells of the next segment back. We find an intracellular asymmetry in all the cells, the posterior membrane of each cell carrying about 22% more Frizzled than the anterior membrane. These direct molecular measurements add to earlier evidence that the two systems of PCP act independently.
Collapse
Affiliation(s)
- José Casal
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Freya Storer
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Peter A. Lawrence
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
5
|
Brittle A, Warrington SJ, Strutt H, Manning E, Tan SE, Strutt D. Distinct mechanisms of planar polarization by the core and Fat-Dachsous planar polarity pathways in the Drosophila wing. Cell Rep 2022; 40:111419. [PMID: 36170824 PMCID: PMC9631118 DOI: 10.1016/j.celrep.2022.111419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
Planar polarity describes the coordinated polarization of cells within a tissue plane, and in animals can be determined by the “core” or Fat-Dachsous pathways. Current models for planar polarity establishment involve two components: tissue-level “global” cues that determine the overall axis of polarity and cell-level feedback-mediated cellular polarity amplification. Here, we investigate the contributions of global cues versus cellular feedback amplification in the core and Fat-Dachsous pathways during Drosophila pupal wing development. We present evidence that these pathways generate planar polarity via distinct mechanisms. Core pathway function is consistent with strong feedback capable of self-organizing cell polarity, which can then be aligned with the tissue axis via weak or transient global cues. Conversely, generation of cell polarity by the Ft-Ds pathway depends on strong global cues in the form of graded patterns of gene expression, which can then be amplified by weak feedback mechanisms. The core and Fat-Dachsous planar polarity pathways function via distinct mechanisms The core can self-organize planar polarity and be oriented by weak upstream cues Fat-Dachsous are oriented by strong gradient cues but show poor self-organization
Collapse
Affiliation(s)
- Amy Brittle
- School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | | | - Helen Strutt
- School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Elizabeth Manning
- School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Su Ee Tan
- School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - David Strutt
- School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
6
|
In search of conserved principles of planar cell polarization. Curr Opin Genet Dev 2021; 72:69-81. [PMID: 34871922 DOI: 10.1016/j.gde.2021.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 01/26/2023]
Abstract
The making of an embryo and its internal organs entails the spatial coordination of cellular activities. This manifests during tissue morphogenesis as cells change shape, rearrange and divide along preferential axis and during cell differentiation. Cells live in a polarized field and respond to it by polarizing their cellular activities in the plane of the tissue by a phenomenon called planar cell polarization. This phenomenon is ubiquitous in animals and depends on a few conserved planar cell polarity (PCP) pathways. All PCP pathways share two essential characteristics: the existence of local interactions between protein complexes present at the cell surface leading to their asymmetric distribution within cells; a supracellular graded cue that aligns these cellular asymmetries at the tissue level. Here, we discuss the potential common principles of planar cell polarization by comparing the local and global mechanisms employed by the different PCP pathways identified so far. The focus of the review is on the logic of the system rather than the molecules per se.
Collapse
|
7
|
Mancini P, Ossipova O, Sokol SY. The dorsal blastopore lip is a source of signals inducing planar cell polarity in the Xenopus neural plate. Biol Open 2021; 10:bio058761. [PMID: 34259326 PMCID: PMC8325942 DOI: 10.1242/bio.058761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/04/2021] [Indexed: 12/03/2022] Open
Abstract
Coordinated polarization of cells in the tissue plane, known as planar cell polarity (PCP), is associated with a signaling pathway critical for the control of morphogenetic processes. Although the segregation of PCP components to opposite cell borders is believed to play a critical role in this pathway, whether PCP derives from egg polarity or preexistent long-range gradient, or forms in response to a localized cue, remains a challenging question. Here we investigate the Xenopus neural plate, a tissue that has been previously shown to exhibit PCP. By imaging Vangl2 and Prickle3, we show that PCP is progressively acquired in the neural plate and requires a signal from the posterior region of the embryo. Tissue transplantations indicated that PCP is triggered in the neural plate by a planar cue from the dorsal blastopore lip. The PCP cue did not depend on the orientation of the graft and was distinct from neural inducers. These observations suggest that neuroectodermal PCP is not instructed by a preexisting molecular gradient but induced by a signal from the dorsal blastopore lip.
Collapse
Affiliation(s)
| | | | - Sergei Y. Sokol
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
8
|
Galea GL, Maniou E, Edwards TJ, Marshall AR, Ampartzidis I, Greene NDE, Copp AJ. Cell non-autonomy amplifies disruption of neurulation by mosaic Vangl2 deletion in mice. Nat Commun 2021; 12:1159. [PMID: 33608529 PMCID: PMC7895924 DOI: 10.1038/s41467-021-21372-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 01/22/2021] [Indexed: 01/31/2023] Open
Abstract
Post-zygotic mutations that generate tissue mosaicism are increasingly associated with severe congenital defects, including those arising from failed neural tube closure. Here we report that neural fold elevation during mouse spinal neurulation is vulnerable to deletion of the VANGL planar cell polarity protein 2 (Vangl2) gene in as few as 16% of neuroepithelial cells. Vangl2-deleted cells are typically dispersed throughout the neuroepithelium, and each non-autonomously prevents apical constriction by an average of five Vangl2-replete neighbours. This inhibition of apical constriction involves diminished myosin-II localisation on neighbour cell borders and shortening of basally-extending microtubule tails, which are known to facilitate apical constriction. Vangl2-deleted neuroepithelial cells themselves continue to apically constrict and preferentially recruit myosin-II to their apical cell cortex rather than to apical cap localisations. Such non-autonomous effects can explain how post-zygotic mutations affecting a minority of cells can cause catastrophic failure of morphogenesis leading to clinically important birth defects.
Collapse
Affiliation(s)
- Gabriel L Galea
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK.
- Comparative Bioveterinary Sciences, Royal Veterinary College, London, UK.
| | - Eirini Maniou
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Timothy J Edwards
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Abigail R Marshall
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Ioakeim Ampartzidis
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Nicholas D E Greene
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Andrew J Copp
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| |
Collapse
|
9
|
Yu JJS, Maugarny-Calès A, Pelletier S, Alexandre C, Bellaiche Y, Vincent JP, McGough IJ. Frizzled-Dependent Planar Cell Polarity without Secreted Wnt Ligands. Dev Cell 2020; 54:583-592.e5. [PMID: 32888416 PMCID: PMC7497783 DOI: 10.1016/j.devcel.2020.08.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/07/2020] [Accepted: 08/10/2020] [Indexed: 12/26/2022]
Abstract
Planar cell polarity (PCP) organizes the orientation of cellular protrusions and migratory activity within the tissue plane. PCP establishment involves the subcellular polarization of core PCP components. It has been suggested that Wnt gradients could provide a global cue that coordinates local PCP with tissue axes. Here, we dissect the role of Wnt ligands in the orientation of hairs of Drosophila wings, an established system for the study of PCP. We found that PCP was normal in quintuple mutant wings that rely solely on the membrane-tethered Wingless for Wnt signaling, suggesting that a Wnt gradient is not required. We then used a nanobody-based approach to trap Wntless in the endoplasmic reticulum, and hence prevent all Wnt secretion, specifically during the period of PCP establishment. PCP was still established. We conclude that, even though Wnt ligands could contribute to PCP, they are not essential, and another global cue must exist for tissue-wide polarization.
Collapse
Affiliation(s)
| | - Aude Maugarny-Calès
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, 75248 Paris Cedex 05, France; Sorbonne University, CNRS UMR 3215, INSERM U934, 75005 Paris, France
| | - Stéphane Pelletier
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, 75248 Paris Cedex 05, France; Sorbonne University, CNRS UMR 3215, INSERM U934, 75005 Paris, France
| | | | - Yohanns Bellaiche
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, 75248 Paris Cedex 05, France; Sorbonne University, CNRS UMR 3215, INSERM U934, 75005 Paris, France
| | | | | |
Collapse
|
10
|
Fisher KH, Strutt D, Fletcher AG. Experimental and Theoretical Evidence for Bidirectional Signaling via Core Planar Polarity Protein Complexes in Drosophila. iScience 2019; 17:49-66. [PMID: 31254741 PMCID: PMC6610702 DOI: 10.1016/j.isci.2019.06.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/21/2019] [Accepted: 06/12/2019] [Indexed: 12/21/2022] Open
Abstract
In developing tissues, sheets of cells become planar polarized, enabling coordination of cell behaviors. It has been suggested that "signaling" of polarity information between cells may occur either bidirectionally or monodirectionally between the molecules Frizzled (Fz) and Van Gogh (Vang). Using computational modeling we find that both bidirectional and monodirectional signaling models reproduce known non-autonomous phenotypes derived from patches of mutant tissue of key molecules but predict different phenotypes from double mutant tissue, which have previously given conflicting experimental results. Furthermore, we re-examine experimental phenotypes in the Drosophila wing, concluding that signaling is most likely bidirectional. Our modeling suggests that bidirectional signaling can be mediated either indirectly via bidirectional feedbacks between asymmetric intercellular protein complexes or directly via different affinities for protein binding in intercellular complexes, suggesting future avenues for investigation. Our findings offer insight into mechanisms of juxtacrine cell signaling and how tissue-scale properties emerge from individual cell behaviors.
Collapse
Affiliation(s)
- Katherine H Fisher
- Department of Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - David Strutt
- Department of Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK.
| | - Alexander G Fletcher
- School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK; Bateson Centre, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|