1
|
Majeed M, Liao CP, Hobert O. Nervous system-wide analysis of all C. elegans cadherins reveals neuron-specific functions across multiple anatomical scales. SCIENCE ADVANCES 2025; 11:eads2852. [PMID: 39983000 PMCID: PMC11844738 DOI: 10.1126/sciadv.ads2852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/22/2025] [Indexed: 02/23/2025]
Abstract
Differential expression of cell adhesion proteins is a hallmark of cell-type diversity across the animal kingdom. Gene family-wide characterization of their organismal expression and function is, however, lacking. Using genome-engineered reporter alleles, we established an atlas of expression of the entire set of 12 cadherin gene family members in the nematode Caenorhabditis elegans, revealing differential expression across neuronal classes, a dichotomy between broadly and narrowly expressed cadherins, and several context-dependent temporal transitions in expression across development. Engineered mutant null alleles of cadherins were analyzed for defects in morphology, behavior, neuronal soma positions, neurite neighborhood topology and fasciculation, and localization of synapses in many parts of the nervous system. This analysis revealed a restricted pattern of neuronal differentiation defects at discrete subsets of anatomical scales, including a novel role of cadherins in experience-dependent electrical synapse formation. In total, our analysis results in previously little explored perspectives on cadherin deployment and function.
Collapse
Affiliation(s)
| | - Chien-Po Liao
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| |
Collapse
|
2
|
Alves Domingos H, Green M, Ouzounidis VR, Finlayson C, Prevo B, Cheerambathur DK. The kinetochore protein KNL-1 regulates the actin cytoskeleton to control dendrite branching. J Cell Biol 2025; 224:e202311147. [PMID: 39625434 PMCID: PMC11613958 DOI: 10.1083/jcb.202311147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 07/23/2024] [Accepted: 11/14/2024] [Indexed: 12/11/2024] Open
Abstract
The function of the nervous system is intimately tied to its complex and highly interconnected architecture. Precise control of dendritic branching in individual neurons is central to building the complex structure of the nervous system. Here, we show that the kinetochore protein KNL-1 and its associated KMN (Knl1/Mis12/Ndc80 complex) network partners, typically known for their role in chromosome-microtubule coupling during mitosis, control dendrite branching in the Caenorhabditis elegans mechanosensory PVD neuron. KNL-1 restrains excess dendritic branching and promotes contact-dependent repulsion events, ensuring robust sensory behavior and preventing premature neurodegeneration. Unexpectedly, KNL-1 loss resulted in significant alterations of the actin cytoskeleton alongside changes in microtubule dynamics within dendrites. We show that KNL-1 modulates F-actin dynamics to generate proper dendrite architecture and that its N-terminus can initiate F-actin assembly. These findings reveal that the postmitotic neuronal KMN network acts to shape the developing nervous system by regulating the actin cytoskeleton and provide new insight into the mechanisms controlling dendrite architecture.
Collapse
Affiliation(s)
- Henrique Alves Domingos
- Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Mattie Green
- Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Vasileios R. Ouzounidis
- Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Cameron Finlayson
- Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Bram Prevo
- Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Dhanya K. Cheerambathur
- Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
3
|
Ing-Esteves S, Lefebvre JL. Gamma-protocadherins regulate dendrite self-recognition and dynamics to drive self-avoidance. Curr Biol 2024; 34:4224-4239.e4. [PMID: 39214087 DOI: 10.1016/j.cub.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 06/03/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
Neurons form cell-type-specific morphologies that are shaped by cell-surface molecules and their cellular events governing dendrite growth. One growth rule is dendrite self-avoidance, whereby dendrites distribute uniformly within a neuron's territory by avoiding sibling branches. In mammalian neurons, dendrite self-avoidance is regulated by a large family of cell-recognition molecules called the clustered protocadherins (cPcdhs). Genetic and molecular studies suggest that the cPcdhs mediate homophilic recognition and repulsion between self-dendrites. However, this model has not been tested through direct investigation of self-avoidance during development. Here, we performed live imaging and four-dimensional (4D) quantifications of dendrite morphogenesis to define the dynamics and cPcdh-dependent mechanisms of self-avoidance. We focused on the mouse retinal starburst amacrine cell (SAC), which requires the gamma-Pcdhs (Pcdhgs) and self/non-self-recognition to establish a stereotypic radial morphology while permitting dendritic interactions with neighboring SACs. Through morphogenesis, SACs extend dendritic protrusions that iteratively fill the growing arbor and contact and retract from nearby self-dendrites. Compared to non-self-contacting protrusions, self-contacting events have longer lifetimes, and a subset persists as loops. In the absence of the Pcdhgs, non-self-contacting dynamics are unaffected but self-contacting retractions are significantly diminished. Self-contacting bridges accumulate, leading to the bundling of dendritic processes and disruption to the arbor shape. By tracking dendrite self-avoidance in real time, our findings establish that the γ-Pcdhs mediate self-recognition and retraction between contacting sibling dendrites. Our results also illustrate how self-avoidance shapes stochastic and space-filling dendritic outgrowth for robust pattern formation in mammalian neurons.
Collapse
Affiliation(s)
- Samantha Ing-Esteves
- Program for Neuroscience and Mental Health, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Julie L Lefebvre
- Program for Neuroscience and Mental Health, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
4
|
Heiman MG, Bülow HE. Dendrite morphogenesis in Caenorhabditis elegans. Genetics 2024; 227:iyae056. [PMID: 38785371 PMCID: PMC11151937 DOI: 10.1093/genetics/iyae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/02/2024] [Indexed: 05/25/2024] Open
Abstract
Since the days of Ramón y Cajal, the vast diversity of neuronal and particularly dendrite morphology has been used to catalog neurons into different classes. Dendrite morphology varies greatly and reflects the different functions performed by different types of neurons. Significant progress has been made in our understanding of how dendrites form and the molecular factors and forces that shape these often elaborately sculpted structures. Here, we review work in the nematode Caenorhabditis elegans that has shed light on the developmental mechanisms that mediate dendrite morphogenesis with a focus on studies investigating ciliated sensory neurons and the highly elaborated dendritic trees of somatosensory neurons. These studies, which combine time-lapse imaging, genetics, and biochemistry, reveal an intricate network of factors that function both intrinsically in dendrites and extrinsically from surrounding tissues. Therefore, dendrite morphogenesis is the result of multiple tissue interactions, which ultimately determine the shape of dendritic arbors.
Collapse
Affiliation(s)
- Maxwell G Heiman
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Hannes E Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
5
|
Pu L, Wang J, Lu Q, Nilsson L, Philbrook A, Pandey A, Zhao L, Schendel RV, Koh A, Peres TV, Hashi WH, Myint SL, Williams C, Gilthorpe JD, Wai SN, Brown A, Tijsterman M, Sengupta P, Henriksson J, Chen C. Dissecting the genetic landscape of GPCR signaling through phenotypic profiling in C. elegans. Nat Commun 2023; 14:8410. [PMID: 38110404 PMCID: PMC10728192 DOI: 10.1038/s41467-023-44177-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023] Open
Abstract
G protein-coupled receptors (GPCRs) mediate responses to various extracellular and intracellular cues. However, the large number of GPCR genes and their substantial functional redundancy make it challenging to systematically dissect GPCR functions in vivo. Here, we employ a CRISPR/Cas9-based approach, disrupting 1654 GPCR-encoding genes in 284 strains and mutating 152 neuropeptide-encoding genes in 38 strains in C. elegans. These two mutant libraries enable effective deorphanization of chemoreceptors, and characterization of receptors for neuropeptides in various cellular processes. Mutating a set of closely related GPCRs in a single strain permits the assignment of functions to GPCRs with functional redundancy. Our analyses identify a neuropeptide that interacts with three receptors in hypoxia-evoked locomotory responses, unveil a collection of regulators in pathogen-induced immune responses, and define receptors for the volatile food-related odorants. These results establish our GPCR and neuropeptide mutant libraries as valuable resources for the C. elegans community to expedite studies of GPCR signaling in multiple contexts.
Collapse
Affiliation(s)
- Longjun Pu
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Jing Wang
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Qiongxuan Lu
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Lars Nilsson
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Alison Philbrook
- Department of Biology, MS 008, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Anjali Pandey
- Department of Biology, MS 008, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Lina Zhao
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Robin van Schendel
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Alan Koh
- MRC Laboratory of Medical Sciences, London, W12 0HS, UK
- Institute of Clinical Sciences, Imperial College London, London, UK
| | - Tanara V Peres
- MRC Laboratory of Medical Sciences, London, W12 0HS, UK
- Institute of Clinical Sciences, Imperial College London, London, UK
| | - Weheliye H Hashi
- MRC Laboratory of Medical Sciences, London, W12 0HS, UK
- Institute of Clinical Sciences, Imperial College London, London, UK
| | - Si Lhyam Myint
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Chloe Williams
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | | | - Sun Nyunt Wai
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Andre Brown
- MRC Laboratory of Medical Sciences, London, W12 0HS, UK
- Institute of Clinical Sciences, Imperial College London, London, UK
| | - Marcel Tijsterman
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Piali Sengupta
- Department of Biology, MS 008, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Johan Henriksson
- Department of Molecular Biology, Umeå University, Umeå, Sweden.
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.
- Integrated Science Lab (Icelab), Umeå University, Umeå, Sweden.
| | - Changchun Chen
- Department of Molecular Biology, Umeå University, Umeå, Sweden.
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden.
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden.
| |
Collapse
|
6
|
Yu L, Liu M, Li F, Wang Q, Wang M, So KF, Qu Y, Zhou L. Celsr2 Knockout Alleviates Inhibitory Synaptic Stripping and Benefits Motoneuron Survival and Axon Regeneration After Branchial Plexus Avulsion. Mol Neurobiol 2023; 60:1884-1900. [PMID: 36593433 PMCID: PMC9984348 DOI: 10.1007/s12035-022-03198-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023]
Abstract
Axotomy-induced synaptic stripping modulates survival and axon regeneration of injured motoneurons. Celsr2 is supposed to mediate homophilic interactions of neighboring cells during development, and its role in synaptic stripping remains unknow. In a model of brachial plexus avulsion, Celsr2 knockout improved functional recovery, motoneuron survival, and axon regeneration. Celsr2 was indicated to express in spinal motoneurons, excitatory and inhibitory interneurons, astrocytes, and a subset of oligodendrocytes using Celsr2LacZ mice. Double immunostaining showed that the coverage of inhibitory and excitatory vesicles on injured motoneurons were remarkably reduced after injury, whereas more inhibitory vesicles were maintained in Celsr2-/- mutants than control mice. In the ultrastructure, the density of inhibitory F-boutons on injured motoneurons was higher in Celsr2-/- mutants than controls. Conditional knockout of Celsr2 in astrocytes or oligodendrocytes showed the similar axotomy-induced synaptic withdrawal to the control. RNAseq of injured spinal samples identified 12 MHC I molecules with significant changes between Celsr2-/- and control mice. After injury, expression of MHC I surrounding injured motoneurons was increased, particularly high in Celsr2-/- mutants. In conclusion, Celsr2 knockout enhances MHC I signaling, alleviates inhibitory synaptic stripping cell-autonomously, and contributes to motoneuron survival and regeneration, and Celsr2 is a potential target for neural repair.
Collapse
Affiliation(s)
- Lingtai Yu
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangzhou, 510632, People's Republic of China
| | - Mengfan Liu
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangzhou, 510632, People's Republic of China
| | - Fuxiang Li
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangzhou, 510632, People's Republic of China
| | - Qianghua Wang
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangzhou, 510632, People's Republic of China
| | - Meizhi Wang
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangzhou, 510632, People's Republic of China
| | - Kwok-Fai So
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangzhou, 510632, People's Republic of China.,Department of Neurology and Stroke Center, The First Affiliated Hospital & Clinical Neuroscience Institute of Jinan University, Guangzhou, 510632, People's Republic of China.,Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, 266071, Shandong, People's Republic of China.,Co-Innovation Center of Neuroregeneration, Nantong University, Jiangsu, People's Republic of China
| | - Yibo Qu
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangzhou, 510632, People's Republic of China.,Co-Innovation Center of Neuroregeneration, Nantong University, Jiangsu, People's Republic of China
| | - Libing Zhou
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangzhou, 510632, People's Republic of China. .,Department of Neurology and Stroke Center, The First Affiliated Hospital & Clinical Neuroscience Institute of Jinan University, Guangzhou, 510632, People's Republic of China. .,Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, 266071, Shandong, People's Republic of China. .,Co-Innovation Center of Neuroregeneration, Nantong University, Jiangsu, People's Republic of China.
| |
Collapse
|
7
|
Godini R, Fallahi H, Pocock R. The regulatory landscape of neurite development in Caenorhabditis elegans. Front Mol Neurosci 2022; 15:974208. [PMID: 36090252 PMCID: PMC9453034 DOI: 10.3389/fnmol.2022.974208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/26/2022] [Indexed: 11/18/2022] Open
Abstract
Neuronal communication requires precise connectivity of neurite projections (axons and dendrites). Developing neurites express cell-surface receptors that interpret extracellular cues to enable correct guidance toward, and connection with, target cells. Spatiotemporal regulation of neurite guidance molecule expression by transcription factors (TFs) is critical for nervous system development and function. Here, we review how neurite development is regulated by TFs in the Caenorhabditis elegans nervous system. By collecting publicly available transcriptome and ChIP-sequencing data, we reveal gene expression dynamics during neurite development, providing insight into transcriptional mechanisms governing construction of the nervous system architecture.
Collapse
Affiliation(s)
- Rasoul Godini
- Development and Stem Cells Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- *Correspondence: Rasoul Godini,
| | - Hossein Fallahi
- Department of Biology, School of Sciences, Razi University, Kermanshah, Iran
| | - Roger Pocock
- Development and Stem Cells Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Roger Pocock,
| |
Collapse
|
8
|
Yuval O, Iosilevskii Y, Meledin A, Podbilewicz B, Shemesh T. Neuron tracing and quantitative analyses of dendritic architecture reveal symmetrical three-way-junctions and phenotypes of git-1 in C. elegans. PLoS Comput Biol 2021; 17:e1009185. [PMID: 34280180 PMCID: PMC8321406 DOI: 10.1371/journal.pcbi.1009185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 07/29/2021] [Accepted: 06/15/2021] [Indexed: 11/18/2022] Open
Abstract
Complex dendritic trees are a distinctive feature of neurons. Alterations to dendritic morphology are associated with developmental, behavioral and neurodegenerative changes. The highly-arborized PVD neuron of C. elegans serves as a model to study dendritic patterning; however, quantitative, objective and automated analyses of PVD morphology are missing. Here, we present a method for neuronal feature extraction, based on deep-learning and fitting algorithms. The extracted neuronal architecture is represented by a database of structural elements for abstracted analysis. We obtain excellent automatic tracing of PVD trees and uncover that dendritic junctions are unevenly distributed. Surprisingly, these junctions are three-way-symmetrical on average, while dendritic processes are arranged orthogonally. We quantify the effect of mutation in git-1, a regulator of dendritic spine formation, on PVD morphology and discover a localized reduction in junctions. Our findings shed new light on PVD architecture, demonstrating the effectiveness of our objective analyses of dendritic morphology and suggest molecular control mechanisms.
Collapse
Affiliation(s)
- Omer Yuval
- Faculty of Biology, Technion–Israel Institute of Technology, Haifa, Israel
- School of Computing, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, United Kingdom
| | - Yael Iosilevskii
- Faculty of Biology, Technion–Israel Institute of Technology, Haifa, Israel
| | - Anna Meledin
- Faculty of Biology, Technion–Israel Institute of Technology, Haifa, Israel
| | | | - Tom Shemesh
- Faculty of Biology, Technion–Israel Institute of Technology, Haifa, Israel
| |
Collapse
|