1
|
Sipani R, Rawal Y, Barman J, Abburi P, Kurlawala V, Joshi R. Drosophila grainyhead gene and its neural stem cell specific enhancers show epigenetic synchrony in the cells of the central nervous system. Dev Biol 2025; 522:227-239. [PMID: 40154783 DOI: 10.1016/j.ydbio.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/10/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
Enhancers are the epicentres of tissue-specific gene regulation. In this study, we have used the central nervous system (CNS) specific expression of the Drosophila grainyhead (grh) gene to make a case for deleting the enhancers in a sensitised background of other enhancer deletion, to functionally validate their role in tissue-specific gene regulation. We identified novel enhancers for grh and subsequently deleted two of them, to establish their collective importance in regulating grh expression in CNS. This showed that grh relies on multiple enhancers for its robust expression in neural stem cells (NSCs), with different combinations of enhancers playing a critical role in regulating its expression in various subset of these cells. We also found that these enhancers and the grh gene show epigenetic synchrony across the three cell types (NSCs, intermediate progenitors and neurons) of the developing CNS; and grh is not transcribed in intermediate progenitor cells, which inherits the Grh protein from the NSCs. We propose that this could be a general mechanism for regulating the expression of cell fate determinant protein in intermediate progenitor cells. Lastly, our results underline that enhancer redundancy results in phenotypic robustness in grh gene expression, which seems to be a consequence of the cumulative activity of multiple enhancers.
Collapse
Affiliation(s)
- Rashmi Sipani
- Laboratory of Neuroscience and Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), BRIC-CDFD, Inner Ring Road, Uppal, Hyderabad, 500039, India; Manipal Academy of Higher Education, Manipal, 576104, India
| | - Yamini Rawal
- Laboratory of Neuroscience and Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), BRIC-CDFD, Inner Ring Road, Uppal, Hyderabad, 500039, India; Regional Centre for Biotechnology, Faridabad, 121001, India
| | - Jiban Barman
- Laboratory of Neuroscience and Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), BRIC-CDFD, Inner Ring Road, Uppal, Hyderabad, 500039, India; Manipal Academy of Higher Education, Manipal, 576104, India
| | - Prakeerthi Abburi
- Laboratory of Neuroscience and Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), BRIC-CDFD, Inner Ring Road, Uppal, Hyderabad, 500039, India
| | - Vishakha Kurlawala
- Laboratory of Neuroscience and Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), BRIC-CDFD, Inner Ring Road, Uppal, Hyderabad, 500039, India
| | - Rohit Joshi
- Laboratory of Neuroscience and Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), BRIC-CDFD, Inner Ring Road, Uppal, Hyderabad, 500039, India.
| |
Collapse
|
2
|
Liu XG, Zhao T, Qiu QQ, Wang CK, Li TL, Liu XL, Wang L, Wang QQ, Zhou L. CRISPR/Cas9-mediated knockout of the abdominal-B homeotic gene in the global pest, fall armyworm (Spodoptera frugiperda). INSECT MOLECULAR BIOLOGY 2025; 34:162-173. [PMID: 39314071 DOI: 10.1111/imb.12958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 08/18/2024] [Indexed: 09/25/2024]
Abstract
The Homeotic complex (Hox) genes play a crucial role in determining segment identity and appendage morphology in bilaterian animals along the antero-posterior axis. Recent studies have expanded to agricultural pests such as fall armyworm (FAW), scientifically known as Spodoptera frugiperda J. E. Smith (Lepidoptera: Noctuidae), which significantly threatens global agricultural productivity. However, the specific role of the hox gene Sfabd-B in FAW remains unexplored. This research investigates the spatial and temporal expression patterns of Sfabd-B in various tissues at different developmental stages using quantitative real-time polymerase chain reaction (qRT-PCR). Additionally, we explored the potential function of the Sfabd-B gene located in the FAW genome using CRISPR/Cas9 technology. The larval mutant phenotypes can be classified into three subgroups as compared with wild-type individuals, that is, an excess of pedis in the posterior abdomen, deficient pedis due to segmental fusion and deviations in the posterior abdominal segments. Importantly, significant differences in mutant phenotypes between male and female individuals were also evident during the pupal and adult phases. Notably, both the decapentaplegic (dpp) and cuticular protein 12 (cp 12) genes displayed a substantial marked decrease in expression levels in the copulatory organ of male mutants and the ovipositor of female mutants compared with the wild type. These findings highlight the importance of Sfabd-B in genital tract patterning, providing a potential target for improving genetic control.
Collapse
Affiliation(s)
- Xiao-Guang Liu
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Te Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Green Pesticide Creation Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of New Pesticide Development and Application, Henan Agricultural University, Zhengzhou, China
- Pesticide Department of the College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Qi-Qi Qiu
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Green Pesticide Creation Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of New Pesticide Development and Application, Henan Agricultural University, Zhengzhou, China
- Pesticide Department of the College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Cong-Ke Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Green Pesticide Creation Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of New Pesticide Development and Application, Henan Agricultural University, Zhengzhou, China
- Pesticide Department of the College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Tian-Liang Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Green Pesticide Creation Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of New Pesticide Development and Application, Henan Agricultural University, Zhengzhou, China
- Pesticide Department of the College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xiao-Long Liu
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Green Pesticide Creation Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of New Pesticide Development and Application, Henan Agricultural University, Zhengzhou, China
| | - Li Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Green Pesticide Creation Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of New Pesticide Development and Application, Henan Agricultural University, Zhengzhou, China
- Pesticide Department of the College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Qin-Qin Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Green Pesticide Creation Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of New Pesticide Development and Application, Henan Agricultural University, Zhengzhou, China
- Pesticide Department of the College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Lin Zhou
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Green Pesticide Creation Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of New Pesticide Development and Application, Henan Agricultural University, Zhengzhou, China
- Pesticide Department of the College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
3
|
Sato K, Yamamoto D. Molecular and cellular origins of behavioral sex differences: a tiny little fly tells a lot. Front Mol Neurosci 2023; 16:1284367. [PMID: 37928065 PMCID: PMC10622783 DOI: 10.3389/fnmol.2023.1284367] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
Behavioral sex differences primarily derive from the sexually dimorphic organization of neural circuits that direct the behavior. In Drosophila melanogaster, the sex-determination genes fruitless (fru) and doublesex (dsx) play pivotal roles in producing the sexual dimorphism of neural circuits for behavior. Here we examine three neural groups expressing fru and/or dsx, i.e., the P1 cluster, aSP-f and aSP-g cluster pairs and aDN cluster, in which causal relationships between the dimorphic behavior and dimorphic neural characteristics are best illustrated. aSP-f, aSP-g and aDN clusters represent examples where fru or dsx switches cell-autonomously their neurite structures between the female-type and male-type. Processed sensory inputs impinging on these neurons may result in outputs that encode different valences, which culminate in the execution of distinct behavior according to the sex. In contrast, the P1 cluster is male-specific as its female counterpart undergoes dsx-driven cell death, which lowers the threshold for the induction of male-specific behaviors. We propose that the products of fru and dsx genes, as terminal selectors in sexually dimorphic neuronal wiring, induce and maintain the sex-typical chromatin state at postembryonic stages, orchestrating the transcription of effector genes that shape single neuron structures and govern cell survival and death.
Collapse
Affiliation(s)
- Kosei Sato
- Neuro-ICT Laboratory, Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Japan
| | - Daisuke Yamamoto
- Neuro-ICT Laboratory, Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Japan
| |
Collapse
|
4
|
Sipani R, Joshi R. Hox genes collaborate with helix-loop-helix factor Grainyhead to promote neuroblast apoptosis along the anterior-posterior axis of the Drosophila larval central nervous system. Genetics 2022; 222:6632667. [DOI: 10.1093/genetics/iyac101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/21/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Hox genes code for a family of a homeodomain (HD) containing transcription factors that use TALE-HD containing factors Pbx/Exd and Meis/Hth to specify the development of the anterior-posterior (AP) axis of an organism. However, the absence of TALE-HD containing factors from specific tissues emphasizes the need to identify and validate new Hox cofactors. In Drosophila central nervous system (CNS), Hox execute segment-specific apoptosis of neural stem cells (neuroblasts-NBs) and neurons. In abdominal segments of larval CNS, Hox gene Abdominal-A (AbdA) mediates NB apoptosis with the help of Exd and bHLH factor Grainyhead (Grh) using a 717 bp apoptotic enhancer. In this study, we show that this enhancer is critical for abdominal NB apoptosis and relies on two separable set of DNA binding motifs responsible for its initiation and maintenance. Our results also show that AbdA and Grh interact through their highly conserved DNA binding domains, and the DNA binding specificity of AbdA-HD is important for it to interact with Grh and essential for it to execute NB apoptosis in CNS. We also establish that Grh is required for Hox-dependent NB apoptosis in Labial and Sex Combs Reduced (Scr) expressing regions of the CNS, and it can physically interact with all the Hox proteins in vitro. Our biochemical and functional data collectively support the idea that Grh can function as a Hox cofactor and help them carry out their in vivo roles during development.
Collapse
Affiliation(s)
- Rashmi Sipani
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD) , Inner Ring Road, Uppal, Hyderabad-500039. India
- Graduate Studies, Manipal Academy of Higher Education , Manipal 576104, India
| | - Rohit Joshi
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD) , Inner Ring Road, Uppal, Hyderabad-500039. India
| |
Collapse
|
5
|
Chikami Y, Okuno M, Toyoda A, Itoh T, Niimi T. Evolutionary History of Sexual Differentiation Mechanism in Insects. Mol Biol Evol 2022; 39:msac145. [PMID: 35820410 PMCID: PMC9290531 DOI: 10.1093/molbev/msac145] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Alternative splicing underpins functional diversity in proteins and the complexity and diversity of eukaryotes. An example is the doublesex gene, the key transcriptional factor in arthropod sexual differentiation. doublesex is controlled by sex-specific splicing and promotes both male and female differentiation in holometabolan insects, whereas in hemimetabolan species, doublesex has sex-specific isoforms but is not required for female differentiation. How doublesex evolved to be essential for female development remains largely unknown. Here, we investigate ancestral states of doublesex using Thermobia domestica belonging to Zygentoma, the sister group of Pterygota, that is, winged insects. We find that, in T. domestica, doublesex expresses sex-specific isoforms but is only necessary for male differentiation of sexual morphology. This result supports the hypothesis that doublesex initially promoted male differentiation during insect evolution. However, T. domestica doublesex has a short female-specific region and upregulates the expression of vitellogenin homologs in females, suggesting that doublesex may already play some role in female morphogenesis of the common ancestor of Pterygota. Reconstruction of the ancestral sequence and prediction of protein structures show that the female-specific isoform of doublesex has an extended C-terminal disordered region in holometabolan insects but not in nonholometabolan species. We propose that doublesex acquired its function in female morphogenesis through a change in the protein motif structure rather than the emergence of the female-specific exon.
Collapse
Affiliation(s)
- Yasuhiko Chikami
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Miki Okuno
- Division of Microbiology, Department of Infectious Medicine, School of Medicine, Kurume University, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
- Advanced Genomics Center, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Takehiko Itoh
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Teruyuki Niimi
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| |
Collapse
|
6
|
Liu H, Heng J, Wang L, Li Y, Tang X, Huang X, Xia Q, Zhao P. Homeodomain proteins POU-M2, antennapedia and abdominal-B are involved in regulation of the segment-specific expression of the clip-domain serine protease gene CLIP13 in the silkworm, Bombyx mori. INSECT SCIENCE 2022; 29:111-127. [PMID: 33860633 DOI: 10.1111/1744-7917.12916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 02/20/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Clip-domain serine proteases (CLIPs) play important roles in insect innate immunity and development. Our previous studies indicated that CLIP13, an epidermis-specific gene, was involved in cuticle remodeling during molting and metamorphosis in the silkworm, Bombyx mori. However, the transcriptional regulatory mechanism and regulatory pathways of CLIP13 remained unclear. In the present study, we investigated CLIP13 expression and the regulation pathway controlled by 20-hydroxyecdysone (20E) in the silkworm. At the transcriptional level, expression of CLIP13 exhibited pronounced spatial and temporal specificity in different regions of the epidermis; homeodomain transcription factors POU-M2, antennapedia (Antp), and abdominal-B (Abd-B) showed similar expression change trends as CLIP13 in the head capsule, thorax, and abdomen, respectively. Furthermore, results of cell transfection assays, electrophoretic mobility shift assays, and chromatin immunoprecipitation demonstrated that POU-M2, Antp, and Abd-B were involved in the transcriptional regulation of CLIP13 by directly binding to their cis-response elements in CLIP13 promoter. RNA interference-mediated silencing of POU-M2, Antp, and Abd-B led to a decrease of CLIP13 expression in the head capsule, the epidermis of the 1st to 3rd thoracic segments and the 7th to 10th abdominal segments, respectively. Consistent with CLIP13, 20E treatment significantly upregulated expression of POU-M2, Antp, and Abd-B in the silkworm epidermis. Taken together, these data suggest that 20E positively regulates transcription of CLIP13 via homeodomain proteins POU-M2, Antp, and Abd-B in different regions of the silkworm epidermis during metamorphosis, thus affecting the molting process. Our findings provide new insight into the functions of homeodomain transcription factors in insect molting.
Collapse
Affiliation(s)
- Huawei Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
- Biological Science Research Center, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China
| | - Jingya Heng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
- Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Luoling Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Youshan Li
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi Province, 723001, China
| | - Xin Tang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
- Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Xuan Huang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
- Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
- Biological Science Research Center, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
- Biological Science Research Center, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China
| |
Collapse
|
7
|
Joshi R, Sipani R, Bakshi A. Roles of Drosophila Hox Genes in the Assembly of Neuromuscular Networks and Behavior. Front Cell Dev Biol 2022; 9:786993. [PMID: 35071230 PMCID: PMC8777297 DOI: 10.3389/fcell.2021.786993] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
Hox genes have been known for specifying the anterior-posterior axis (AP) in bilaterian body plans. Studies in vertebrates have shown their importance in developing region-specific neural circuitry and diversifying motor neuron pools. In Drosophila, they are instrumental for segment-specific neurogenesis and myogenesis early in development. Their robust expression in differentiated neurons implied their role in assembling region-specific neuromuscular networks. In the last decade, studies in Drosophila have unequivocally established that Hox genes go beyond their conventional functions of generating cellular diversity along the AP axis of the developing central nervous system. These roles range from establishing and maintaining the neuromuscular networks to controlling their function by regulating the motor neuron morphology and neurophysiology, thereby directly impacting the behavior. Here we summarize the limited knowledge on the role of Drosophila Hox genes in the assembly of region-specific neuromuscular networks and their effect on associated behavior.
Collapse
Affiliation(s)
- Rohit Joshi
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| | - Rashmi Sipani
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| | - Asif Bakshi
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
8
|
Goodwin SF, Hobert O. Molecular Mechanisms of Sexually Dimorphic Nervous System Patterning in Flies and Worms. Annu Rev Cell Dev Biol 2021; 37:519-547. [PMID: 34613817 DOI: 10.1146/annurev-cellbio-120319-115237] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Male and female brains display anatomical and functional differences. Such differences are observed in species across the animal kingdom, including humans, but have been particularly well-studied in two classic animal model systems, the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans. Here we summarize recent advances in understanding how the worm and fly brain acquire sexually dimorphic features during development. We highlight the advantages of each system, illustrating how the precise anatomical delineation of sexual dimorphisms in worms has enabled recent analysis into how these dimorphisms become specified during development, and how focusing on sexually dimorphic neurons in the fly has enabled an increasingly detailed understanding of sex-specific behaviors.
Collapse
Affiliation(s)
- Stephen F Goodwin
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3SR, United Kingdom;
| | - Oliver Hobert
- Department of Biological Sciences and Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA;
| |
Collapse
|
9
|
Two Doublesex1 mutants revealed a tunable gene network underlying intersexuality in Daphnia magna. PLoS One 2020; 15:e0238256. [PMID: 32866176 PMCID: PMC7458346 DOI: 10.1371/journal.pone.0238256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/12/2020] [Indexed: 11/19/2022] Open
Abstract
In recent years, the binary definition of sex is being challenged by repetitive reports about individuals with ambiguous sexual identity from various animal groups. This has created an urge to decode the molecular mechanism underlying sexual development. However, sexual ambiguities are extremely uncommon in nature, limiting their experimental value. Here, we report the establishment of a genetically modified clone of Daphnia magna from which intersex daphniids can be readily generated. By mutating the conserved central sex determining factor Doublesex1, body-wide feminization of male daphniid could be achieved. Comparative transcriptomic analysis also revealed a genetic network correlated with Doublesex1 activity which may account for the establishment of sexual identity in D. magna. We found that Dsx1 repressed genes related to growth and promoted genes related to signaling. We infer that different intersex phenotypes are the results of fluctuation in activity of these Dsx1 downstream factors. Our results demonstrated that the D. magna genome is capable of expressing sex in a continuous array, supporting the idea that sex is actually a spectrum.
Collapse
|
10
|
Bakshi A, Sipani R, Ghosh N, Joshi R. Sequential activation of Notch and Grainyhead gives apoptotic competence to Abdominal-B expressing larval neuroblasts in Drosophila Central nervous system. PLoS Genet 2020; 16:e1008976. [PMID: 32866141 PMCID: PMC7485976 DOI: 10.1371/journal.pgen.1008976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 09/11/2020] [Accepted: 07/01/2020] [Indexed: 11/19/2022] Open
Abstract
Neural circuitry for mating and reproduction resides within the terminal segments of central nervous system (CNS) which express Hox paralogous group 9–13 (in vertebrates) or Abdominal-B (Abd-B) in Drosophila. Terminal neuroblasts (NBs) in A8-A10 segments of Drosophila larval CNS are subdivided into two groups based on expression of transcription factor Doublesex (Dsx). While the sex specific fate of Dsx-positive NBs is well investigated, the fate of Dsx-negative NBs is not known so far. Our studies with Dsx-negative NBs suggests that these cells, like their abdominal counterparts (in A3-A7 segments) use Hox, Grainyhead (Grh) and Notch to undergo cell death during larval development. This cell death also happens by transcriptionally activating RHG family of apoptotic genes through a common apoptotic enhancer in early to mid L3 stages. However, unlike abdominal NBs (in A3-A7 segments) which use increasing levels of resident Hox factor Abdominal-A (Abd-A) as an apoptosis trigger, Dsx-negative NBs (in A8-A10 segments) keep the levels of resident Hox factor Abd-B constant. These cells instead utilize increasing levels of the temporal transcription factor Grh and a rise in Notch activity to gain apoptotic competence. Biochemical and in vivo analysis suggest that Abdominal-A and Grh binding motifs in the common apoptotic enhancer also function as Abdominal-B and Grh binding motifs and maintains the enhancer activity in A8-A10 NBs. Finally, the deletion of this enhancer by the CRISPR-Cas9 method blocks the apoptosis of Dsx-negative NBs. These results highlight the fact that Hox dependent NB apoptosis in abdominal and terminal regions utilizes common molecular players (Hox, Grh and Notch), but seems to have evolved different molecular strategies to pattern CNS. Two major characteristic features of bilaterian organisms are the head to tail axis and a complex central nervous system. The Hox family of transcription factors, which are expressed segmentally along the head to tail axis, plays a critical role in determining both of these features. One of the ways by which Hox factors do this is by mediating differential programmed cell death of the neural stem cells along the head to tail axis of the developing central nervous system, thereby regulating the numerical diversity of the neurons generated along this axis. Our study with a subpopulation of neural stem cells in the most terminal region of the Drosophila larval central nervous system highlights that region-specific Hox-dependent cell death of neural stem cells in abdominal and terminal regions utilizes common molecular players (Hox, Grh and Notch), but seems to have evolved different molecular strategies to pattern the developing central nervous system.
Collapse
Affiliation(s)
- Asif Bakshi
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| | - Rashmi Sipani
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| | - Neha Ghosh
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| | - Rohit Joshi
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India
- * E-mail: ,
| |
Collapse
|