1
|
Cruz J, Sun WY, Verbeke A, Hariharan IK. Single-cell transcriptomics of X-ray irradiated Drosophila wing discs reveals heterogeneity related to cell-cycle status and cell location. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.10.627868. [PMID: 39990483 PMCID: PMC11844406 DOI: 10.1101/2024.12.10.627868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Even seemingly homogeneous populations of cells can express phenotypic diversity in response to environmental changes. Thus, X-ray irradiation of tissues composed of diverse cell types can have complex outcomes. We have used single-cell RNA-sequencing to study the effects of X-ray radiation on the Drosophila wing imaginal disc, a relatively simple tissue composed mostly of epithelial cells. Transcriptomic clustering of cells collected from the wing disc generates clusters that are mainly grouped based on proximodistal cell location. To quantify heterogeneity of gene expression among clusters, we adapted a metric used to study market concentration, the Herfindahl-Hirschman Index. Genes involved in DNA damage repair, defense against reactive oxygen species, cell cycle progression, and apoptosis are expressed relatively uniformly. In contrast, genes encoding a subset of ligands, notably cytokines that activate the JAK/STAT pathway, some transcription factors including Ets21C, previously implicated in regeneration, and several signaling proteins are expressed more regionally. Though the radiation-responsive transcription factor p53 is expressed relatively uniformly in the wing disc, several regionally-induced genes still require p53 function, indicating that regional and radiation-induced factors combine to regulate their expression. We also examined heterogeneity within regions using a clustering approach based on cell cycle gene expression. A subpopulation of cells, characterized by high levels of tribbles expression, is amplified in irradiated discs. Remarkably, this subpopulation accounts for a considerable fraction of radiation-induced gene expression, indicating that cellular responses are non-uniform even within regions. Thus, both inter-regional and intra-regional heterogeneity are important features of tissue responses to X-ray radiation.
Collapse
Affiliation(s)
- Joyner Cruz
- Department of Molecular and Cell Biology, 515 Weill Hall, University of California, Berkeley, Berkeley CA 94720-3200
| | - Willam Y. Sun
- Department of Molecular and Cell Biology, 515 Weill Hall, University of California, Berkeley, Berkeley CA 94720-3200
| | - Alexandra Verbeke
- Department of Molecular and Cell Biology, 515 Weill Hall, University of California, Berkeley, Berkeley CA 94720-3200
| | - Iswar K. Hariharan
- Department of Molecular and Cell Biology, 515 Weill Hall, University of California, Berkeley, Berkeley CA 94720-3200
| |
Collapse
|
2
|
Ewen-Campen B, Joshi N, Hermon AS, Thakkar T, Zirin J, Perrimon N. A collection of split-Gal4 drivers targeting conserved signaling ligands in Drosophila. G3 (BETHESDA, MD.) 2025; 15:jkae276. [PMID: 39569452 PMCID: PMC11797011 DOI: 10.1093/g3journal/jkae276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/22/2024]
Abstract
Communication between cells in metazoan organisms is mediated by a remarkably small number of highly conserved signaling pathways. Given this small number of signaling pathways, the existence of multiple related ligands for many of these pathways represents a key evolutionary innovation for encoding complexity into cell-cell signaling. Relatedly, crosstalk between pathways is another critical feature, which allows a modest number of pathways to ultimately generate an enormously diverse range of outcomes. It would thus be useful to have genetic tools to identify and manipulate not only those cells that express a given signaling ligand but also those cells that specifically coexpress pairs of signaling ligands. We present a collection of split-Gal4 knock-in lines targeting many of the ligands for highly conserved signaling pathways in Drosophila (Notch, Hedgehog, fibroblast growth factor (FGF), epidermal growth factor (EGF), transforming growth factor β (TGFβ), Janus kinase/signal transducer and activator of transcription (JAK/STAT), Jun kinase (JNK), and platelet-derived growth factor (PDGF)/vascular endothelial growth factor (VEGF)-related receptor (PVR). We demonstrate that these lines faithfully recapitulate the endogenous expression pattern of their targets and that they can be used to identify cells and tissues that coexpress pairs of ligands. As a proof of principle, we demonstrate that the 4th chromosome TGFβ ligands myoglianin and maverick are broadly coexpressed in muscles and other tissues of both larva and adults and that the JAK/STAT ligands upd2 and upd3 are partially coexpressed from cells of the midgut following gut damage. Together with our previously collection of split-Gal4 lines targeting the 7 Wnt ligands, this resource allows Drosophila researchers to identify and genetically manipulate cells that specifically express pairs of conserved ligands from nearly all the major intercellular signaling pathways.
Collapse
Affiliation(s)
- Ben Ewen-Campen
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Neha Joshi
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Ashley Suraj Hermon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Tanuj Thakkar
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Jonathan Zirin
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
| |
Collapse
|
3
|
Li X, Liu M, Xing Y, Niu Y, Liu TH, Sun JL, Liu Y, Hemba-Waduge RUS, Ji JY. Distinct effects of CDK8 module subunits on cellular growth and proliferation in Drosophila. Development 2024; 151:dev203111. [PMID: 39531377 PMCID: PMC11634032 DOI: 10.1242/dev.203111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
The Mediator complex plays a pivotal role in facilitating RNA polymerase II-dependent transcription in eukaryotes. Within this complex, the CDK8 kinase module (CKM), comprising CDK8, Cyclin C (CycC), Med12 and Med13, serves as a dissociable subcomplex that modulates the activity of the small Mediator complex. Genetic studies in Drosophila have revealed distinct phenotypes associated with mutations in CKM subunits, but the underlying mechanisms have remained unclear. Using Drosophila as a model, we generated transgenic strains to deplete individually or simultaneously the four CKM subunits in all possible combinations, uncovering unique phenotypes in the eyes and wings. Depletion of CDK8-CycC enhanced E2F1 target gene expression and promoted cell-cycle progression, whereas Med12-Med13 depletion had no significant impact on these processes. Instead, depleting Med12-Med13 altered the expression of ribosomal protein genes and fibrillarin, and reduced nascent protein synthesis, indicating a severe reduction in ribosome biogenesis and cellular growth compared to the loss of CDK8-CycC. These findings reveal distinct in vivo roles for CKM subunits, with Med12-Med13 disruption having a more pronounced effect on ribosome biogenesis and protein synthesis than CDK8-CycC loss.
Collapse
Affiliation(s)
- Xiao Li
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Mengmeng Liu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| | - Yue Xing
- Department of Pathology and Lab Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ye Niu
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Tzu-Hao Liu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| | - Jasmine L. Sun
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| | - Yanwu Liu
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Rajitha-Udakara-Sampath Hemba-Waduge
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| | - Jun-Yuan Ji
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| |
Collapse
|
4
|
Ewen-Campen B, Joshi N, Hermon AS, Thakkar T, Zirin J, Perrimon N. A collection of split-Gal4 drivers targeting conserved signaling ligands in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617664. [PMID: 39416173 PMCID: PMC11482896 DOI: 10.1101/2024.10.10.617664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Communication between cells in metazoan organisms is mediated by a remarkably small number of highly conserved signaling pathways. Given the relatively small number of signaling pathways, the existence of multiple related ligands for many of these pathways is thought to represent a key evolutionary innovation for encoding complexity into cell-cell signaling. Relatedly, crosstalk and other interactions between pathways is another critical feature which allows a modest number pathways to ultimately generate an enormously diverse range of outcomes. It would thus be useful to have genetic tools to identify and manipulate not only those cells which express a given signaling ligand, but also those cells that specifically co-express pairs of signaling ligands. Here, we present a collection of split-Gal4 knock-in lines targeting many of the ligands for highly conserved signaling pathways in Drosophila (Notch, Hedgehog, FGF, EGF, TGFβ, JAK/STAT, JNK, and PVR). We demonstrate that these lines faithfully recapitulate the endogenous expression pattern of their targets, and that they can be used to specifically identify the cells and tissues that co-express pairs of signaling ligands. As a proof of principle, we demonstrate that the 4th chromosome TGFβ ligands myoglianin and maverick are broadly co-expressed in muscles and other tissues of both larva and adults, and that the JAK/STAT ligands upd2 and upd3 are partially co-expressed from cells of the midgut following gut damage. Together with our previously collection of split-Gal4 lines targeting the seven Wnt ligands, this resource allows Drosophila researchers to identify and genetically manipulate cells that specifically express pairs of conserved ligands from nearly all the major intercellular signaling pathways.
Collapse
Affiliation(s)
- Ben Ewen-Campen
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Neha Joshi
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Ashley Suraj Hermon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Tanuj Thakkar
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan Zirin
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
| |
Collapse
|
5
|
Androniciuc AM, Tate EW, Vincent JP. Engineering of TurboID-Wingless for the identification of Wingless interactors through in vivo proximity labelling. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001210. [PMID: 38872844 PMCID: PMC11170289 DOI: 10.17912/micropub.biology.001210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 06/15/2024]
Abstract
Wnt signalling coordinates growth and cell fate decisions during development and mis-regulation of Wnt signalling in adults is associated with a range of conditions, including cancer and neurodegenerative diseases. Therefore, means of modulating Wnt proteins and/or cofactors could have significant therapeutic potential. As a first step towards enumerating the Wnt interactome, we devised an in vivo proximity labelling strategy to identify proteins that interact with Wingless (Wg), the main Drosophila Wnt. We engineered the wingless locus to express a functional TurboID-Wg fusion at endogenous levels and identified in vivo interactors by streptavidin pull-down from embryos, followed by mass spectrometry. Further analysis may in future extend the screen coverage and deliver functional validation of the newly identified interactors.
Collapse
Affiliation(s)
- Ana-Miruna Androniciuc
- The Francis Crick Institute, London, England, United Kingdom
- Department of Chemistry, Imperial College London, London, England, United Kingdom
| | - Edward W. Tate
- The Francis Crick Institute, London, England, United Kingdom
- Department of Chemistry, Imperial College London, London, England, United Kingdom
| | | |
Collapse
|
6
|
Wang X, Zhai Y, Zheng H. Deciphering the cellular heterogeneity of the insect brain with single-cell RNA sequencing. INSECT SCIENCE 2024; 31:314-327. [PMID: 37702319 DOI: 10.1111/1744-7917.13270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 09/14/2023]
Abstract
Insects show highly complicated adaptive and sophisticated behaviors, including spatial orientation skills, learning ability, and social interaction. These behaviors are controlled by the insect brain, the central part of the nervous system. The tiny insect brain consists of millions of highly differentiated and interconnected cells forming a complex network. Decades of research has gone into an understanding of which parts of the insect brain possess particular behaviors, but exactly how they modulate these functional consequences needs to be clarified. Detailed description of the brain and behavior is required to decipher the complexity of cell types, as well as their connectivity and function. Single-cell RNA-sequencing (scRNA-seq) has emerged recently as a breakthrough technology to understand the transcriptome at cellular resolution. With scRNA-seq, it is possible to uncover the cellular heterogeneity of brain cells and elucidate their specific functions and state. In this review, we first review the basic structure of insect brains and the links to insect behaviors mainly focusing on learning and memory. Then the scRNA applications on insect brains are introduced by representative studies. Single-cell RNA-seq has allowed researchers to classify cell subpopulations within different insect brain regions, pinpoint single-cell developmental trajectories, and identify gene regulatory networks. These developments empower the advances in neuroscience and shed light on the intricate problems in understanding insect brain functions and behaviors.
Collapse
Affiliation(s)
- Xiaofei Wang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yifan Zhai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Diseases and In-sect Pests, Jinan, China
| | - Hao Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Linz DM, Hara Y, Deem KD, Kuraku S, Hayashi S, Tomoyasu Y. Transcriptomic exploration of the Coleopteran wings reveals insight into the evolution of novel structures associated with the beetle elytron. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023; 340:197-213. [PMID: 36617687 PMCID: PMC10107685 DOI: 10.1002/jez.b.23188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/25/2022] [Accepted: 12/13/2022] [Indexed: 01/10/2023]
Abstract
The acquisition of novel traits is central to organismal evolution, yet the molecular mechanisms underlying this process are elusive. The beetle forewings (elytra) are evolutionarily modified to serve as a protective shield, providing a unique opportunity to study these mechanisms. In the past, the orthologs of genes within the wing gene network from Drosophila studies served as the starting point when studying the evolution of elytra (candidate genes). Although effective, candidate gene lists are finite and only explore genes conserved across species. To go beyond candidate genes, we used RNA sequencing and explored the wing transcriptomes of two Coleopteran species, the red flour beetle (Tribolium castaneum) and the Japanese stag beetle (Dorcus hopei). Our analysis revealed sets of genes enriched in Tribolium elytra (57 genes) and genes unique to the hindwings, which possess more "typical" insect wing morphologies (29 genes). Over a third of the hindwing-enriched genes were "candidate genes" whose functions were previously analyzed in Tribolium, demonstrating the robustness of our sequencing. Although the overlap was limited, transcriptomic comparison between the beetle species found a common set of genes, including key wing genes, enriched in either elytra or hindwings. Our RNA interference analysis for elytron-enriched genes in Tribolium uncovered novel genes with roles in forming various aspects of morphology that are unique to elytra, such as pigmentation, hardening, sensory development, and vein formation. Our analyses deepen our understanding of how gene network evolution facilitated the emergence of the elytron, a unique structure critical to the evolutionary success of beetles.
Collapse
Affiliation(s)
- David M Linz
- Department of Biology, Miami University, Oxford, Ohio, USA
| | - Yuichiro Hara
- Phyloinformatics Unit, RIKEN Center for Life Science Technologies, Kobe, Hyogo, Japan.,Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Kevin D Deem
- Department of Biology, Miami University, Oxford, Ohio, USA
| | - Shigehiro Kuraku
- Phyloinformatics Unit, RIKEN Center for Life Science Technologies, Kobe, Hyogo, Japan.,Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Shigeo Hayashi
- Laboratory for Morphogenetic Signaling, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan.,Department of Biology, Kobe University Graduate School of Science, Kobe, Hyogo, Japan
| | | |
Collapse
|
8
|
He S, Shao W, Chen S(C, Wang T, Gibson MC. Spatial transcriptomics reveals a conserved segment polarity program that governs muscle patterning in Nematostella vectensis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523347. [PMID: 36711919 PMCID: PMC9882047 DOI: 10.1101/2023.01.09.523347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
During early animal evolution, the emergence of axially-polarized segments was central to the diversification of complex bilaterian body plans. Nevertheless, precisely how and when segment polarity pathways arose remains obscure. Here we demonstrate the molecular basis for segment polarization in developing larvae of the pre-bilaterian sea anemone Nematostella vectensis . Utilizing spatial transcriptomics, we first constructed a 3-D gene expression atlas of developing larval segments. Capitalizing on accurate in silico predictions, we identified Lbx and Uncx, conserved homeodomain-containing genes that occupy opposing subsegmental domains under the control of both BMP signaling and the Hox-Gbx cascade. Functionally, Lbx mutagenesis eliminated all molecular evidence of segment polarization at larval stage and caused an aberrant mirror-symmetric pattern of retractor muscles in primary polyps. These results demonstrate the molecular basis for segment polarity in a pre-bilaterian animal, suggesting that polarized metameric structures were present in the Cnidaria-Bilateria common ancestor over 600 million years ago. Highlights Nematostella endomesodermal tissue forms metameric segments and displays a transcriptomic profile similar to that observed in bilaterian mesoderm Construction of a comprehensive 3-D gene expression atlas enables systematic dissection of segmental identity in endomesoderm Lbx and Uncx , two conserved homeobox-containing genes, establish segment polarity in Nematostella The Cnidarian-Bilaterian common ancestor likely possessed the genetic toolkit to generate polarized metameric structures.
Collapse
Affiliation(s)
- Shuonan He
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
- Current Address: Howard Hughes Medical Institute, Department of Organismic & Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts 02138, USA
| | - Wanqing Shao
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Current Address: Research Computing, Boston Children’s Hospital, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Matthew C. Gibson
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
- Department of Anatomy and Cell Biology, The University of Kansas School of Medicine, Kansas City, Kansas 66160, USA
| |
Collapse
|
9
|
Enomoto M, Igaki T. Cell-cell interactions that drive tumorigenesis in Drosophila. Fly (Austin) 2022; 16:367-381. [PMID: 36413374 PMCID: PMC9683056 DOI: 10.1080/19336934.2022.2148828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cell-cell interactions within tumour microenvironment play crucial roles in tumorigenesis. Genetic mosaic techniques available in Drosophila have provided a powerful platform to study the basic principles of tumour growth and progression via cell-cell communications. This led to the identification of oncogenic cell-cell interactions triggered by endocytic dysregulation, mitochondrial dysfunction, cell polarity defects, or Src activation in Drosophila imaginal epithelia. Such oncogenic cooperations can be caused by interactions among epithelial cells, mesenchymal cells, and immune cells. Moreover, microenvironmental factors such as nutrients, local tissue structures, and endogenous growth signalling activities critically affect tumorigenesis. Dissecting various types of oncogenic cell-cell interactions at the single-cell level in Drosophila will greatly increase our understanding of how tumours progress in living animals.
Collapse
Affiliation(s)
- Masato Enomoto
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Kyoto, Japan
| | - Tatsushi Igaki
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Kyoto, Japan,CONTACT Tatsushi Igaki
| |
Collapse
|
10
|
Kowalczyk W, Romanelli L, Atkins M, Hillen H, Bravo González-Blas C, Jacobs J, Xie J, Soheily S, Verboven E, Moya IM, Verhulst S, de Waegeneer M, Sansores-Garcia L, van Huffel L, Johnson RL, van Grunsven LA, Aerts S, Halder G. Hippo signaling instructs ectopic but not normal organ growth. Science 2022; 378:eabg3679. [DOI: 10.1126/science.abg3679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Hippo signaling pathway is widely considered a master regulator of organ growth because of the prominent overgrowth phenotypes caused by experimental manipulation of its activity. Contrary to this model, we show here that removing Hippo transcriptional output did not impair the ability of the mouse liver and
Drosophila
eyes to grow to their normal size. Moreover, the transcriptional activity of the Hippo pathway effectors Yap/Taz/Yki did not correlate with cell proliferation, and hyperactivation of these effectors induced gene expression programs that did not recapitulate normal development. Concordantly, a functional screen in
Drosophila
identified several Hippo pathway target genes that were required for ectopic overgrowth but not normal growth. Thus, Hippo signaling does not instruct normal growth, and the Hippo-induced overgrowth phenotypes are caused by the activation of abnormal genetic programs.
Collapse
Affiliation(s)
- W. Kowalczyk
- VIB Center for Cancer Biology and KU Leuven Department of Oncology, KU Leuven, Leuven, Belgium
| | - L. Romanelli
- VIB Center for Cancer Biology and KU Leuven Department of Oncology, KU Leuven, Leuven, Belgium
| | - M. Atkins
- VIB Center for Cancer Biology and KU Leuven Department of Oncology, KU Leuven, Leuven, Belgium
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX, USA
| | - H. Hillen
- VIB Center for Cancer Biology and KU Leuven Department of Oncology, KU Leuven, Leuven, Belgium
| | - C. Bravo González-Blas
- VIB Center for Brain and Disease Research and KU Leuven Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - J. Jacobs
- VIB Center for Brain and Disease Research and KU Leuven Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - J. Xie
- VIB Center for Cancer Biology and KU Leuven Department of Oncology, KU Leuven, Leuven, Belgium
| | - S. Soheily
- VIB Center for Cancer Biology and KU Leuven Department of Oncology, KU Leuven, Leuven, Belgium
| | - E. Verboven
- VIB Center for Cancer Biology and KU Leuven Department of Oncology, KU Leuven, Leuven, Belgium
| | - I. M. Moya
- VIB Center for Cancer Biology and KU Leuven Department of Oncology, KU Leuven, Leuven, Belgium
- Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas, Quito, Ecuador
| | - S. Verhulst
- Department for Cell Biology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussel-Jette, Belgium
| | - M. de Waegeneer
- VIB Center for Brain and Disease Research and KU Leuven Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - L. Sansores-Garcia
- VIB Center for Cancer Biology and KU Leuven Department of Oncology, KU Leuven, Leuven, Belgium
| | - L. van Huffel
- VIB Center for Cancer Biology and KU Leuven Department of Oncology, KU Leuven, Leuven, Belgium
| | - R. L. Johnson
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L. A. van Grunsven
- Department for Cell Biology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussel-Jette, Belgium
| | - S. Aerts
- VIB Center for Brain and Disease Research and KU Leuven Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - G. Halder
- VIB Center for Cancer Biology and KU Leuven Department of Oncology, KU Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Worley MI, Everetts NJ, Yasutomi R, Chang RJ, Saretha S, Yosef N, Hariharan IK. Ets21C sustains a pro-regenerative transcriptional program in blastema cells of Drosophila imaginal discs. Curr Biol 2022; 32:3350-3364.e6. [PMID: 35820420 PMCID: PMC9387119 DOI: 10.1016/j.cub.2022.06.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 04/06/2022] [Accepted: 06/14/2022] [Indexed: 12/11/2022]
Abstract
An important unanswered question in regenerative biology is to what extent regeneration is accomplished by the reactivation of gene regulatory networks used during development versus the activation of regeneration-specific transcriptional programs. Following damage, Drosophila imaginal discs, the larval precursors of adult structures, can regenerate missing portions by localized proliferation of damage-adjacent tissue. Using single-cell transcriptomics in regenerating wing discs, we have obtained a comprehensive view of the transcriptome of regenerating discs and identified two regeneration-specific cell populations within the blastema, Blastema1 and Blastema2. Collectively, these cells upregulate multiple genes encoding secreted proteins that promote regeneration including Pvf1, upd3, asperous, Mmp1, and the maturation delaying factor Ilp8. Expression of the transcription factor Ets21C is restricted to this regenerative secretory zone; it is not expressed in undamaged discs. Ets21C expression is activated by the JNK/AP-1 pathway, and it can function in a type 1 coherent feedforward loop with AP-1 to sustain expression of downstream genes. Without Ets21C function, the blastema cells fail to maintain the expression of a number of genes, which leads to premature differentiation and severely compromised regeneration. As Ets21C is dispensable for normal development, these observations indicate that Ets21C orchestrates a regeneration-specific gene regulatory network. We have also identified cells resembling both Blastema1 and Blastema2 in scribble tumorous discs. They express the Ets21C-dependent gene regulatory network, and eliminating Ets21C function reduces tumorous growth. Thus, mechanisms that function during regeneration can be co-opted by tumors to promote aberrant growth.
Collapse
Affiliation(s)
- Melanie I Worley
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| | - Nicholas J Everetts
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; Department of Electrical Engineering and Computer Science, Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Riku Yasutomi
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Rebecca J Chang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Shrey Saretha
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Nir Yosef
- Department of Electrical Engineering and Computer Science, Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA.
| | - Iswar K Hariharan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
12
|
Tse J, Li TH, Zhang J, Lee ACK, Lee I, Qu Z, Lin X, Hui J, Chan TF. Single-Cell Atlas of the Drosophila Leg Disc Identifies a Long Non-Coding RNA in Late Development. Int J Mol Sci 2022; 23:ijms23126796. [PMID: 35743238 PMCID: PMC9224501 DOI: 10.3390/ijms23126796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 02/05/2023] Open
Abstract
The Drosophila imaginal disc has been an excellent model for the study of developmental gene regulation. In particular, long non-coding RNAs (lncRNAs) have gained widespread attention in recent years due to their important role in gene regulation. Their specific spatiotemporal expressions further support their role in developmental processes and diseases. In this study, we explored the role of a novel lncRNA in Drosophila leg development by dissecting and dissociating w1118 third-instar larval third leg (L3) discs into single cells and single nuclei, and performing single-cell RNA-sequencing (scRNA-seq) and single-cell assays for transposase-accessible chromatin (scATAC-seq). Single-cell transcriptomics analysis of the L3 discs across three developmental timepoints revealed different cell types and identified lncRNA:CR33938 as a distal specific gene with high expression in late development. This was further validated by fluorescence in-situ hybridization (FISH). The scATAC-seq results reproduced the single-cell transcriptomics landscape and elucidated the distal cell functions at different timepoints. Furthermore, overexpression of lncRNA:CR33938 in the S2 cell line increased the expression of leg development genes, further elucidating its potential role in development.
Collapse
Affiliation(s)
- Joyce Tse
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (J.T.); (T.H.L.); (J.Z.); (A.C.K.L.); (I.L.); (Z.Q.); (X.L.); (J.H.)
- State Key Lab of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Tsz Ho Li
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (J.T.); (T.H.L.); (J.Z.); (A.C.K.L.); (I.L.); (Z.Q.); (X.L.); (J.H.)
- State Key Lab of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Jizhou Zhang
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (J.T.); (T.H.L.); (J.Z.); (A.C.K.L.); (I.L.); (Z.Q.); (X.L.); (J.H.)
- State Key Lab of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Alan Chun Kit Lee
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (J.T.); (T.H.L.); (J.Z.); (A.C.K.L.); (I.L.); (Z.Q.); (X.L.); (J.H.)
- State Key Lab of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Ivy Lee
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (J.T.); (T.H.L.); (J.Z.); (A.C.K.L.); (I.L.); (Z.Q.); (X.L.); (J.H.)
- State Key Lab of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Zhe Qu
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (J.T.); (T.H.L.); (J.Z.); (A.C.K.L.); (I.L.); (Z.Q.); (X.L.); (J.H.)
- State Key Lab of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Xiao Lin
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (J.T.); (T.H.L.); (J.Z.); (A.C.K.L.); (I.L.); (Z.Q.); (X.L.); (J.H.)
- State Key Lab of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Jerome Hui
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (J.T.); (T.H.L.); (J.Z.); (A.C.K.L.); (I.L.); (Z.Q.); (X.L.); (J.H.)
- State Key Lab of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Ting-Fung Chan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (J.T.); (T.H.L.); (J.Z.); (A.C.K.L.); (I.L.); (Z.Q.); (X.L.); (J.H.)
- State Key Lab of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
- Correspondence:
| |
Collapse
|
13
|
Abstract
The Drosophila wing imaginal disc is a tissue of undifferentiated cells that are precursors of the wing and most of the notum of the adult fly. The wing disc first forms during embryogenesis from a cluster of ∼30 cells located in the second thoracic segment, which invaginate to form a sac-like structure. They undergo extensive proliferation during larval stages to form a mature larval wing disc of ∼35,000 cells. During this time, distinct cell fates are assigned to different regions, and the wing disc develops a complex morphology. Finally, during pupal stages the wing disc undergoes morphogenetic processes and then differentiates to form the adult wing and notum. While the bulk of the wing disc comprises epithelial cells, it also includes neurons and glia, and is associated with tracheal cells and muscle precursor cells. The relative simplicity and accessibility of the wing disc, combined with the wealth of genetic tools available in Drosophila, have combined to make it a premier system for identifying genes and deciphering systems that play crucial roles in animal development. Studies in wing imaginal discs have made key contributions to many areas of biology, including tissue patterning, signal transduction, growth control, regeneration, planar cell polarity, morphogenesis, and tissue mechanics.
Collapse
Affiliation(s)
- Bipin Kumar Tripathi
- Department of Molecular Biology and Biochemistry, Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Kenneth D Irvine
- Department of Molecular Biology and Biochemistry, Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
14
|
Yousefian S, Musillo MJ, Bageritz J. Analysis of Single-Cell Transcriptome Data in Drosophila. Methods Mol Biol 2022; 2540:93-111. [PMID: 35980574 DOI: 10.1007/978-1-0716-2541-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The fly Drosophila is a versatile model organism that has led to fascinating biological discoveries. In the past few years, Drosophila researchers have used single-cell RNA-sequencing (scRNA-seq) to gain insights into the cellular composition, and developmental processes of various tissues and organs. Given the success of single-cell technologies a variety of computational tools and software packages were developed to enable and facilitate the analysis of scRNA-seq data. In this book chapter we want to give guidance on analyzing droplet-based scRNA-seq data from Drosophila. We will initially describe the preprocessing commonly done for Drosophila, point out possible downstream analyses, and finally highlight computational methods developed using Drosophila scRNA-seq data.
Collapse
Affiliation(s)
- Schayan Yousefian
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité-Universitätsmedizin, Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Maria Jelena Musillo
- Centre for Organismal Studies Heidelberg (COS), Universität Heidelberg, Heidelberg, Germany
| | - Josephine Bageritz
- Centre for Organismal Studies Heidelberg (COS), Universität Heidelberg, Heidelberg, Germany.
| |
Collapse
|
15
|
Li H. Single-cell RNA sequencing in Drosophila: Technologies and applications. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2021; 10:e396. [PMID: 32940008 PMCID: PMC7960577 DOI: 10.1002/wdev.396] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/09/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022]
Abstract
Single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool for investigating cell states and functions at the single-cell level. It has greatly revolutionized transcriptomic studies in many life science research fields, such as neurobiology, immunology, and developmental biology. With the fast development of both experimental platforms and bioinformatics approaches over the past decade, scRNA-seq is becoming economically feasible and experimentally practical for many biomedical laboratories. Drosophila has served as an excellent model organism for dissecting cellular and molecular mechanisms that underlie tissue development, adult cell function, disease, and aging. The recent application of scRNA-seq methods to Drosophila tissues has led to a number of exciting discoveries. In this review, I will provide a summary of recent scRNA-seq studies in Drosophila, focusing on technical approaches and biological applications. I will also discuss current challenges and future opportunities of making new discoveries using scRNA-seq in Drosophila. This article is categorized under: Technologies > Analysis of the Transcriptome.
Collapse
Affiliation(s)
- Hongjie Li
- Department of Biology, Stanford University, Stanford, California, USA
| |
Collapse
|
16
|
Drosophila, an Integrative Model to Study the Features of Muscle Stem Cells in Development and Regeneration. Cells 2021; 10:cells10082112. [PMID: 34440881 PMCID: PMC8394675 DOI: 10.3390/cells10082112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/17/2022] Open
Abstract
Muscle stem cells (MuSCs) are essential for muscle growth, maintenance and repair. Over the past decade, experiments in Drosophila have been instrumental in understanding the molecular and cellular mechanisms regulating MuSCs (also known as adult muscle precursors, AMPs) during development. A large number of genetic tools available in fruit flies provides an ideal framework to address new questions which could not be addressed with other model organisms. This review reports the main findings revealed by the study of Drosophila AMPs, with a specific focus on how AMPs are specified and properly positioned, how they acquire their identity and which are the environmental cues controlling their behavior and fate. The review also describes the recent identification of the Drosophila adult MuSCs that have similar characteristics to vertebrates MuSCs. Integration of the different levels of MuSCs analysis in flies is likely to provide new fundamental knowledge in muscle stem cell biology largely applicable to other systems.
Collapse
|
17
|
Paul R, Giraud G, Domsch K, Duffraisse M, Marmigère F, Khan S, Vanderperre S, Lohmann I, Stoks R, Shashidhara LS, Merabet S. Hox dosage contributes to flight appendage morphology in Drosophila. Nat Commun 2021; 12:2892. [PMID: 34001903 PMCID: PMC8129201 DOI: 10.1038/s41467-021-23293-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 04/20/2021] [Indexed: 12/15/2022] Open
Abstract
Flying insects have invaded all the aerial space on Earth and this astonishing radiation could not have been possible without a remarkable morphological diversification of their flight appendages. Here, we show that characteristic spatial expression profiles and levels of the Hox genes Antennapedia (Antp) and Ultrabithorax (Ubx) underlie the formation of two different flight organs in the fruit fly Drosophila melanogaster. We further demonstrate that flight appendage morphology is dependent on specific Hox doses. Interestingly, we find that wing morphology from evolutionary distant four-winged insect species is also associated with a differential expression of Antp and Ubx. We propose that variation in the spatial expression profile and dosage of Hox proteins is a major determinant of flight appendage diversification in Drosophila and possibly in other insect species during evolution.
Collapse
Affiliation(s)
- Rachel Paul
- IGFL, CNRS UMR5242, ENS Lyon, Lyon, France
- Laboratory of Genetics and Development, Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada
| | | | - Katrin Domsch
- University of Heidelberg, Centre for Organismal Studies (COS) Heidelberg Department of Developmental Biology, Heidelberg, Germany
| | | | | | - Soumen Khan
- Indian Institute of Science Education and Research (IISER), Pashan Pune, India
| | | | - Ingrid Lohmann
- University of Heidelberg, Centre for Organismal Studies (COS) Heidelberg Department of Developmental Biology, Heidelberg, Germany
| | - Robby Stoks
- Laboratory of Aquatic Ecology, Evolution and Conservation, Leuven, Belgium
| | - L S Shashidhara
- Indian Institute of Science Education and Research (IISER), Pashan Pune, India
- Ashoka University, Sonipat, India
| | | |
Collapse
|
18
|
Hu Y, Tattikota SG, Liu Y, Comjean A, Gao Y, Forman C, Kim G, Rodiger J, Papatheodorou I, dos Santos G, Mohr SE, Perrimon N. DRscDB: A single-cell RNA-seq resource for data mining and data comparison across species. Comput Struct Biotechnol J 2021; 19:2018-2026. [PMID: 33995899 PMCID: PMC8085783 DOI: 10.1016/j.csbj.2021.04.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/24/2021] [Accepted: 04/07/2021] [Indexed: 12/27/2022] Open
Abstract
With the advent of single-cell RNA sequencing (scRNA-seq) technologies, there has been a spike in studies involving scRNA-seq of several tissues across diverse species including Drosophila. Although a few databases exist for users to query genes of interest within the scRNA-seq studies, search tools that enable users to find orthologous genes and their cell type-specific expression patterns across species are limited. Here, we built a new search database, DRscDB (https://www.flyrnai.org/tools/single_cell/web/), to address this need. DRscDB serves as a comprehensive repository for published scRNA-seq datasets for Drosophila and relevant datasets from human and other model organisms. DRscDB is based on manual curation of Drosophila scRNA-seq studies of various tissue types and their corresponding analogous tissues in vertebrates including zebrafish, mouse, and human. Of note, our search database provides most of the literature-derived marker genes, thus preserving the original analysis of the published scRNA-seq datasets. Finally, DRscDB serves as a web-based user interface that allows users to mine gene expression data from scRNA-seq studies and perform cell cluster enrichment analyses pertaining to various scRNA-seq studies, both within and across species.
Collapse
Affiliation(s)
- Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Sudhir Gopal Tattikota
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Yifang Liu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Aram Comjean
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Yue Gao
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Corey Forman
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Grace Kim
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Jonathan Rodiger
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Irene Papatheodorou
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Trust Genome Campus, Hinxton CB10 1SD, UK
| | - Gilberto dos Santos
- The Biological Laboratories, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Stephanie E. Mohr
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Howard Hughes Medical Institute, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| |
Collapse
|
19
|
Everetts NJ, Worley MI, Yasutomi R, Yosef N, Hariharan IK. Single-cell transcriptomics of the Drosophila wing disc reveals instructive epithelium-to-myoblast interactions. eLife 2021; 10:61276. [PMID: 33749594 PMCID: PMC8021398 DOI: 10.7554/elife.61276] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 03/21/2021] [Indexed: 12/20/2022] Open
Abstract
In both vertebrates and invertebrates, generating a functional appendage requires interactions between ectoderm-derived epithelia and mesoderm-derived cells. To investigate such interactions, we used single-cell transcriptomics to generate a temporal cell atlas of the Drosophila wing disc from two developmental time points. Using these data, we visualized gene expression using a multilayered model of the wing disc and cataloged ligand–receptor pairs that could mediate signaling between epithelial cells and adult muscle precursors (AMPs). We found that localized expression of the fibroblast growth factor ligands, Thisbe and Pyramus, in the disc epithelium regulates the number and location of the AMPs. In addition, Hedgehog ligand from the epithelium activates a specific transcriptional program within adjacent AMP cells, defined by AMP-specific targets Neurotactin and midline, that is critical for proper formation of direct flight muscles. More generally, our annotated temporal cell atlas provides an organ-wide view of potential cell–cell interactions between epithelial and myogenic cells.
Collapse
Affiliation(s)
- Nicholas J Everetts
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Department of Electrical Engineering & Computer Science, Center for Computational Biology, UC Berkeley, University of California, Berkeley, Berkeley, United States
| | - Melanie I Worley
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Riku Yasutomi
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Nir Yosef
- Department of Electrical Engineering & Computer Science, Center for Computational Biology, UC Berkeley, University of California, Berkeley, Berkeley, United States
| | - Iswar K Hariharan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
20
|
Goodwin K, Nelson CM. Uncovering cellular networks in branching morphogenesis using single-cell transcriptomics. Curr Top Dev Biol 2020; 143:239-280. [PMID: 33820623 DOI: 10.1016/bs.ctdb.2020.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Single-cell RNA-sequencing (scRNA-seq) and related technologies to identify cell types and measure gene expression in space, in time, and within lineages have multiplied rapidly in recent years. As these techniques proliferate, we are seeing an increase in their application to the study of developing tissues. Here, we focus on single-cell investigations of branching morphogenesis. Branched organs are highly complex but typically develop recursively, such that a given developmental stage theoretically contains the entire spectrum of cell identities from progenitor to terminally differentiated. Therefore, branched organs are a highly attractive system for study by scRNA-seq. First, we provide an update on advances in the field of scRNA-seq analysis, focusing on spatial transcriptomics, computational reconstruction of differentiation trajectories, and integration of scRNA-seq with lineage tracing. In addition, we discuss the possibilities and limitations for applying these techniques to studying branched organs. We then discuss exciting advances made using scRNA-seq in the study of branching morphogenesis and differentiation in mammalian organs, with emphasis on the lung, kidney, and mammary gland. We propose ways that scRNA-seq could be used to address outstanding questions in each organ. Finally, we highlight the importance of physical and mechanical signals in branching morphogenesis and speculate about how scRNA-seq and related techniques could be applied to study tissue morphogenesis beyond just differentiation.
Collapse
Affiliation(s)
- Katharine Goodwin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, United States
| | - Celeste M Nelson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, United States; Department of Molecular Biology, Princeton University, Princeton, NJ, United States.
| |
Collapse
|
21
|
Zappia MP, de Castro L, Ariss MM, Jefferson H, Islam AB, Frolov MV. A cell atlas of adult muscle precursors uncovers early events in fibre-type divergence in Drosophila. EMBO Rep 2020; 21:e49555. [PMID: 32815271 PMCID: PMC7534622 DOI: 10.15252/embr.201949555] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 07/12/2020] [Accepted: 07/24/2020] [Indexed: 12/31/2022] Open
Abstract
In Drosophila, the wing disc‐associated muscle precursor cells give rise to the fibrillar indirect flight muscles (IFM) and the tubular direct flight muscles (DFM). To understand early transcriptional events underlying this muscle diversification, we performed single‐cell RNA‐sequencing experiments and built a cell atlas of myoblasts associated with third instar larval wing disc. Our analysis identified distinct transcriptional signatures for IFM and DFM myoblasts that underlie the molecular basis of their divergence. The atlas further revealed various states of differentiation of myoblasts, thus illustrating previously unappreciated spatial and temporal heterogeneity among them. We identified and validated novel markers for both IFM and DFM myoblasts at various states of differentiation by immunofluorescence and genetic cell‐tracing experiments. Finally, we performed a systematic genetic screen using a panel of markers from the reference cell atlas as an entry point and found a novel gene, Amalgam which is functionally important in muscle development. Our work provides a framework for leveraging scRNA‐seq for gene discovery and details a strategy that can be applied to other scRNA‐seq datasets.
Collapse
Affiliation(s)
- Maria Paula Zappia
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Lucia de Castro
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Majd M Ariss
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Holly Jefferson
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Abul Bmmk Islam
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Maxim V Frolov
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
22
|
Abstract
Drosophila melanogaster has historically been a workhorse model organism for studying developmental biology. In addition, Drosophila is an excellent model for studying how damaged tissues and organs can regenerate. Recently, new precision approaches that enable both highly targeted injury and genetic manipulation have accelerated progress in this field. Here, we highlight these techniques and review examples of recently discovered mechanisms that regulate regeneration in Drosophila larval and adult tissues. We also discuss how, by applying these powerful approaches, studies of Drosophila can continue to guide the future of regeneration research.
Collapse
Affiliation(s)
- Donald T Fox
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Regeneration Next, Duke University, Durham, NC 27710, USA
| | - Erez Cohen
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Regeneration Next, Duke University, Durham, NC 27710, USA
| | - Rachel Smith-Bolton
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
23
|
The people behind the papers - Mingxi Deng and Yan Yan. Development 2019; 146:146/18/dev184309. [PMID: 31540900 DOI: 10.1242/dev.184309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Drosophila wing discs are epithelial sac-like organs and a powerful model for investigating the link between proliferation and patterning. Of particular interest is the question of how single cells in the disc integrate information regarding position and growth control, as morphogens that pattern an axis can also regulate cell division. A new Techniques and Resources article in Development reports the application of single cell sequencing technologies to dissociated discs in an effort to understand these problems. We caught up with first author Mingxi Deng and his supervisor Yan Yan, Assistant Professor at The Hong Kong University of Science and Technology (HKUST), to hear more about the story.
Collapse
|