1
|
Voronov D, Paganos P, Magri MS, Cuomo C, Maeso I, Gómez-Skarmeta JL, Arnone MI. Integrative multi-omics increase resolution of the sea urchin posterior gut gene regulatory network at single-cell level. Development 2024; 151:dev202278. [PMID: 39058236 DOI: 10.1242/dev.202278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
Drafting gene regulatory networks (GRNs) requires embryological knowledge pertaining to the cell type families, information on the regulatory genes, causal data from gene knockdown experiments and validations of the identified interactions by cis-regulatory analysis. We use multi-omics involving next-generation sequencing to obtain the necessary information for drafting the Strongylocentrotus purpuratus (Sp) posterior gut GRN. Here, we present an update to the GRN using: (1) a single-cell RNA-sequencing-derived cell atlas highlighting the 2 day-post-fertilization (dpf) sea urchin gastrula cell type families, as well as the genes expressed at the single-cell level; (2) a set of putative cis-regulatory modules and transcription factor-binding sites obtained from chromatin accessibility ATAC-seq data; and (3) interactions directionality obtained from differential bulk RNA sequencing following knockdown of the transcription factor Sp-Pdx1, a key regulator of gut patterning in sea urchins. Combining these datasets, we draft the GRN for the hindgut Sp-Pdx1-positive cells in the 2 dpf gastrula embryo. Overall, our data suggest the complex connectivity of the posterior gut GRN and increase the resolution of gene regulatory cascades operating within it.
Collapse
Affiliation(s)
- Danila Voronov
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Periklis Paganos
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Marta S Magri
- Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Claudia Cuomo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Ignacio Maeso
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Jose Luis Gómez-Skarmeta
- Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Maria Ina Arnone
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| |
Collapse
|
2
|
Khor JM, Guerrero-Santoro J, Ettensohn CA. Molecular compartmentalization in a syncytium: restricted mobility of proteins within the sea urchin skeletogenic mesenchyme. Development 2023; 150:dev201804. [PMID: 37902109 DOI: 10.1242/dev.201804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/23/2023] [Indexed: 10/31/2023]
Abstract
Multinucleated cells, or syncytia, are found in diverse taxa. Their biological function is often associated with the compartmentalization of biochemical or cellular activities within the syncytium. How such compartments are generated and maintained is poorly understood. The sea urchin embryonic skeleton is secreted by a syncytium, and local patterns of skeletal growth are associated with distinct sub-domains of gene expression within the syncytium. For such molecular compartments to be maintained and to control local patterns of skeletal growth: (1) the mobility of TFs must be restricted to produce stable differences in the transcriptional states of nuclei within the syncytium; and (2) the mobility of biomineralization proteins must also be restricted to produce regional differences in skeletal growth. To test these predictions, we expressed fluorescently tagged forms of transcription factors and biomineralization proteins in sub-domains of the skeletogenic syncytium. We found that both classes of proteins have restricted mobility within the syncytium and identified motifs that limit their mobility. Our findings have general implications for understanding the functional and molecular compartmentalization of syncytia.
Collapse
Affiliation(s)
- Jian Ming Khor
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15218, USA
| | - Jennifer Guerrero-Santoro
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15218, USA
| | - Charles A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15218, USA
| |
Collapse
|
3
|
Chessel A, De Crozé N, Molina MD, Taberner L, Dru P, Martin L, Lepage T. RAS-independent ERK activation by constitutively active KSR3 in non-chordate metazoa. Nat Commun 2023; 14:3970. [PMID: 37407549 DOI: 10.1038/s41467-023-39606-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/21/2023] [Indexed: 07/07/2023] Open
Abstract
During early development of the sea urchin embryo, activation of ERK signalling in mesodermal precursors is not triggered by extracellular RTK ligands but by a cell-autonomous, RAS-independent mechanism that was not understood. We discovered that in these cells, ERK signalling is activated through the transcriptional activation of a gene encoding a protein related to Kinase Suppressor of Ras, that we named KSR3. KSR3 belongs to a family of catalytically inactive allosteric activators of RAF. Phylogenetic analysis revealed that genes encoding kinase defective KSR3 proteins are present in most non-chordate metazoa but have been lost in flies and nematodes. We show that the structure of KSR3 factors resembles that of several oncogenic human RAF mutants and that KSR3 from echinoderms, cnidarians and hemichordates activate ERK signalling independently of RAS when overexpressed in cultured cells. Finally, we used the sequence of KSR3 factors to identify activating mutations of human B-RAF. These findings reveal key functions for this family of factors as activators of RAF in RAS-independent ERK signalling in invertebrates. They have implications on the evolution of the ERK signalling pathway and suggest a mechanism for its co-option in the course of evolution.
Collapse
Affiliation(s)
- Aline Chessel
- Institut de Biologie Valrose CNRS, Université Côte d'Azur, Nice, France
| | - Noémie De Crozé
- Institut de Biologie Valrose CNRS, Université Côte d'Azur, Nice, France
| | - Maria Dolores Molina
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Catalonia, Spain
| | - Laura Taberner
- Institut de Biologie Valrose CNRS, Université Côte d'Azur, Nice, France
| | - Philippe Dru
- CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche, 181 Chemin du Lazaret, 06230, Villefranche-sur-Mer, France
| | - Luc Martin
- Institut de Biologie Valrose CNRS, Université Côte d'Azur, Nice, France
| | - Thierry Lepage
- Institut de Biologie Valrose CNRS, Université Côte d'Azur, Nice, France.
| |
Collapse
|
4
|
Khor JM, Ettensohn CA. An optimized Tet-On system for conditional control of gene expression in sea urchins. Development 2023; 150:dev201373. [PMID: 36607745 PMCID: PMC10108607 DOI: 10.1242/dev.201373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/28/2022] [Indexed: 01/07/2023]
Abstract
Sea urchins and other echinoderms are important experimental models for studying developmental processes. The lack of approaches for conditional gene perturbation, however, has made it challenging to investigate the late developmental functions of genes that have essential roles during early embryogenesis and genes that have diverse functions in multiple tissues. The doxycycline-controlled Tet-On system is a widely used molecular tool for temporally and spatially regulated transgene expression. Here, we optimized the Tet-On system to conditionally induce gene expression in sea urchin embryos. Using this approach, we explored the roles the MAPK signaling plays in skeletogenesis by expressing genes that perturb the pathway specifically in primary mesenchyme cells during later stages of development. We demonstrated the wide utility of the Tet-On system by applying it to a second sea urchin species and in cell types other than the primary mesenchyme cells. Our work provides a robust and flexible platform for the spatiotemporal regulation of gene expression in sea urchins, which will considerably enhance the utility of this prominent model system.
Collapse
Affiliation(s)
- Jian Ming Khor
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Charles A. Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
5
|
Larouche-Bilodeau C, Cameron CB. Acorn worm ossicle ultrastructure and composition and the origin of the echinoderm skeleton. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220773. [PMID: 36147942 PMCID: PMC9490348 DOI: 10.1098/rsos.220773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/31/2022] [Indexed: 05/02/2023]
Abstract
Here, we describe the shape and mineral composition of ossicles from eight acorn worm species, bringing the total known biomineralizing enteropneusts to 10 and confirming that ossicles are widespread in Enteropneusta. Three general forms were identified including a globular form that occurs in all three major enteropneust families. The biomineral compositions included all three polymorphs of calcium carbonate; calcite, aragonite and vaterite, and low to high magnesium concentrations. Calcite was the most common and characteristic of echinoderm ossicles. Based on these findings we hypothesize that an enteropneust-like ancestor to the Ambulacraria had ectodermal ossicles, formed in an extracellular occluded space bordered by a sheath of sclerocyte cells. The ossicles were microscopic, monotypic globular shaped, calcite ossicles with low to high Mg content and MSP130 proteins. The ossicles lacked intercalation with other ossicles. The function of acorn worm ossicles is unknown, but the position of ossicles in the trunk epithelia and near to the surface suggests predator deterrence, to provide grip on the walls of a burrow or tube, as storage of metabolic waste, or to regulate blood pH, rather than as an endoskeleton function seen in fossil and crown group Echinodermata.
Collapse
Affiliation(s)
| | - Christopher B. Cameron
- Département de sciences biologiques, University of Montreal, Montreal, Quebec, Canada H3C 3J7
| |
Collapse
|
6
|
Larouche-Bilodeau C, Cameron CB. Acorn worm ossicle ultrastructure and composition and the origin of the echinoderm skeleton. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220773. [PMID: 36147942 DOI: 10.5281/zenodo.5103051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/31/2022] [Indexed: 05/18/2023]
Abstract
Here, we describe the shape and mineral composition of ossicles from eight acorn worm species, bringing the total known biomineralizing enteropneusts to 10 and confirming that ossicles are widespread in Enteropneusta. Three general forms were identified including a globular form that occurs in all three major enteropneust families. The biomineral compositions included all three polymorphs of calcium carbonate; calcite, aragonite and vaterite, and low to high magnesium concentrations. Calcite was the most common and characteristic of echinoderm ossicles. Based on these findings we hypothesize that an enteropneust-like ancestor to the Ambulacraria had ectodermal ossicles, formed in an extracellular occluded space bordered by a sheath of sclerocyte cells. The ossicles were microscopic, monotypic globular shaped, calcite ossicles with low to high Mg content and MSP130 proteins. The ossicles lacked intercalation with other ossicles. The function of acorn worm ossicles is unknown, but the position of ossicles in the trunk epithelia and near to the surface suggests predator deterrence, to provide grip on the walls of a burrow or tube, as storage of metabolic waste, or to regulate blood pH, rather than as an endoskeleton function seen in fossil and crown group Echinodermata.
Collapse
Affiliation(s)
| | - Christopher B Cameron
- Département de sciences biologiques, University of Montreal, Montreal, Quebec, Canada H3C 3J7
| |
Collapse
|
7
|
Khor JM, Ettensohn CA. Architecture and evolution of the cis-regulatory system of the echinoderm kirrelL gene. eLife 2022; 11:72834. [PMID: 35212624 PMCID: PMC8903837 DOI: 10.7554/elife.72834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 02/22/2022] [Indexed: 11/17/2022] Open
Abstract
The gene regulatory network (GRN) that underlies echinoderm skeletogenesis is a prominent model of GRN architecture and evolution. KirrelL is an essential downstream effector gene in this network and encodes an Ig-superfamily protein required for the fusion of skeletogenic cells and the formation of the skeleton. In this study, we dissected the transcriptional control region of the kirrelL gene of the purple sea urchin, Strongylocentrotus purpuratus. Using plasmid- and bacterial artificial chromosome-based transgenic reporter assays, we identified key cis-regulatory elements (CREs) and transcription factor inputs that regulate Sp-kirrelL, including direct, positive inputs from two key transcription factors in the skeletogenic GRN, Alx1 and Ets1. We next identified kirrelL cis-regulatory regions from seven other echinoderm species that together represent all classes within the phylum. By introducing these heterologous regulatory regions into developing sea urchin embryos we provide evidence of their remarkable conservation across ~500 million years of evolution. We dissected in detail the kirrelL regulatory region of the sea star, Patiria miniata, and demonstrated that it also receives direct inputs from Alx1 and Ets1. Our findings identify kirrelL as a component of the ancestral echinoderm skeletogenic GRN. They support the view that GRN subcircuits, including specific transcription factor–CRE interactions, can remain stable over vast periods of evolutionary history. Lastly, our analysis of kirrelL establishes direct linkages between a developmental GRN and an effector gene that controls a key morphogenetic cell behavior, cell–cell fusion, providing a paradigm for extending the explanatory power of GRNs.
Collapse
Affiliation(s)
- Jian Ming Khor
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, United States
| | - Charles A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, United States
| |
Collapse
|
8
|
Ettensohn CA, Guerrero-Santoro J, Khor JM. Lessons from a transcription factor: Alx1 provides insights into gene regulatory networks, cellular reprogramming, and cell type evolution. Curr Top Dev Biol 2022; 146:113-148. [PMID: 35152981 DOI: 10.1016/bs.ctdb.2021.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The skeleton-forming cells of sea urchins and other echinoderms have been studied by developmental biologists as models of cell specification and morphogenesis for many decades. The gene regulatory network (GRN) deployed in the embryonic skeletogenic cells of euechinoid sea urchins is one of the best understood in any developing animal. Recent comparative studies have leveraged the information contained in this GRN, bringing renewed attention to the diverse patterns of skeletogenesis within the phylum and the evolutionary basis for this diversity. The homeodomain-containing transcription factor, Alx1, was originally shown to be a core component of the skeletogenic GRN of the sea urchin embryo. Alx1 has since been found to be key regulator of skeletal cell identity throughout the phylum. As such, Alx1 is currently serving as a lens through which multiple developmental processes are being investigated. These include not only GRN organization and evolution, but also cell reprogramming, cell type evolution, and the gene regulatory control of morphogenesis. This review summarizes our current state of knowledge concerning Alx1 and highlights the insights it is yielding into these important developmental and evolutionary processes.
Collapse
Affiliation(s)
- Charles A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States.
| | | | - Jian Ming Khor
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
9
|
Zhang J, Ibrahim F, Najmulski E, Katholos G, Altarawy D, Heath LS, Tulin SL. Developmental gene regulatory network connections predicted by machine learning from gene expression data alone. PLoS One 2021; 16:e0261926. [PMID: 34962963 PMCID: PMC8714117 DOI: 10.1371/journal.pone.0261926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022] Open
Abstract
Gene regulatory network (GRN) inference can now take advantage of powerful machine learning algorithms to complement traditional experimental methods in building gene networks. However, the dynamical nature of embryonic development-representing the time-dependent interactions between thousands of transcription factors, signaling molecules, and effector genes-is one of the most challenging arenas for GRN prediction. In this work, we show that successful GRN predictions for a developmental network from gene expression data alone can be obtained with the Priors Enriched Absent Knowledge (PEAK) network inference algorithm. PEAK is a noise-robust method that models gene expression dynamics via ordinary differential equations and selects the best network based on information-theoretic criteria coupled with the machine learning algorithm Elastic Net. We test our GRN prediction methodology using two gene expression datasets for the purple sea urchin, Stronglyocentrotus purpuratus, and cross-check our results against existing GRN models that have been constructed and validated by over 30 years of experimental results. Our results find a remarkably high degree of sensitivity in identifying known gene interactions in the network (maximum 81.58%). We also generate novel predictions for interactions that have not yet been described, which provide a resource for researchers to use to further complete the sea urchin GRN. Published ChIPseq data and spatial co-expression analysis further support a subset of the top novel predictions. We conclude that GRN predictions that match known gene interactions can be produced using gene expression data alone from developmental time series experiments.
Collapse
Affiliation(s)
- Jingyi Zhang
- Department of Computer Science, Virginia Tech, Blacksburg, VA, United States of America
| | - Farhan Ibrahim
- Department of Computer Science, Virginia Tech, Blacksburg, VA, United States of America
| | - Emily Najmulski
- Department of Biology, Canisius College, Buffalo, NY, United States of America
| | - George Katholos
- Department of Biology, Canisius College, Buffalo, NY, United States of America
| | - Doaa Altarawy
- Department of Computer Science, Virginia Tech, Blacksburg, VA, United States of America
- Computer and Systems Engineering Department, Alexandria University, Alexandria, Egypt
| | - Lenwood S. Heath
- Department of Computer Science, Virginia Tech, Blacksburg, VA, United States of America
| | - Sarah L. Tulin
- Department of Biology, Canisius College, Buffalo, NY, United States of America
| |
Collapse
|
10
|
Paganos P, Voronov D, Musser JM, Arendt D, Arnone MI. Single-cell RNA sequencing of the Strongylocentrotus purpuratus larva reveals the blueprint of major cell types and nervous system of a non-chordate deuterostome. eLife 2021; 10:70416. [PMID: 34821556 PMCID: PMC8683087 DOI: 10.7554/elife.70416] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022] Open
Abstract
Identifying the molecular fingerprint of organismal cell types is key for understanding their function and evolution. Here, we use single-cell RNA sequencing (scRNA-seq) to survey the cell types of the sea urchin early pluteus larva, representing an important developmental transition from non-feeding to feeding larva. We identify 21 distinct cell clusters, representing cells of the digestive, skeletal, immune, and nervous systems. Further subclustering of these reveal a highly detailed portrait of cell diversity across the larva, including the identification of neuronal cell types. We then validate important gene regulatory networks driving sea urchin development and reveal new domains of activity within the larval body. Focusing on neurons that co-express Pdx-1 and Brn1/2/4, we identify an unprecedented number of genes shared by this population of neurons in sea urchin and vertebrate endocrine pancreatic cells. Using differential expression results from Pdx-1 knockdown experiments, we show that Pdx1 is necessary for the acquisition of the neuronal identity of these cells. We hypothesize that a network similar to the one orchestrated by Pdx1 in the sea urchin neurons was active in an ancestral cell type and then inherited by neuronal and pancreatic developmental lineages in sea urchins and vertebrates.
Collapse
Affiliation(s)
- Periklis Paganos
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy
| | - Danila Voronov
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy
| | - Jacob M Musser
- European Molecular Biology Laboratory, Developmental Biology Unit, Heidelberg, Germany
| | - Detlev Arendt
- European Molecular Biology Laboratory, Developmental Biology Unit, Heidelberg, Germany
| | - Maria Ina Arnone
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy
| |
Collapse
|
11
|
Global patterns of enhancer activity during sea urchin embryogenesis assessed by eRNA profiling. Genome Res 2021; 31:1680-1692. [PMID: 34330790 PMCID: PMC8415375 DOI: 10.1101/gr.275684.121] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/28/2021] [Indexed: 11/25/2022]
Abstract
We used capped analysis of gene expression with sequencing (CAGE-seq) to profile eRNA expression and enhancer activity during embryogenesis of a model echinoderm: the sea urchin, Strongylocentrotus purpuratus. We identified more than 18,000 enhancers that were active in mature oocytes and developing embryos and documented a burst of enhancer activation during cleavage and early blastula stages. We found that a large fraction (73.8%) of all enhancers active during the first 48 h of embryogenesis were hyperaccessible no later than the 128-cell stage and possibly even earlier. Most enhancers were located near gene bodies, and temporal patterns of eRNA expression tended to parallel those of nearby genes. Furthermore, enhancers near lineage-specific genes contained signatures of inputs from developmental gene regulatory networks deployed in those lineages. A large fraction (60%) of sea urchin enhancers previously shown to be active in transgenic reporter assays was associated with eRNA expression. Moreover, a large fraction (50%) of a representative subset of enhancers identified by eRNA profiling drove tissue-specific gene expression in isolation when tested by reporter assays. Our findings provide an atlas of developmental enhancers in a model sea urchin and support the utility of eRNA profiling as a tool for enhancer discovery and regulatory biology. The data generated in this study are available at Echinobase, the public database of information related to echinoderm genomics.
Collapse
|
12
|
Guerrero-Santoro J, Khor JM, Açıkbaş AH, Jaynes JB, Ettensohn CA. Analysis of the DNA-binding properties of Alx1, an evolutionarily conserved regulator of skeletogenesis in echinoderms. J Biol Chem 2021; 297:100901. [PMID: 34157281 PMCID: PMC8319359 DOI: 10.1016/j.jbc.2021.100901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 06/09/2021] [Accepted: 06/18/2021] [Indexed: 11/24/2022] Open
Abstract
Alx1, a homeodomain-containing transcription factor, is a highly conserved regulator of skeletogenesis in echinoderms. In sea urchins, Alx1 plays a central role in the differentiation of embryonic primary mesenchyme cells (PMCs) and positively regulates the transcription of most biomineralization genes expressed by these cells. The alx1 gene arose via duplication and acquired a skeletogenic function distinct from its paralog (alx4) through the exonization of a 41–amino acid motif (the D2 domain). Alx1 and Alx4 contain glutamine-50 paired-type homeodomains, which interact preferentially with palindromic binding sites in vitro. Chromatin immunoprecipitation sequencing (ChIP-seq) studies have shown, however, that Alx1 binds both to palindromic and half sites in vivo. To address this apparent discrepancy and explore the function of the D2 domain, we used an endogenous cis-regulatory module associated with Sp-mtmmpb, a gene that encodes a PMC-specific metalloprotease, to analyze the DNA-binding properties of Alx1. We find that Alx1 forms dimeric complexes on TAAT-containing half sites by a mechanism distinct from the well-known mechanism of dimerization on palindromic sites. We used transgenic reporter assays to analyze the functional roles of half sites in vivo and demonstrate that two sites with partially redundant functions are essential for the PMC-specific activity of the Sp-mtmmpb cis-regulatory module. Finally, we show that the D2 domain influences the DNA-binding properties of Alx1 in vitro, suggesting that the exonization of this motif may have facilitated the acquisition of new transcriptional targets and consequently a novel developmental function.
Collapse
Affiliation(s)
| | - Jian Ming Khor
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Ayşe Haruka Açıkbaş
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - James B Jaynes
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Charles A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
13
|
Feng Z, Duren Z, Xiong Z, Wang S, Liu F, Wong WH, Wang Y. hReg-CNCC reconstructs a regulatory network in human cranial neural crest cells and annotates variants in a developmental context. Commun Biol 2021; 4:442. [PMID: 33824393 PMCID: PMC8024315 DOI: 10.1038/s42003-021-01970-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 03/09/2021] [Indexed: 12/19/2022] Open
Abstract
Cranial Neural Crest Cells (CNCC) originate at the cephalic region from forebrain, midbrain and hindbrain, migrate into the developing craniofacial region, and subsequently differentiate into multiple cell types. The entire specification, delamination, migration, and differentiation process is highly regulated and abnormalities during this craniofacial development cause birth defects. To better understand the molecular networks underlying CNCC, we integrate paired gene expression & chromatin accessibility data and reconstruct the genome-wide human Regulatory network of CNCC (hReg-CNCC). Consensus optimization predicts high-quality regulations and reveals the architecture of upstream, core, and downstream transcription factors that are associated with functions of neural plate border, specification, and migration. hReg-CNCC allows us to annotate genetic variants of human facial GWAS and disease traits with associated cis-regulatory modules, transcription factors, and target genes. For example, we reveal the distal and combinatorial regulation of multiple SNPs to core TF ALX1 and associations to facial distances and cranial rare disease. In addition, hReg-CNCC connects the DNA sequence differences in evolution, such as ultra-conserved elements and human accelerated regions, with gene expression and phenotype. hReg-CNCC provides a valuable resource to interpret genetic variants as early as gastrulation during embryonic development. The network resources are available at https://github.com/AMSSwanglab/hReg-CNCC .
Collapse
Affiliation(s)
- Zhanying Feng
- CEMS, NCMIS, MDIS, Academy of Mathematics and Systems Science, National Center for Mathematics and Interdisciplinary Sciences, Chinese Academy of Sciences, Beijing, China.,School of Mathematics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Zhana Duren
- Center for Human Genetics, Department of Genetics and Biochemistry, Clemson University, Greenwood, SC, USA.,Department of Statistics, Department of Biomedical Data Science, Bio-X Program, Stanford University, Stanford, CA, USA
| | - Ziyi Xiong
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands.,Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands.,CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Sijia Wang
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Fan Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China. .,China National Center for Bioinformation, Chinese Academy of Sciences, Beijing, China.
| | - Wing Hung Wong
- Department of Statistics, Department of Biomedical Data Science, Bio-X Program, Stanford University, Stanford, CA, USA.
| | - Yong Wang
- CEMS, NCMIS, MDIS, Academy of Mathematics and Systems Science, National Center for Mathematics and Interdisciplinary Sciences, Chinese Academy of Sciences, Beijing, China. .,School of Mathematics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China. .,Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
14
|
Sampilo NF, Stepicheva NA, Song JL. microRNA-31 regulates skeletogenesis by direct suppression of Eve and Wnt1. Dev Biol 2021; 472:98-114. [PMID: 33484703 PMCID: PMC7956219 DOI: 10.1016/j.ydbio.2021.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/23/2020] [Accepted: 01/11/2021] [Indexed: 11/22/2022]
Abstract
microRNAs (miRNAs) play a critical role in a variety of biological processes, including embryogenesis and the physiological functions of cells. Evolutionarily conserved microRNA-31 (miR-31) has been found to be involved in cancer, bone formation, and lymphatic development. We previously discovered that, in the sea urchin, miR-31 knockdown (KD) embryos have shortened dorsoventral connecting rods, mispatterned skeletogenic primary mesenchyme cells (PMCs) and shifted and expanded Vegf3 expression domain. Vegf3 itself does not contain miR-31 binding sites; however, we identified its upstream regulators Eve and Wnt1 to be directly suppressed by miR-31. Removal of miR-31's suppression of Eve and Wnt1 resulted in skeletal and PMC patterning defects, similar to miR-31 KD phenotypes. Additionally, removal of miR-31's suppression of Eve and Wnt1 results in an expansion and anterior shift in expression of Veg1 ectodermal genes, including Vegf3 in the blastulae. This indicates that miR-31 indirectly regulates Vegf3 expression through directly suppressing Eve and Wnt1. Furthermore, removing miR-31 suppression of Eve is sufficient to cause skeletogenic defects, revealing a novel regulatory role of Eve in skeletogenesis and PMC patterning. Overall, this study provides a proposed molecular mechanism of miR-31's regulation of skeletogenesis and PMC patterning through its cross-regulation of a Wnt signaling ligand and a transcription factor of the endodermal and ectodermal gene regulatory network.
Collapse
Affiliation(s)
- Nina Faye Sampilo
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Nadezda A Stepicheva
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Jia L Song
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
15
|
Piovani L, Czarkwiani A, Ferrario C, Sugni M, Oliveri P. Ultrastructural and molecular analysis of the origin and differentiation of cells mediating brittle star skeletal regeneration. BMC Biol 2021; 19:9. [PMID: 33461552 PMCID: PMC7814545 DOI: 10.1186/s12915-020-00937-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 12/02/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Regeneration is the ability to re-grow body parts or tissues after trauma, and it is widespread across metazoans. Cells involved in regeneration can arise from a pool of undifferentiated proliferative cells or be recruited from pre-existing differentiated tissues. Both mechanisms have been described in different phyla; however, the cellular and molecular mechanisms employed by different animals to restore lost tissues as well as the source of cells involved in regeneration remain largely unknown. Echinoderms are a clade of deuterostome invertebrates that show striking larval and adult regenerative abilities in all extant classes. Here, we use the brittle star Amphiura filiformis to investigate the origin and differentiation of cells involved in skeletal regeneration using a combination of microscopy techniques and molecular markers. RESULTS Our ultrastructural analyses at different regenerative stages identify a population of morphologically undifferentiated cells which appear in close contact with the proliferating epithelium of the regenerating aboral coelomic cavity. These cells express skeletogenic marker genes, such as the transcription factor alx1 and the differentiation genes c-lectin and msp130L, and display a gradient of morphological differentiation from the aboral coelomic cavity towards the epidermis. Cells closer to the epidermis, which are in contact with developing spicules, have the morphology of mature skeletal cells (sclerocytes), and express several skeletogenic transcription factors and differentiation genes. Moreover, as regeneration progresses, sclerocytes show a different combinatorial expression of genes in various skeletal elements. CONCLUSIONS We hypothesize that sclerocyte precursors originate from the epithelium of the proliferating aboral coelomic cavity. As these cells migrate towards the epidermis, they differentiate and start secreting spicules. Moreover, our study shows that molecular and cellular processes involved in skeletal regeneration resemble those used during skeletal development, hinting at a possible conservation of developmental programmes during adult regeneration. Finally, we highlight that many genes involved in echinoderm skeletogenesis also play a role in vertebrate skeleton formation, suggesting a possible common origin of the deuterostome endoskeleton pathway.
Collapse
Affiliation(s)
- Laura Piovani
- Department of Environmental Science and Policy, University of Milan, Via Celoria, 2, 20133, Milan, Italy
- Department of Genetics, Evolution and Environment, University College London, London, UK
- Center for Life Origins and Evolution, University College London, London, UK
| | - Anna Czarkwiani
- Department of Genetics, Evolution and Environment, University College London, London, UK
- Present Address: DFG-Center for Regenerative Therapies Technische Universität Dresden (CRTD), Dresden, Germany
| | - Cinzia Ferrario
- Department of Environmental Science and Policy, University of Milan, Via Celoria, 2, 20133, Milan, Italy
- Center for Complexity and Biosystems, Department of Physics, University of Milan, Via Celoria, 16, 20133, Milan, Italy
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria, 2, 20133, Milan, Italy.
- Center for Complexity and Biosystems, Department of Physics, University of Milan, Via Celoria, 16, 20133, Milan, Italy.
- GAIA 2050 Center, Department of Environmental Science and Policy, University of Milan, Via Celoria, 2, 20133, Milan, Italy.
| | - Paola Oliveri
- Department of Genetics, Evolution and Environment, University College London, London, UK.
- Center for Life Origins and Evolution, University College London, London, UK.
| |
Collapse
|
16
|
Khor JM, Ettensohn CA. Transcription Factors of the Alx Family: Evolutionarily Conserved Regulators of Deuterostome Skeletogenesis. Front Genet 2020; 11:569314. [PMID: 33329706 PMCID: PMC7719703 DOI: 10.3389/fgene.2020.569314] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
Members of the alx gene family encode transcription factors that contain a highly conserved Paired-class, DNA-binding homeodomain, and a C-terminal OAR/Aristaless domain. Phylogenetic and comparative genomic studies have revealed complex patterns of alx gene duplications during deuterostome evolution. Remarkably, alx genes have been implicated in skeletogenesis in both echinoderms and vertebrates. In this review, we provide an overview of current knowledge concerning alx genes in deuterostomes. We highlight their evolutionarily conserved role in skeletogenesis and draw parallels and distinctions between the skeletogenic gene regulatory circuitries of diverse groups within the superphylum.
Collapse
Affiliation(s)
- Jian Ming Khor
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Charles A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
17
|
Pini J, Kueper J, Hu YD, Kawasaki K, Yeung P, Tsimbal C, Yoon B, Carmichael N, Maas RL, Cotney J, Grinblat Y, Liao EC. ALX1-related frontonasal dysplasia results from defective neural crest cell development and migration. EMBO Mol Med 2020; 12:e12013. [PMID: 32914578 PMCID: PMC7539331 DOI: 10.15252/emmm.202012013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 01/02/2023] Open
Abstract
A pedigree of subjects presented with frontonasal dysplasia (FND). Genome sequencing and analysis identified a p.L165F missense variant in the homeodomain of the transcription factor ALX1 which was imputed to be pathogenic. Induced pluripotent stem cells (iPSC) were derived from the subjects and differentiated to neural crest cells (NCC). NCC derived from ALX1L165F/L165F iPSC were more sensitive to apoptosis, showed an elevated expression of several neural crest progenitor state markers, and exhibited impaired migration compared to wild-type controls. NCC migration was evaluated in vivo using lineage tracing in a zebrafish model, which revealed defective migration of the anterior NCC stream that contributes to the median portion of the anterior neurocranium, phenocopying the clinical presentation. Analysis of human NCC culture media revealed a change in the level of bone morphogenic proteins (BMP), with a low level of BMP2 and a high level of BMP9. Soluble BMP2 and BMP9 antagonist treatments were able to rescue the defective migration phenotype. Taken together, these results demonstrate a mechanistic requirement of ALX1 in NCC development and migration.
Collapse
Affiliation(s)
- Jonathan Pini
- Center for Regenerative MedicineDepartment of SurgeryMassachusetts General HospitalBostonMAUSA
- Shriners Hospital for ChildrenBostonMAUSA
| | - Janina Kueper
- Center for Regenerative MedicineDepartment of SurgeryMassachusetts General HospitalBostonMAUSA
- Shriners Hospital for ChildrenBostonMAUSA
- Life and Brain CenterUniversity of BonnBonnGermany
| | - Yiyuan David Hu
- Center for Regenerative MedicineDepartment of SurgeryMassachusetts General HospitalBostonMAUSA
- Shriners Hospital for ChildrenBostonMAUSA
| | - Kenta Kawasaki
- Center for Regenerative MedicineDepartment of SurgeryMassachusetts General HospitalBostonMAUSA
- Shriners Hospital for ChildrenBostonMAUSA
| | - Pan Yeung
- Center for Regenerative MedicineDepartment of SurgeryMassachusetts General HospitalBostonMAUSA
- Shriners Hospital for ChildrenBostonMAUSA
| | - Casey Tsimbal
- Center for Regenerative MedicineDepartment of SurgeryMassachusetts General HospitalBostonMAUSA
- Shriners Hospital for ChildrenBostonMAUSA
| | - Baul Yoon
- Departments of Integrative Biology, Neuroscience, and Genetics Ph.D. Training ProgramUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Nikkola Carmichael
- Department of GeneticsBrigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
| | - Richard L Maas
- Department of GeneticsBrigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
| | - Justin Cotney
- Genetics and Genome SciencesUConn HealthFarmingtonCTUSA
| | - Yevgenya Grinblat
- Departments of Integrative Biology, Neuroscience, and Genetics Ph.D. Training ProgramUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Eric C Liao
- Center for Regenerative MedicineDepartment of SurgeryMassachusetts General HospitalBostonMAUSA
- Shriners Hospital for ChildrenBostonMAUSA
| |
Collapse
|
18
|
Ettensohn CA. The gene regulatory control of sea urchin gastrulation. Mech Dev 2020; 162:103599. [PMID: 32119908 DOI: 10.1016/j.mod.2020.103599] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 02/07/2023]
Abstract
The cell behaviors associated with gastrulation in sea urchins have been well described. More recently, considerable progress has been made in elucidating gene regulatory networks (GRNs) that underlie the specification of early embryonic territories in this experimental model. This review integrates information from these two avenues of work. I discuss the principal cell movements that take place during sea urchin gastrulation, with an emphasis on molecular effectors of the movements, and summarize our current understanding of the gene regulatory circuitry upstream of those effectors. A case is made that GRN biology can provide a causal explanation of gastrulation, although additional analysis is needed at several levels of biological organization in order to provide a deeper understanding of this complex morphogenetic process.
Collapse
Affiliation(s)
- Charles A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Ave., Pittsburgh, PA 15213, USA.
| |
Collapse
|
19
|
Ettensohn CA, Adomako-Ankomah A. The evolution of a new cell type was associated with competition for a signaling ligand. PLoS Biol 2019; 17:e3000460. [PMID: 31532765 PMCID: PMC6768484 DOI: 10.1371/journal.pbio.3000460] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/30/2019] [Accepted: 09/05/2019] [Indexed: 11/29/2022] Open
Abstract
There is presently a very limited understanding of the mechanisms that underlie the evolution of new cell types. The skeleton-forming primary mesenchyme cells (PMCs) of euechinoid sea urchins, derived from the micromeres of the 16-cell embryo, are an example of a recently evolved cell type. All adult echinoderms have a calcite-based endoskeleton, a synapomorphy of the Ambulacraria. Only euechinoids have a micromere-PMC lineage, however, which evolved through the co-option of the adult skeletogenic program into the embryo. During normal development, PMCs alone secrete the embryonic skeleton. Other mesoderm cells, known as blastocoelar cells (BCs), have the potential to produce a skeleton, but a PMC-derived signal ordinarily prevents these cells from expressing a skeletogenic fate and directs them into an alternative developmental pathway. Recently, it was shown that vascular endothelial growth factor (VEGF) signaling plays an important role in PMC differentiation and is part of a conserved program of skeletogenesis among echinoderms. Here, we report that VEGF signaling, acting through ectoderm-derived VEGF3 and its cognate receptor, VEGF receptor (VEGFR)-10-Ig, is also essential for the deployment of the skeletogenic program in BCs. This VEGF-dependent program includes the activation of aristaless-like homeobox 1 (alx1), a conserved transcriptional regulator of skeletogenic specification across echinoderms and an example of a “terminal selector” gene that controls cell identity. We show that PMCs control BC fate by sequestering VEGF3, thereby preventing activation of alx1 and the downstream skeletogenic network in BCs. Our findings provide an example of the regulation of early embryonic cell fates by direct competition for a secreted signaling ligand, a developmental mechanism that has not been widely recognized. Moreover, they reveal that a novel cell type evolved by outcompeting other embryonic cell lineages for an essential signaling ligand that regulates the expression of a gene controlling cell identity. How do new cell types evolve? This study shows that mesoderm cells in sea urchin embryos diversified, at least in part, through a heterochronic shift in the expression of a key transcription factor, which led to competition for a signaling ligand and subsequent gene regulatory independence of the two cell types.
Collapse
Affiliation(s)
- Charles A. Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| | - Ashrifia Adomako-Ankomah
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|