1
|
Venanzi AW, McGee LD, Hackam AS. Evaluating the Evidence for Neuroprotective and Axonal Regenerative Activities of Different Inflammatory Cell Types After Optic Nerve Injury. Mol Neurobiol 2025; 62:6212-6227. [PMID: 39738875 PMCID: PMC11953096 DOI: 10.1007/s12035-024-04679-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/19/2024] [Indexed: 01/02/2025]
Abstract
The optic nerve contains retinal ganglion cell (RGC) axons and functions to transmit visual stimuli to the brain. Injury to the optic nerve from ischemia, trauma, or disease leads to retrograde axonal degeneration and subsequent RGC dysfunction and death, causing irreversible vision loss. Inflammatory responses to neurological damage and axonal injuries in the central nervous system (CNS) are typically harmful to neurons and prevent recovery. However, recent evidence indicates that certain inflammatory cell types and signaling pathways are protective after optic nerve injury and promote RGC survival and axonal regeneration. The objective of this review is to examine the evidence for diverse effects of inflammatory cell types on the retina and optic nerve after injury. Additionally, we highlight promising avenues for further research.
Collapse
Affiliation(s)
- Alexander W Venanzi
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10Th Ave, Rm 404, Miami, FL, 33136, USA
| | - Laura D McGee
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10Th Ave, Rm 404, Miami, FL, 33136, USA
| | - Abigail S Hackam
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10Th Ave, Rm 404, Miami, FL, 33136, USA.
| |
Collapse
|
2
|
Hamadmad S, Heisler‐Taylor T, Goswami S, Hawthorn E, Chaurasia S, Martini D, Summitt D, Zatari A, Shalash R, Sohail M, Urbanski EG, Bernstein K, Racine J, Satoskar A, El‐Hodiri HM, Fischer AJ, Cebulla CM. Ibudilast Protects Retinal Bipolar Cells From Excitotoxic Retinal Damage and Activates the mTOR Pathway. Glia 2025; 73:905-927. [PMID: 39916387 PMCID: PMC11920683 DOI: 10.1002/glia.24657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 10/09/2024] [Accepted: 11/24/2024] [Indexed: 02/12/2025]
Abstract
Ibudilast, an inhibitor of macrophage migration inhibitory factor (MIF) and phosphodiesterase (PDE), has been recently shown to have neuroprotective effects in a variety of neurologic diseases. We utilize a chick excitotoxic retinal damage model to investigate ibudilast's potential to protect retinal neurons. Using single cell RNA-sequencing (scRNA-seq), we find that MIF, putative MIF receptors CD74 and CD44, and several PDEs are upregulated in different retinal cells during damage. Intravitreal ibudilast is well tolerated in the eye and causes no evidence of toxicity. Ibudilast effectively protects neurons in the inner nuclear layer from NMDA-induced cell death, restores retinal layer thickness on spectral domain optical coherence tomography (SD-OCT), and preserves retinal neuron function, particularly for the ON bipolar cells, as assessed by electroretinography. PDE inhibition seems essential for ibudilast's neuroprotection, as AV1013, the analogue that lacks PDE inhibitor activity, is ineffective. scRNA-seq analysis reveals upregulation of multiple signaling pathways, including mTOR, in damaged Müller glia (MG) with ibudilast treatment compared to AV1013. Components of mTORC1 and mTORC2 are upregulated in both bipolar cells and MG with ibudilast. The mTOR inhibitor rapamycin blocked accumulation of pS6 but did not reduce TUNEL positive dying cells. Additionally, through ligand-receptor interaction analysis, crosstalk between bipolar cells and MG may be important for neuroprotection. We have identified several paracrine signaling pathways that are known to contribute to cell survival and neuroprotection and might play essential roles in ibudilast function. These findings highlight ibudilast's potential to protect inner retinal neurons during damage and show promise for future clinical translation.
Collapse
Affiliation(s)
- Sumaya Hamadmad
- Department of Ophthalmology and Visual Sciences, Havener Eye InstituteThe Ohio State University, Wexner Medical CenterColumbusOhioUSA
| | - Tyler Heisler‐Taylor
- Department of Ophthalmology and Visual Sciences, Havener Eye InstituteThe Ohio State University, Wexner Medical CenterColumbusOhioUSA
| | - Sandeep Goswami
- Department of Ophthalmology and Visual Sciences, Havener Eye InstituteThe Ohio State University, Wexner Medical CenterColumbusOhioUSA
| | - Evan Hawthorn
- Department of Ophthalmology and Visual Sciences, Havener Eye InstituteThe Ohio State University, Wexner Medical CenterColumbusOhioUSA
| | - Sameer Chaurasia
- Department of Ophthalmology and Visual Sciences, Havener Eye InstituteThe Ohio State University, Wexner Medical CenterColumbusOhioUSA
| | - Dena Martini
- Department of Ophthalmology and Visual Sciences, Havener Eye InstituteThe Ohio State University, Wexner Medical CenterColumbusOhioUSA
| | - Diana Summitt
- Department of Ophthalmology and Visual Sciences, Havener Eye InstituteThe Ohio State University, Wexner Medical CenterColumbusOhioUSA
| | - Ali Zatari
- Department of Ophthalmology and Visual Sciences, Havener Eye InstituteThe Ohio State University, Wexner Medical CenterColumbusOhioUSA
| | - Rahaf Shalash
- Department of Ophthalmology and Visual Sciences, Havener Eye InstituteThe Ohio State University, Wexner Medical CenterColumbusOhioUSA
| | - Misha Sohail
- Department of Ophthalmology and Visual Sciences, Havener Eye InstituteThe Ohio State University, Wexner Medical CenterColumbusOhioUSA
| | - Elizabeth G. Urbanski
- Department of Ophthalmology and Visual Sciences, Havener Eye InstituteThe Ohio State University, Wexner Medical CenterColumbusOhioUSA
| | - Kayla Bernstein
- Department of Ophthalmology and Visual Sciences, Havener Eye InstituteThe Ohio State University, Wexner Medical CenterColumbusOhioUSA
| | | | - Abhay Satoskar
- Department of PathologyThe Ohio State University, Wexner Medical CenterColumbusOhioUSA
| | - Heithem M. El‐Hodiri
- Department of Neuroscience, College of MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Andy J. Fischer
- Department of Neuroscience, College of MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Colleen M. Cebulla
- Department of Ophthalmology and Visual Sciences, Havener Eye InstituteThe Ohio State University, Wexner Medical CenterColumbusOhioUSA
| |
Collapse
|
3
|
Yin Z, Kang J, Cheng X, Gao H, Huo S, Xu H. Investigating Müller glia reprogramming in mice: a retrospective of the last decade, and a look to the future. Neural Regen Res 2025; 20:946-959. [PMID: 38989930 PMCID: PMC11438324 DOI: 10.4103/nrr.nrr-d-23-01612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/05/2024] [Indexed: 07/12/2024] Open
Abstract
Müller glia, as prominent glial cells within the retina, plays a significant role in maintaining retinal homeostasis in both healthy and diseased states. In lower vertebrates like zebrafish, these cells assume responsibility for spontaneous retinal regeneration, wherein endogenous Müller glia undergo proliferation, transform into Müller glia-derived progenitor cells, and subsequently regenerate the entire retina with restored functionality. Conversely, Müller glia in the mouse and human retina exhibit limited neural reprogramming. Müller glia reprogramming is thus a promising strategy for treating neurodegenerative ocular disorders. Müller glia reprogramming in mice has been accomplished with remarkable success, through various technologies. Advancements in molecular, genetic, epigenetic, morphological, and physiological evaluations have made it easier to document and investigate the Müller glia programming process in mice. Nevertheless, there remain issues that hinder improving reprogramming efficiency and maturity. Thus, understanding the reprogramming mechanism is crucial toward exploring factors that will improve Müller glia reprogramming efficiency, and for developing novel Müller glia reprogramming strategies. This review describes recent progress in relatively successful Müller glia reprogramming strategies. It also provides a basis for developing new Müller glia reprogramming strategies in mice, including epigenetic remodeling, metabolic modulation, immune regulation, chemical small-molecules regulation, extracellular matrix remodeling, and cell-cell fusion, to achieve Müller glia reprogramming in mice.
Collapse
Affiliation(s)
- Zhiyuan Yin
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | | | | | | | | | | |
Collapse
|
4
|
Taylor OB, DeGroff N, El-Hodiri HM, Gao C, Fischer AJ. Sphingosine-1-phosphate signaling regulates the ability of Müller glia to become neurogenic, proliferating progenitor-like cells. eLife 2025; 13:RP102151. [PMID: 40047533 PMCID: PMC11884796 DOI: 10.7554/elife.102151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025] Open
Abstract
The purpose of these studies is to investigate how Sphingosine-1-phosphate (S1P) signaling regulates glial phenotype, dedifferentiation of Müller glia (MG), reprogramming into proliferating MG-derived progenitor cells (MGPCs), and neuronal differentiation of the progeny of MGPCs in the chick retina. We found that S1P-related genes are highly expressed by retinal neurons and glia, and levels of expression were dynamically regulated following retinal damage. Drug treatments that activate S1P receptor 1 (S1PR1) or increase levels of S1P suppressed the formation of MGPCs. Conversely, treatments that inhibit S1PR1 or decrease levels of S1P stimulated the formation of MGPCs. Inhibition of S1P receptors or S1P synthesis significantly enhanced the neuronal differentiation of the progeny of MGPCs. We report that S1P-related gene expression in MG is modulated by microglia and inhibition of S1P receptors or S1P synthesis partially rescues the loss of MGPC formation in damaged retinas missing microglia. Finally, we show that TGFβ/Smad3 signaling in the resting retina maintains S1PR1 expression in MG. We conclude that the S1P signaling is dynamically regulated in MG and MGPCs in the chick retina, and activation of S1P signaling depends, in part, on signals produced by reactive microglia.
Collapse
Affiliation(s)
- Olivia B Taylor
- Department of Neuroscience, College of Medicine, The Ohio State UniversityColumbusUnited States
- Neuroscience Graduate Program, The Ohio State UniversityColumbusUnited States
| | - Nicholas DeGroff
- Department of Neuroscience, College of Medicine, The Ohio State UniversityColumbusUnited States
| | - Heithem M El-Hodiri
- Department of Neuroscience, College of Medicine, The Ohio State UniversityColumbusUnited States
| | - Chengyu Gao
- Campus Chemical Instrument Center, Mass Spectrometry and Proteomics Facility, The Ohio State UniversityColumbusUnited States
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State UniversityColumbusUnited States
| |
Collapse
|
5
|
Son M, Nagahawatta DP, Jo HC, Jeon YJ, Ryu B, Kim DY. Diphlorethohydroxycarmalol inhibits Müller cell gliosis by disrupting CXCR4/CXCL12 interaction in violet-blue light-induced retinal phototoxicity. Heliyon 2025; 11:e42475. [PMID: 40034286 PMCID: PMC11874561 DOI: 10.1016/j.heliyon.2025.e42475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 03/05/2025] Open
Abstract
Müller gliosis is a complex process that impairs the ability of retinal Müller glial cells to respond to various forms of retinal injury or disease, leading to retinal damage. Blue light (BL) exposure is a known cause of retinal damage. In this study, we aimed to investigate the potential of DPHC in inhibiting Müller gliosis in models of BL-exposure. We conducted in silico binding analysis to evaluate the binding of DPHC to CXCR4. Then, we developed in vitro and in vivo experimental models to assess the effects of DPHC and BL exposure on Müller gliosis using MIO-M1 cells and zebrafish. Our findings show that DPHC can suppress the Müller gliosis process in BL-exposed MIO-M1 cells in vitro and in BL-exposed zebrafish in vivo. In silico molecular docking, we identified CXCR4 as the target of active site 1 of DPHC. In BL-exposed MIO-M1 cells, DPHC inhibited CXCR4 activity and altered the expression of Müller gliosis markers and NF-κB-related ERK and AKT signaling. In BL-exposed zebrafish, DPHC prevented retinal thickness reduction and inhibited CXCR4 expression and retinal cell apoptosis. This study suggests that DPHC could be a potential therapeutic agent for retinal diseases involving Müller gliosis. By inhibiting CXCR4 activity, DPHC downregulates the ERK/AKT/NF-κB pathway, reducing retinal cell apoptosis and altered expression of Müller gliosis markers. These findings highlight the potential of natural bioactive compounds for treating various diseases, and further research should investigate the therapeutic potential of DPHC and its derivatives.
Collapse
Affiliation(s)
- Myeongjoo Son
- Department of Anatomy & Cell Biology, School of Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Brain Health Research Laboratory, Institute of Medical Science, Kangwon National University College of Medicine, Chuncheon, 24341, Republic of Korea
| | | | - Hang-Chan Jo
- Center for Sensor Systems, Inha University, Incheon, 22212, Republic of Korea
- Department of Electrical and Computer Engineering, College of Engineering, Inha University, Incheon, 22212, Republic of Korea
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju, 63243, Republic of Korea
- Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - Bomi Ryu
- Major of Food Science and Nutrition, Pukyong National University, Busan, 48513, Republic of Korea
| | - Dae Yu Kim
- Center for Sensor Systems, Inha University, Incheon, 22212, Republic of Korea
- Department of Electrical and Computer Engineering, College of Engineering, Inha University, Incheon, 22212, Republic of Korea
- Inha Research Institute for Aerospace Medicine, Inha University, Incheon, 22212, Republic of Korea
| |
Collapse
|
6
|
Taylor O, Kelly L, El-Hodiri H, Fischer AJ. Sphingosine-1-phosphate signaling through Müller glia regulates neuroprotection and the accumulation of immune cells in the rodent retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.03.636254. [PMID: 39975061 PMCID: PMC11838470 DOI: 10.1101/2025.02.03.636254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The purpose of this study was to investigate how Sphingosine-1-phosphate (S1P) signaling regulates glial phenotype, neuroprotection, and reprogramming of Müller glia (MG) into neurogenic MG-derived progenitor cells (MGPCs) in the adult mouse retina. We found that S1P-related genes were dynamically regulated following retinal damage. S1pr1 (encoding S1P receptor 1) and Sphk1 (encoding sphingosine kinase 1) are expressed at low levels by resting MG and are rapidly upregulated following acute damage. Overexpression of the neurogenic bHLH transcription factor Ascl1 in MG downregulates S1pr1, and inhibition of Sphk1 and S1pr1/3 enhances Ascl1-driven differentiation of bipolar-like cells and suppresses glial differentiation. Treatments that activate S1pr1 or increase retinal levels of S1P initiate pro-inflammatory NFκB-signaling in MG, whereas treatments that inhibit S1pr1 or decreased levels of S1P suppress NFκB-signaling in MG in damaged retinas. Conditional knock-out of NFκB-signaling in MG increases glial expression of S1pr1 but decreases levels of S1pr3 and Sphk1. Conditional knock-out (cKO) of S1pr1 in MG, but not Sphk1, enhances the accumulation of immune cells in acutely damaged retinas. cKO of S1pr1 is neuroprotective to ganglion cells, whereas cKO of Sphk1 is neuroprotective to amacrine cells in NMDA-damaged retinas. Consistent with these findings, pharmacological treatments that inhibit S1P receptors or inhibit Sphk1 had protective effects upon inner retinal neurons. We conclude that the S1P-signaling pathway is activated in MG after damage and this pathway acts secondarily to restrict the accumulation of immune cells, impairs neuron survival and suppresses the reprogramming of MG into neurogenic progenitors in the adult mouse retina.
Collapse
Affiliation(s)
- Olivia Taylor
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Lisa Kelly
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Heithem El-Hodiri
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Andy J. Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
7
|
Taylor O, DeGroff N, El-Hodiri H, Gao C, Fischer AJ. Sphingosine-1-phosphate signaling regulates the ability of Müller glia to become neurogenic, proliferating progenitor-like cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.06.606815. [PMID: 39149287 PMCID: PMC11326190 DOI: 10.1101/2024.08.06.606815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The purpose of these studies is to investigate how Sphingosine-1-phosphate (S1P) signaling regulates glial phenotype, dedifferentiation of Müller glia (MG), reprogramming into proliferating MG-derived progenitor cells (MGPCs), and neuronal differentiation of the progeny of MGPCs in the chick retina. We found that S1P-related genes are highly expressed by retinal neurons and glia, and levels of expression were dynamically regulated following retinal damage. Drug treatments that activate S1P receptor 1 (S1PR1) or increase levels of S1P suppressed the formation of MGPCs. Conversely, treatments that inhibit S1PR1 or decrease levels of S1P stimulated the formation of MGPCs. Inhibition of S1P receptors or S1P synthesis significantly enhanced the neuronal differentiation of the progeny of MGPCs. We report that S1P-related gene expression in MG is modulated by microglia and inhibition of S1P receptors or S1P synthesis partially rescues the loss of MGPC formation in damaged retinas missing microglia. Finally, we show that TGFβ/Smad3 signaling in the resting retina maintains S1PR1 expression in MG. We conclude that the S1P signaling is dynamically regulated in MG and MGPCs in the chick retina, and activation of S1P signaling depends, in part, on signals produced by reactive microglia.
Collapse
Affiliation(s)
- Olivia Taylor
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Nick DeGroff
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Heithem El-Hodiri
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Chengyu Gao
- Campus Chemical Instrument Center, Mass Spectrometry & Proteomics Facility, The Ohio State University, Columbus, OH 43210, USA
| | - Andy J. Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
8
|
Hernández-Núñez I, Clark BS. Experimental Framework for Assessing Mouse Retinal Regeneration Through Single-Cell RNA-Sequencing. Methods Mol Biol 2025; 2848:117-134. [PMID: 39240520 DOI: 10.1007/978-1-0716-4087-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Retinal degenerative diseases including age-related macular degeneration and glaucoma are estimated to currently affect more than 14 million people in the United States, with an increased prevalence of retinal degenerations in aged individuals. An expanding aged population who are living longer forecasts an increased prevalence and economic burden of visual impairments. Improvements to visual health and treatment paradigms for progressive retinal degenerations slow vision loss. However, current treatments fail to remedy the root cause of visual impairments caused by retinal degenerations-loss of retinal neurons. Stimulation of retinal regeneration from endogenous cellular sources presents an exciting treatment avenue for replacement of lost retinal cells. In multiple species including zebrafish and Xenopus, Müller glial cells maintain a highly efficient regenerative ability to reconstitute lost cells throughout the organism's lifespan, highlighting potential therapeutic avenues for stimulation of retinal regeneration in humans. Here, we describe how the application of single-cell RNA-sequencing (scRNA-seq) has enhanced our understanding of Müller glial cell-derived retinal regeneration, including the characterization of gene regulatory networks that facilitate/inhibit regenerative responses. Additionally, we provide a validated experimental framework for cellular preparation of mouse retinal cells as input into scRNA-seq experiments, including insights into experimental design and analyses of resulting data.
Collapse
Affiliation(s)
- Ismael Hernández-Núñez
- John F Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Brian S Clark
- John F Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
9
|
Taylor OB, El‐Hodiri HM, Palazzo I, Todd L, Fischer AJ. Regulating the formation of Müller glia-derived progenitor cells in the retina. Glia 2025; 73:4-24. [PMID: 39448874 PMCID: PMC11660542 DOI: 10.1002/glia.24635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/18/2024] [Accepted: 09/28/2024] [Indexed: 10/26/2024]
Abstract
We summarize recent findings in different animal models regarding the different cell-signaling pathways and gene networks that influence the reprogramming of Müller glia into proliferating, neurogenic progenitor cells in the retina. Not surprisingly, most of the cell-signaling pathways that guide the proliferation and differentiation of embryonic retinal progenitors also influence the ability of Müller glia to become proliferating Müller glia-derived progenitor cells (MGPCs). Further, the neuronal differentiation of MGPC progeny is potently inhibited by networks of neurogenesis-suppressing genes in chick and mouse models but occurs freely in zebrafish. There are important differences between the model systems, particularly pro-inflammatory signals that are active in mature Müller glia in damaged rodent and chick retinas, but less so in fish retinas. These pro-inflammatory signals are required to initiate the process of reprogramming, but if sustained suppress the potential of Müller glia to become neurogenic MGPCs. Further, there are important differences in how activated Müller glia up- or downregulate pro-glial transcription factors in the different model systems. We review recent findings regarding regulatory cell signaling and gene networks that influence the activation of Müller glia and the transition of these glia into proliferating progenitor cells with neurogenic potential in fish, chick, and mouse model systems.
Collapse
Affiliation(s)
- Olivia B. Taylor
- Department of NeuroscienceCollege of Medicine, The Ohio State UniversityColumbusOhioUSA
- Neuroscience Graduate ProgramThe Ohio State UniversityColumbusOhioUSA
| | - Heithem M. El‐Hodiri
- Department of NeuroscienceCollege of Medicine, The Ohio State UniversityColumbusOhioUSA
| | - Isabella Palazzo
- The Solomon H. Snyder Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMassachusettsUSA
| | - Levi Todd
- Department of Ophthalmology and Visual SciencesSUNY Upstate Medical UniversitySyracuseNew YorkUSA
| | - Andy J. Fischer
- Department of NeuroscienceCollege of Medicine, The Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
10
|
Yin Z, Kang J, Xu H, Huo S, Xu H. Recent progress of principal techniques used in the study of Müller glia reprogramming in mice. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:30. [PMID: 39663301 PMCID: PMC11635068 DOI: 10.1186/s13619-024-00211-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
In zebrafish, Müller glia (MG) cells retain the ability to proliferate and de-differentiate into retinal progenitor-like cells, subsequently differentiating into retinal neurons that can replace those damaged or lost due to retinal injury. In contrast, the reprogramming potential of MG in mammals has been lost, with these cells typically responding to retinal damage through gliosis. Considerable efforts have been dedicated to achieving the reprogramming of MG cells in mammals. Notably, significant advancements have been achieved in reprogramming MG cells in mice employing various methodologies. At the same time, some inevitable challenges have hindered identifying accurate MG cell reprogramming rather than the illusion, let alone improving the reprogramming efficiency and maturity of daughter cells. Recently, several strategies, including lineage tracking, multi-omics techniques, and functional analysis, have been developed to investigate the MG reprogramming process in mice. This review summarizes both the advantages and limitations of these novel strategies for analyzing MG reprogramming in mice, offering insights into enhancing the reliability and efficiency of MG reprogramming.
Collapse
Affiliation(s)
- Zhiyuan Yin
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P.R. China
| | - Jiahui Kang
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P.R. China
| | - Haoan Xu
- School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Shujia Huo
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P.R. China.
| | - Haiwei Xu
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P.R. China.
| |
Collapse
|
11
|
Rumford JE, Grieshaber A, Lewiston S, Reed JL, Long SS, Mitchell DM. Forced MyD88 signaling in microglia impacts the production and survival of regenerated retinal neurons. Front Cell Dev Biol 2024; 12:1495586. [PMID: 39633708 PMCID: PMC11614808 DOI: 10.3389/fcell.2024.1495586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
Inflammation and microglia appear to be key factors influencing the outcome of retinal regeneration following acute retinal damage. Despite such findings, direct connection of microglia-specific inflammatory factors as drivers of regenerative responses in the retina are still not defined, and intracellular pathways activated to stimulate such signals from microglia are currently unknown. We became interested in MyD88 regulation in microglia because transcriptomic datasets suggest myd88 could be regulated temporally in zebrafish microglia responding to damage in the central nervous system. MyD88 is an intracellular molecular adaptor that initiates signaling cascades downstream of several innate immune receptors, and probably most well-known for inducing gene expression of pro-inflammatory factors. Using zebrafish, which spontaneously regenerate retinal neurons after acute retinal damage, we studied the effects of overactivation of MyD88 signaling in microglia and macrophages on the Müller glia-mediated regenerative response. Our results indicate that increased MyD88 signaling in microglia/macrophages impacts the initial response of Müller glia entering a regenerative response after acute, neurotoxin-induced retinal damage to inner retinal neurons. In addition, increased MyD88 signaling in microglia/macrophages resulted in reduced survival of inner retinal neurons in regenerated retinas. This work supports the idea that temporal control of inflammatory signaling is a key component in the production of MG-derived progenitors yet further indicates that such control is important for differentiation and survival of regenerated neurons.
Collapse
Affiliation(s)
- Jordan E. Rumford
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Ailis Grieshaber
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Samantha Lewiston
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Jordan L. Reed
- Department of Computer Science, University of Idaho, Moscow, ID, United States
- Formerly North Idaho College, Coeur d’Alene, ID, United States
| | - Samuel S. Long
- Business and Computer Science Division, Lewis-Clark State College, Lewiston, ID, United States
| | - Diana M. Mitchell
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| |
Collapse
|
12
|
Blasdel N, Bhattacharya S, Donaldson PC, Reh TA, Todd L. Monocyte Invasion into the Retina Restricts the Regeneration of Neurons from Müller Glia. J Neurosci 2024; 44:e0938242024. [PMID: 39353729 PMCID: PMC11561870 DOI: 10.1523/jneurosci.0938-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
Endogenous reprogramming of glia into neurogenic progenitors holds great promise for neuron restoration therapies. Using lessons from regenerative species, we have developed strategies to stimulate mammalian Müller glia to regenerate neurons in vivo in the adult retina. We have demonstrated that the transcription factor Ascl1 can stimulate Müller glia neurogenesis. However, Ascl1 is only able to reprogram a subset of Müller glia into neurons. We have reported that neuroinflammation from microglia inhibits neurogenesis from Müller glia. Here we found that the peripheral immune response is a barrier to CNS regeneration. We show that monocytes from the peripheral immune system infiltrate the injured retina and negatively influence neurogenesis from Müller glia. Using CCR2 knock-out mice of both sexes, we found that preventing monocyte infiltration improves the neurogenic and proliferative capacity of Müller glia stimulated by Ascl1. Using scRNA-seq analysis, we identified a signaling axis wherein Osteopontin, a cytokine highly expressed by infiltrating immune cells is sufficient to suppress mammalian neurogenesis. This work implicates the response of the peripheral immune system as a barrier to regenerative strategies of the retina.
Collapse
Affiliation(s)
- Nicolai Blasdel
- Department of Biological Structure, University of Washington, Seattle, Washington 98195
| | - Sucheta Bhattacharya
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York 13210
| | - Phoebe C Donaldson
- Department of Biological Structure, University of Washington, Seattle, Washington 98195
| | - Thomas A Reh
- Department of Biological Structure, University of Washington, Seattle, Washington 98195
| | - Levi Todd
- Department of Biological Structure, University of Washington, Seattle, Washington 98195
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York 13210
| |
Collapse
|
13
|
Bludau O, Weber A, Bosak V, Kuscha V, Dietrich K, Hans S, Brand M. Inflammation is a critical factor for successful regeneration of the adult zebrafish retina in response to diffuse light lesion. Front Cell Dev Biol 2024; 12:1332347. [PMID: 39071801 PMCID: PMC11272569 DOI: 10.3389/fcell.2024.1332347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 06/17/2024] [Indexed: 07/30/2024] Open
Abstract
Inflammation can lead to persistent and irreversible loss of retinal neurons and photoreceptors in mammalian vertebrates. In contrast, in the adult zebrafish brain, acute neural inflammation is both necessary and sufficient to stimulate regeneration of neurons. Here, we report on the critical, positive role of the immune system to support retina regeneration in adult zebrafish. After sterile ablation of photoreceptors by phototoxicity, we find rapid response of immune cells, especially monocytes/microglia and neutrophils, which returns to homeostatic levels within 14 days post lesion. Pharmacological or genetic impairment of the immune system results in a reduced Müller glia stem cell response, seen as decreased reactive proliferation, and a strikingly reduced number of regenerated cells from them, including photoreceptors. Conversely, injection of the immune stimulators flagellin, zymosan, or M-CSF into the vitreous of the eye, leads to a robust proliferation response and the upregulation of regeneration-associated marker genes in Müller glia. Our results suggest that neuroinflammation is a necessary and sufficient driver for retinal regeneration in the adult zebrafish retina.
Collapse
Affiliation(s)
- Oliver Bludau
- CRTD—Center for Regenerative Therapies, and PoL—Cluster of Excellence Physics of Life, Dresden, Germany
| | - Anke Weber
- CRTD—Center for Regenerative Therapies, and PoL—Cluster of Excellence Physics of Life, Dresden, Germany
| | - Viktoria Bosak
- CRTD—Center for Regenerative Therapies, and PoL—Cluster of Excellence Physics of Life, Dresden, Germany
| | - Veronika Kuscha
- CRTD—Center for Regenerative Therapies, and PoL—Cluster of Excellence Physics of Life, Dresden, Germany
| | - Kristin Dietrich
- CRTD—Center for Regenerative Therapies, and PoL—Cluster of Excellence Physics of Life, Dresden, Germany
| | - Stefan Hans
- CRTD—Center for Regenerative Therapies, and PoL—Cluster of Excellence Physics of Life, Dresden, Germany
| | - Michael Brand
- CRTD—Center for Regenerative Therapies, and PoL—Cluster of Excellence Physics of Life, Dresden, Germany
| |
Collapse
|
14
|
Hamadmad S, Heisler-Taylor T, Goswami S, Hawthorn E, Chaurasia S, Martini D, Summitt D, Zaatari A, Urbanski EG, Bernstein K, Racine J, Satoskar A, El-Hodiri HM, Fischer AJ, Cebulla CM. Ibudilast Protects Retinal Bipolar Cells from Excitotoxic Retinal Damage and Activates the mTOR Pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585556. [PMID: 38562805 PMCID: PMC10983953 DOI: 10.1101/2024.03.18.585556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Ibudilast, an inhibitor of macrophage migration inhibitory factor (MIF) and phosphodiesterase (PDE), has been recently shown to have neuroprotective effects in a variety of neurologic diseases. We utilize a chick excitotoxic retinal damage model to investigate ibudilast's potential to protect retinal neurons. Using single cell RNA-sequencing (scRNA-seq), we find that MIF, putative MIF receptors CD74 and CD44, and several PDEs are upregulated in different retinal cells during damage. Intravitreal ibudilast is well tolerated in the eye and causes no evidence of toxicity. Ibudilast effectively protects neurons in the inner nuclear layer from NMDA-induced cell death, restores retinal layer thickness on spectral domain optical coherence tomography, and preserves retinal neuron function, particularly for the ON bipolar cells, as assessed by electroretinography. PDE inhibition seems essential for ibudilast's neuroprotection, as AV1013, the analogue that lacks PDE inhibitor activity, is ineffective. scRNA-seq analysis reveals upregulation of multiple signaling pathways, including mTOR, in damaged Müller glia (MG) with ibudilast treatment compared to AV1013. Components of mTORC1 and mTORC2 are upregulated in both bipolar cells and MG with ibudilast. The mTOR inhibitor rapamycin blocked accumulation of pS6 but did not reduce TUNEL positive dying cells. Additionally, through ligand-receptor interaction analysis, crosstalk between bipolar cells and MG may be important for neuroprotection. We have identified several paracrine signaling pathways that are known to contribute to cell survival and neuroprotection and might play essential roles in ibudilast function. These findings highlight ibudilast's potential to protect inner retinal neurons during damage and show promise for future clinical translation.
Collapse
|
15
|
Kelly LE, El-Hodiri HM, Crider A, Fischer AJ. Protein phosphatases regulate the formation of Müller glia-derived progenitor cells in the chick retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.11.570629. [PMID: 38168320 PMCID: PMC10760049 DOI: 10.1101/2023.12.11.570629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Different kinase-dependent cell signaling pathways are known to play important roles in glia-mediated neuroprotection and reprogramming of Müller glia (MG) into Müller glia-derived progenitor cells (MGPCs) in the retina. However, very little is known about the phosphatases that regulate kinase-dependent signaling in MG. Using single-cell RNA-sequencing (scRNA-seq) databases, we investigated patterns of expression of Dual Specificity Phosphatases (DUSP1/6) and other protein phosphatases in normal and damaged chick retinas. We found that DUSP1, DUSP6, PPP3CB, PPP3R1 and PPPM1A/B/D/E/G are dynamically expressed by MG and MGPCs in retinas during the process of reprogramming. We find that inhibition of DUSP1/6 and PP2C phosphatases enhances the formation of proliferating MGPCs in damaged retinas and in retinas treated with insulin in FGF2 in the absence of damage. By contrast, inhibition of PP2B phosphatases suppressed the formation of proliferating MGPCs, but increased numbers of proliferating MGPCs in undamaged retinas treated with insulin and FGF2. In damaged retinas, inhibition of DUSP1/6 increased levels of pERK1/2 and cFos in MG whereas inhibition of PP2B's decreased levels of pStat3 and pS6 in MG. Analyses of scRNA-seq libraries identified numerous differentially activated gene modules in MG in damaged retinas versus MG in retinas treated with insulin+FGF2 suggesting significant differences in kinase-dependent signaling pathways that converge on the formation of MGPCs. Inhibition of phosphatases had no significant effects upon numbers of dying cells in damaged retinas. We conclude that the activity of different protein phosphatases "fine-tune" the cell signaling responses of MG in damaged retinas and during the reprogramming of MG into MGPCs.
Collapse
Affiliation(s)
- Lisa E. Kelly
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH
| | - Heithem M. El-Hodiri
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH
| | - Andrew Crider
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH
| | - Andy J. Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH
| |
Collapse
|
16
|
El-Hodiri HM, Bentley JR, Reske AG, Taylor OB, Palazzo I, Campbell WA, Halloy NR, Fischer AJ. Heparin-binding epidermal growth factor and fibroblast growth factor 2 rescue Müller glia-derived progenitor cell formation in microglia- and macrophage-ablated chick retinas. Development 2023; 150:dev202070. [PMID: 37971210 PMCID: PMC10730090 DOI: 10.1242/dev.202070] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
Recent studies have demonstrated the impact of pro-inflammatory signaling and reactive microglia/macrophages on the formation of Müller glial-derived progenitor cells (MGPCs) in the retina. In chick retina, ablation of microglia/macrophages prevents the formation of MGPCs. Analyses of single-cell RNA-sequencing chick retinal libraries revealed that quiescent and activated microglia/macrophages have a significant impact upon the transcriptomic profile of Müller glia (MG). In damaged monocyte-depleted retinas, MG fail to upregulate genes related to different cell signaling pathways, including those related to Wnt, heparin-binding epidermal growth factor (HBEGF), fibroblast growth factor (FGF) and retinoic acid receptors. Inhibition of GSK3β, to simulate Wnt signaling, failed to rescue the deficit in MGPC formation, whereas application of HBEGF or FGF2 completely rescued the formation of MGPCs in monocyte-depleted retinas. Inhibition of Smad3 or activation of retinoic acid receptors partially rescued the formation of MGPCs in monocyte-depleted retinas. We conclude that signals produced by reactive microglia/macrophages in damaged retinas stimulate MG to upregulate cell signaling through HBEGF, FGF and retinoic acid, and downregulate signaling through TGFβ/Smad3 to promote the reprogramming of MG into proliferating MGPCs.
Collapse
Affiliation(s)
- Heithem M. El-Hodiri
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43221, USA
| | - James R. Bentley
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43221, USA
| | - Alana G. Reske
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43221, USA
| | - Olivia B. Taylor
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43221, USA
| | - Isabella Palazzo
- Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Warren A. Campbell
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43221, USA
| | - Nicklaus R. Halloy
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43221, USA
| | - Andy J. Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43221, USA
| |
Collapse
|
17
|
Seo H, Chung WG, Kwon YW, Kim S, Hong YM, Park W, Kim E, Lee J, Lee S, Kim M, Lim K, Jeong I, Song H, Park JU. Smart Contact Lenses as Wearable Ophthalmic Devices for Disease Monitoring and Health Management. Chem Rev 2023; 123:11488-11558. [PMID: 37748126 PMCID: PMC10571045 DOI: 10.1021/acs.chemrev.3c00290] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Indexed: 09/27/2023]
Abstract
The eye contains a complex network of physiological information and biomarkers for monitoring disease and managing health, and ocular devices can be used to effectively perform point-of-care diagnosis and disease management. This comprehensive review describes the target biomarkers and various diseases, including ophthalmic diseases, metabolic diseases, and neurological diseases, based on the physiological and anatomical background of the eye. This review also includes the recent technologies utilized in eye-wearable medical devices and the latest trends in wearable ophthalmic devices, specifically smart contact lenses for the purpose of disease management. After introducing other ocular devices such as the retinal prosthesis, we further discuss the current challenges and potential possibilities of smart contact lenses.
Collapse
Affiliation(s)
- Hunkyu Seo
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Won Gi Chung
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Yong Won Kwon
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Sumin Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Yeon-Mi Hong
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Wonjung Park
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Enji Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Jakyoung Lee
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Sanghoon Lee
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Moohyun Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Kyeonghee Lim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Inhea Jeong
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Hayoung Song
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Jang-Ung Park
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
- Department
of Neurosurgery, Yonsei University College
of Medicine, Seoul 03722, Republic of Korea
- Center
for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul 03722, Republic
of Korea
| |
Collapse
|
18
|
Xiao X, Liao Z, Zou J. Genetic and epigenetic regulators of retinal Müller glial cell reprogramming. ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH 2023; 3:126-133. [PMID: 37846362 PMCID: PMC10577857 DOI: 10.1016/j.aopr.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/18/2023] [Accepted: 05/29/2023] [Indexed: 10/18/2023]
Abstract
Background Retinal diseases characterized with irreversible loss of retinal nerve cells, such as optic atrophy and retinal degeneration, are the main causes of blindness. Current treatments for these diseases are very limited. An emerging treatment strategy is to induce the reprogramming of Müller glial cells to generate new retinal nerve cells, which could potentially restore vision. Main text Müller glial cells are the predominant glial cells in retinae and play multiple roles to maintain retinal homeostasis. In lower vertebrates, such as in zebrafish, Müller glial cells can undergo cell reprogramming to regenerate new retinal neurons in response to various damage factors, while in mammals, this ability is limited. Interestingly, with proper treatments, Müller glial cells can display the potential for regeneration of retinal neurons in mammalian retinae. Recent studies have revealed that dozens of genetic and epigenetic regulators play a vital role in inducing the reprogramming of Müller glial cells in vivo. This review summarizes these critical regulators for Müller glial cell reprogramming and highlights their differences between zebrafish and mammals. Conclusions A number of factors have been identified as the important regulators in Müller glial cell reprogramming. The early response of Müller glial cells upon acute retinal injury, such as the regulation in the exit from quiescent state, the initiation of reactive gliosis, and the re-entry of cell cycle of Müller glial cells, displays significant difference between mouse and zebrafish, which may be mediated by the diverse regulation of Notch and TGFβ (transforming growth factor-β) isoforms and different chromatin accessibility.
Collapse
Affiliation(s)
- Xueqi Xiao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Zhiyong Liao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Jian Zou
- Department of Ophthalmology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- The Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Wang X, Wang T, Lam E, Alvarez D, Sun Y. Ocular Vascular Diseases: From Retinal Immune Privilege to Inflammation. Int J Mol Sci 2023; 24:12090. [PMID: 37569464 PMCID: PMC10418793 DOI: 10.3390/ijms241512090] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The eye is an immune privileged tissue that insulates the visual system from local and systemic immune provocation to preserve homeostatic functions of highly specialized retinal neural cells. If immune privilege is breached, immune stimuli will invade the eye and subsequently trigger acute inflammatory responses. Local resident microglia become active and release numerous immunological factors to protect the integrity of retinal neural cells. Although acute inflammatory responses are necessary to control and eradicate insults to the eye, chronic inflammation can cause retinal tissue damage and cell dysfunction, leading to ocular disease and vision loss. In this review, we summarized features of immune privilege in the retina and the key inflammatory responses, factors, and intracellular pathways activated when retinal immune privilege fails, as well as a highlight of the recent clinical and research advances in ocular immunity and ocular vascular diseases including retinopathy of prematurity, age-related macular degeneration, and diabetic retinopathy.
Collapse
Affiliation(s)
- Xudong Wang
- Department of Ophthalmology, Harvard Medical School, Boston Children’s Hospital, Boston, MA 02115, USA; (X.W.)
| | - Tianxi Wang
- Department of Ophthalmology, Harvard Medical School, Boston Children’s Hospital, Boston, MA 02115, USA; (X.W.)
| | - Enton Lam
- Department of Ophthalmology, Harvard Medical School, Boston Children’s Hospital, Boston, MA 02115, USA; (X.W.)
| | - David Alvarez
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Ye Sun
- Department of Ophthalmology, Harvard Medical School, Boston Children’s Hospital, Boston, MA 02115, USA; (X.W.)
| |
Collapse
|
20
|
Campbell WA, El-Hodiri HM, Torres D, Hawthorn EC, Kelly LE, Volkov L, Akanonu D, Fischer AJ. Chromatin access regulates the formation of Müller glia-derived progenitor cells in the retina. Glia 2023; 71:1729-1754. [PMID: 36971459 PMCID: PMC11335016 DOI: 10.1002/glia.24366] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 03/06/2023] [Accepted: 03/12/2023] [Indexed: 03/29/2023]
Abstract
Chromatin access and epigenetic control over gene expression play important roles in regulating developmental processes. However, little is known about how chromatin access and epigenetic gene silencing influence mature glial cells and retinal regeneration. Herein, we investigate the expression and functions of S-adenosylhomocysteine hydrolase (SAHH; AHCY) and histone methyltransferases (HMTs) during the formation of Müller glia (MG)-derived progenitor cells (MGPCs) in the chick and mouse retinas. In chick, AHCY, AHCYL1 and AHCYL2, and many different HMTs are dynamically expressed by MG and MGPCs in damaged retinas. Inhibition of SAHH reduced levels of H3K27me3 and potently blocks the formation of proliferating MGPCs. By using a combination of single cell RNA-seq and single cell ATAC-seq, we find significant changes in gene expression and chromatin access in MG with SAHH inhibition and NMDA-treatment; many of these genes are associated with glial and neuronal differentiation. A strong correlation across gene expression, chromatin access, and transcription factor motif access in MG was observed for transcription factors known to convey glial identity and promote retinal development. By comparison, in the mouse retina, inhibition of SAHH has no influence on the differentiation of neuron-like cells from Ascl1-overexpressing MG. We conclude that in the chick the activity of SAHH and HMTs are required for the reprogramming of MG into MGPCs by regulating chromatin access to transcription factors associated with glial differentiation and retinal development.
Collapse
Affiliation(s)
- Warren A. Campbell
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH
| | - Heithem M. El-Hodiri
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH
| | - Diego Torres
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH
| | - Evan C. Hawthorn
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH
| | - Lisa E. Kelly
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH
| | - Leo Volkov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - David Akanonu
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI
| | - Andy J. Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH
| |
Collapse
|
21
|
Álvarez-Hernán G, de Mera-Rodríguez JA, Calle-Guisado V, Martín-Partido G, Rodríguez-León J, Francisco-Morcillo J. Retinal Development in a Precocial Bird Species, the Quail (Coturnix coturnix, Linnaeus 1758). Cells 2023; 12:cells12070989. [PMID: 37048062 PMCID: PMC10093483 DOI: 10.3390/cells12070989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/09/2023] [Accepted: 03/15/2023] [Indexed: 03/28/2023] Open
Abstract
The quail (Coturnix coturnix, Linnaeus 1758), a notable model used in developmental biology, is a precocial bird species in which the processes of retinal cell differentiation and retinal histogenesis have been poorly studied. The purpose of the present research is to examine the retinogenesis in this bird species immunohistochemically and compare the results with those from previous studies in precocial and altricial birds. We found that the first PCNA-negative nuclei are detected at Stage (St) 21 in the vitreal region of the neuroblastic layer, coinciding topographically with the first αTubAc-/Tuj1-/Isl1-immunoreactive differentiating ganglion cells. At St28, the first Prox1-immunoreactive nuclei can be distinguished in the vitreal side of the neuroblastic layer (NbL), but also the first visinin-immunoreactive photoreceptors in the scleral surface. The inner plexiform layer (IPL) emerges at St32, and the outer plexiform layer (OPL) becomes visible at St35—the stage in which the first GS-immunoreactive Müller cells are distinguishable. Newly hatched animals show a well-developed stratified retina in which the PCNA-and pHisH3-immunoreactivies are absent. Therefore, retinal cell differentiation in the quail progresses in the stereotyped order conserved among vertebrates, in which ganglion cells initially appear and are followed by amacrine cells, horizontal cells, and photoreceptors. Müller glia are one of the last cell types to be born. Plexiform layers emerge following a vitreal-to-scleral gradient. Finally, our results suggest that there are no significant differences in the timing of different events involved in retinal maturation between the quail and the chicken, but the same events are delayed in an altricial bird species.
Collapse
Affiliation(s)
- Guadalupe Álvarez-Hernán
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
| | - José Antonio de Mera-Rodríguez
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Violeta Calle-Guisado
- Área de Anatomía y Embriología Humana, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Medicina, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Gervasio Martín-Partido
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Joaquín Rodríguez-León
- Área de Anatomía y Embriología Humana, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Medicina, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Javier Francisco-Morcillo
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
- Correspondence:
| |
Collapse
|
22
|
Raheem NM, Mohammed Ali Mahmood N. Azilsartan suppresses the antiapoptotic biomarker and pro-inflammatory cytokines in rat model of cisplatin-induced retinal and optic nerve toxicity. Hum Exp Toxicol 2023; 42:9603271231155092. [PMID: 36930951 DOI: 10.1177/09603271231155092] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
BACKGROUND The local renin-angiotensin system has been discovered in the eyes; thus, this study evaluates the Azilsartan effect in the retina and optic nerve toxicity induced by Cisplatin in vivo. METHODOLOGY Forty-eight male rats were randomly assigned into six groups of 8 animals. Group 1 was healthy control that received 0.5 mL/day of 0.5% carboxymethyl cellulose (CMC) orally (PO). Group 2 received a single dose of the 7.0 mg/kg CIS intraperitoneally with 0.5 mL/day of 0.5% CMC-PO. Groups 3 and 4 received 3.5 and 7.0 mg/kg/day of AZIL-PO, respectively. Groups 5 and 6 received 3.5 and 7.0 mg/kg/day of AZIL-PO, respectively together with a single dose of 7.0 mg/kg of CIS-IP. The ocular tissue and serum estimated the TNF-α, NF-kβ, and Casp-3. A complete blood count was also measured, and the eye was sent for histological examination. RESULTS The administration of the 3.5 mg/kg AZIL significantly (p < 0.05) reduced the ocular tissue and serum TNF-α, NF-kB, and Casp-3 levels, when given to CIS treated group, while the 7.0 mg/kg AZIL does not. Additionally, azilsartan shows no negative impact on the CBC in rats. Finally, the eye histological examination showed a significant (p < 0.05) drop in the signs of inflammation and cellular degeneration, particularly after administration of the 3.5 mg/kg AZIL to the CIS-treated group. CONCLUSION A low dose of AZIL exerts an anti-inflammation and an anti-apoptotic effect through significant suppression of the pro-inflammatory mediators and an apoptotic biomarker by blocking the local angiotensin II type.
Collapse
Affiliation(s)
- Noor Majid Raheem
- Department of Pharmacology and Toxicology, College of Pharmacy, 275719University of Sulaimani, Sulaimaniyah, Iraq
| | - Naza Mohammed Ali Mahmood
- Department of Pharmacology and Toxicology, College of Pharmacy, 275719University of Sulaimani, Sulaimaniyah, Iraq
| |
Collapse
|
23
|
Xu D, Zhong LT, Cheng HY, Wang ZQ, Chen XM, Feng AY, Chen WY, Chen G, Xu Y. Overexpressing NeuroD1 reprograms Müller cells into various types of retinal neurons. Neural Regen Res 2022; 18:1124-1131. [PMID: 36255002 PMCID: PMC9827787 DOI: 10.4103/1673-5374.355818] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The onset of retinal degenerative disease is often associated with neuronal loss. Therefore, how to regenerate new neurons to restore vision is an important issue. NeuroD1 is a neural transcription factor with the ability to reprogram brain astrocytes into neurons in vivo. Here, we demonstrate that in adult mice, NeuroD1 can reprogram Müller cells, the principal glial cell type in the retina, to become retinal neurons. Most strikingly, ectopic expression of NeuroD1 using two different viral vectors converted Müller cells into different cell types. Specifically, AAV7m8 GFAP681::GFP-ND1 converted Müller cells into inner retinal neurons, including amacrine cells and ganglion cells. In contrast, AAV9 GFAP104::ND1-GFP converted Müller cells into outer retinal neurons such as photoreceptors and horizontal cells, with higher conversion efficiency. Furthermore, we demonstrate that Müller cell conversion induced by AAV9 GFAP104::ND1-GFP displayed clear dose- and time-dependence. These results indicate that Müller cells in adult mice are highly plastic and can be reprogrammed into various subtypes of retinal neurons.
Collapse
Affiliation(s)
- Di Xu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, Guangzhou, Guangdong Province, China
| | - Li-Ting Zhong
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, Guangzhou, Guangdong Province, China
| | - Hai-Yang Cheng
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, Guangzhou, Guangdong Province, China
| | - Zeng-Qiang Wang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, Guangzhou, Guangdong Province, China
| | - Xiong-Min Chen
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, Guangzhou, Guangdong Province, China
| | - Ai-Ying Feng
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, Guangzhou, Guangdong Province, China
| | - Wei-Yi Chen
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, Guangzhou, Guangdong Province, China
| | - Gong Chen
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, Guangzhou, Guangdong Province, China,Correspondence to: Ying Xu, ; Gong Chen, .
| | - Ying Xu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, Guangzhou, Guangdong Province, China,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China,Correspondence to: Ying Xu, ; Gong Chen, .
| |
Collapse
|
24
|
Sharma P, Ramachandran R. Retina regeneration: lessons from vertebrates. OXFORD OPEN NEUROSCIENCE 2022; 1:kvac012. [PMID: 38596712 PMCID: PMC10913848 DOI: 10.1093/oons/kvac012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/24/2022] [Accepted: 06/25/2022] [Indexed: 04/11/2024]
Abstract
Unlike mammals, vertebrates such as fishes and frogs exhibit remarkable tissue regeneration including the central nervous system. Retina being part of the central nervous system has attracted the interest of several research groups to explore its regenerative ability in different vertebrate models including mice. Fishes and frogs completely restore the size, shape and tissue structure of an injured retina. Several studies have unraveled molecular mechanisms underlying retina regeneration. In teleosts, soon after injury, the Müller glial cells of the retina reprogram to form a proliferating population of Müller glia-derived progenitor cells capable of differentiating into various neural cell types and Müller glia. In amphibians, the transdifferentiation of retinal pigment epithelium and differentiation of ciliary marginal zone cells contribute to retina regeneration. In chicks and mice, supplementation with external growth factors or genetic modifications cause a partial regenerative response in the damaged retina. The initiation of retina regeneration is achieved through sequential orchestration of gene expression through controlled modulations in the genetic and epigenetic landscape of the progenitor cells. Several developmental biology pathways are turned on during the Müller glia reprogramming, retinal pigment epithelium transdifferentiation and ciliary marginal zone differentiation. Further, several tumorigenic pathways and gene expression events also contribute to the complete regeneration cascade of events. In this review, we address the various retinal injury paradigms and subsequent gene expression events governed in different vertebrate species. Further, we compared how vertebrates such as teleost fishes and amphibians can achieve excellent regenerative responses in the retina compared with their mammalian counterparts.
Collapse
Affiliation(s)
- Poonam Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge City, SAS Nagar, Sector 81, Manauli PO, 140306 Mohali, Punjab, India
| | - Rajesh Ramachandran
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge City, SAS Nagar, Sector 81, Manauli PO, 140306 Mohali, Punjab, India
| |
Collapse
|
25
|
Brennan FH, Li Y, Wang C, Ma A, Guo Q, Li Y, Pukos N, Campbell WA, Witcher KG, Guan Z, Kigerl KA, Hall JCE, Godbout JP, Fischer AJ, McTigue DM, He Z, Ma Q, Popovich PG. Microglia coordinate cellular interactions during spinal cord repair in mice. Nat Commun 2022; 13:4096. [PMID: 35835751 PMCID: PMC9283484 DOI: 10.1038/s41467-022-31797-0] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/01/2022] [Indexed: 12/27/2022] Open
Abstract
Traumatic spinal cord injury (SCI) triggers a neuro-inflammatory response dominated by tissue-resident microglia and monocyte derived macrophages (MDMs). Since activated microglia and MDMs are morphologically identical and express similar phenotypic markers in vivo, identifying injury responses specifically coordinated by microglia has historically been challenging. Here, we pharmacologically depleted microglia and use anatomical, histopathological, tract tracing, bulk and single cell RNA sequencing to reveal the cellular and molecular responses to SCI controlled by microglia. We show that microglia are vital for SCI recovery and coordinate injury responses in CNS-resident glia and infiltrating leukocytes. Depleting microglia exacerbates tissue damage and worsens functional recovery. Conversely, restoring select microglia-dependent signaling axes, identified through sequencing data, in microglia depleted mice prevents secondary damage and promotes recovery. Additional bioinformatics analyses reveal that optimal repair after SCI might be achieved by co-opting key ligand-receptor interactions between microglia, astrocytes and MDMs.
Collapse
Affiliation(s)
- Faith H Brennan
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Belford Center for Spinal Cord Injury, Center for Brain and Spinal Cord Repair, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Yang Li
- Department of Biomedical Informatics, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Cankun Wang
- Department of Biomedical Informatics, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Anjun Ma
- Department of Biomedical Informatics, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Qi Guo
- Department of Biomedical Informatics, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Yi Li
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Department of Neurology, Harvard Medical School, Boston, MA, USA
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Nicole Pukos
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Belford Center for Spinal Cord Injury, Center for Brain and Spinal Cord Repair, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Warren A Campbell
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Kristina G Witcher
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Zhen Guan
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Belford Center for Spinal Cord Injury, Center for Brain and Spinal Cord Repair, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Kristina A Kigerl
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Belford Center for Spinal Cord Injury, Center for Brain and Spinal Cord Repair, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Jodie C E Hall
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Belford Center for Spinal Cord Injury, Center for Brain and Spinal Cord Repair, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Jonathan P Godbout
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Andy J Fischer
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Dana M McTigue
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Belford Center for Spinal Cord Injury, Center for Brain and Spinal Cord Repair, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Qin Ma
- Department of Biomedical Informatics, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Phillip G Popovich
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
- Belford Center for Spinal Cord Injury, Center for Brain and Spinal Cord Repair, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| |
Collapse
|
26
|
Chen Y, Xia Q, Zeng Y, Zhang Y, Zhang M. Regulations of Retinal Inflammation: Focusing on Müller Glia. Front Cell Dev Biol 2022; 10:898652. [PMID: 35573676 PMCID: PMC9091449 DOI: 10.3389/fcell.2022.898652] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022] Open
Abstract
Retinal inflammation underlies multiple prevalent retinal diseases. While microglia are one of the most studied cell types regarding retinal inflammation, growing evidence shows that Müller glia play critical roles in the regulation of retinal inflammation. Müller glia express various receptors for cytokines and release cytokines to regulate inflammation. Müller glia are part of the blood-retinal barrier and interact with microglia in the inflammatory responses. The unique metabolic features of Müller glia in the retina makes them vital for retinal homeostasis maintenance, regulating retinal inflammation by lipid metabolism, purine metabolism, iron metabolism, trophic factors, and antioxidants. miRNAs in Müller glia regulate inflammatory responses via different mechanisms and potentially regulate retinal regeneration. Novel therapies are explored targeting Müller glia for inflammatory retinal diseases treatment. Here we review new findings regarding the roles of Müller glia in retinal inflammation and discuss the related novel therapies for retinal diseases.
Collapse
Affiliation(s)
- Yingying Chen
- Department of Ophthalmology, Sichuan University West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Qinghong Xia
- Operating Room of Anesthesia Surgery Center, West China Hospital, Sichuan University, Chengdu, China
- West China School of Nursing, Sichuan University, Chengdu, China
| | - Yue Zeng
- Department of Ophthalmology, Sichuan University West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Yun Zhang
- Department of Ophthalmology, Sichuan University West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Meixia Zhang
- Department of Ophthalmology, Sichuan University West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Meixia Zhang,
| |
Collapse
|
27
|
Palazzo I, Todd LJ, Hoang TV, Reh TA, Blackshaw S, Fischer AJ. NFkB-signaling promotes glial reactivity and suppresses Müller glia-mediated neuron regeneration in the mammalian retina. Glia 2022; 70:1380-1401. [PMID: 35388544 DOI: 10.1002/glia.24181] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/25/2022]
Abstract
Müller glia (MG) in mammalian retinas are incapable of regenerating neurons after damage, whereas the MG in lower vertebrates regenerate functional neurons. Identification of cell signaling pathways and gene regulatory networks that regulate MG-mediated regeneration is key to harnessing the regenerative potential of MG. Here, we study how NFkB-signaling influences glial responses to damage and reprogramming of MG into neurons in the rodent retina. We find activation of NFkB and dynamic expression of NFkB-associated genes in MG after damage, however damage-induced NFkB activation is inhibited by microglia ablation. Knockout of NFkB in MG suppressed the accumulation of immune cells after damage. Inhibition of NFkB following NMDA-damage significantly enhanced the reprogramming of Ascl1-overexpressing MG into neuron-like cells. scRNA-seq of retinal glia following inhibition of NFkB reveals coordination with signaling via TGFβ2 and suppression of NFI and Id transcription factors. Inhibition of Smad3 signal transducer or Id transcription factors increased numbers of neuron-like cells produced by Ascl1-overexpressing MG. We conclude that NFkB is a key signaling hub that is activated in MG after damage, mediates the accumulation of immune cells, and suppresses the neurogenic potential of MG.
Collapse
Affiliation(s)
- Isabella Palazzo
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Levi J Todd
- Department of Biological Structure, College of Medicine, University of Washington, Seattle, Washington, USA
| | - Thanh V Hoang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Thomas A Reh
- Department of Biological Structure, College of Medicine, University of Washington, Seattle, Washington, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
28
|
Carpi-Santos R, de Melo Reis RA, Gomes FCA, Calaza KC. Contribution of Müller Cells in the Diabetic Retinopathy Development: Focus on Oxidative Stress and Inflammation. Antioxidants (Basel) 2022; 11:617. [PMID: 35453302 PMCID: PMC9027671 DOI: 10.3390/antiox11040617] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/01/2022] [Accepted: 03/15/2022] [Indexed: 01/27/2023] Open
Abstract
Diabetic retinopathy is a neurovascular complication of diabetes and the main cause of vision loss in adults. Glial cells have a key role in maintenance of central nervous system homeostasis. In the retina, the predominant element is the Müller cell, a specialized cell with radial morphology that spans all retinal layers and influences the function of the entire retinal circuitry. Müller cells provide metabolic support, regulation of extracellular composition, synaptic activity control, structural organization of the blood-retina barrier, antioxidant activity, and trophic support, among other roles. Therefore, impairments of Müller actions lead to retinal malfunctions. Accordingly, increasing evidence indicates that Müller cells are affected in diabetic retinopathy and may contribute to the severity of the disease. Here, we will survey recently described alterations in Müller cell functions and cellular events that contribute to diabetic retinopathy, especially related to oxidative stress and inflammation. This review sheds light on Müller cells as potential therapeutic targets of this disease.
Collapse
Affiliation(s)
- Raul Carpi-Santos
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (R.C.-S.); (F.C.A.G.)
| | - Ricardo A. de Melo Reis
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
| | - Flávia Carvalho Alcantara Gomes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (R.C.-S.); (F.C.A.G.)
| | - Karin C. Calaza
- Instituto de Biologia, Departamento de Neurobiologia, Universidade Federal Fluminense, Niteroi 24210-201, RJ, Brazil
| |
Collapse
|
29
|
Campbell WA, Tangeman A, El-Hodiri HM, Hawthorn EC, Hathoot M, Blum S, Hoang T, Blackshaw S, Fischer AJ. Fatty acid-binding proteins and fatty acid synthase influence glial reactivity and promote the formation of Müller glia-derived progenitor cells in the chick retina. Development 2022; 149:274285. [PMID: 35132991 PMCID: PMC8959147 DOI: 10.1242/dev.200127] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/18/2022] [Indexed: 11/20/2022]
Abstract
A recent comparative transcriptomic study of Müller glia (MG) in vertebrate retinas revealed that fatty acid binding proteins (FABPs) are among the most highly expressed genes in chick ( Hoang et al., 2020). Here, we investigate how FABPs and fatty acid synthase (FASN) influence glial cells in the chick retina. During development, FABP7 is highly expressed by retinal progenitor cells and maturing MG, whereas FABP5 is upregulated in maturing MG. PMP2 (FABP8) is expressed by oligodendrocytes and FABP5 is expressed by non-astrocytic inner retinal glial cells, and both of these FABPs are upregulated by activated MG. In addition to suppressing the formation of Müller glia-derived progenitor cells (MGPCs), we find that FABP-inhibition suppresses the proliferation of microglia. FABP-inhibition induces distinct changes in single cell transcriptomic profiles, indicating transitions of MG from resting to reactive states and suppressed MGPC formation, with upregulation of gene modules for gliogenesis and decreases in neurogenesis. FASN-inhibition increases the proliferation of microglia and suppresses the formation of MGPCs. We conclude that fatty acid metabolism and cell signaling involving fatty acids are important in regulating the reactivity and dedifferentiation of MG, and the proliferation of microglia and MGPCs.
Collapse
Affiliation(s)
- Warren A Campbell
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Allen Tangeman
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Heithem M El-Hodiri
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Evan C Hawthorn
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Maddie Hathoot
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Sydney Blum
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Thanh Hoang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
30
|
Heydari M, Zare M, Badie MR, Watson RR, Talebnejad MR, Afarid M. Crocin as a vision supplement. Clin Exp Optom 2022; 106:249-256. [PMID: 35231199 DOI: 10.1080/08164622.2022.2039554] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Crocin is a natural ingredient of saffron (Crocus sativus L.) flower that has shown potential for application as a supplement in eye health and preserving vision. Crocin has been examined for its potential to treat various eye diseases such as glaucoma, macular dystrophies, diabetic retinopathy, and age-related macular degeneration. This review briefly discusses the role of crocin in different eye diseases. The underlying pathophysiological pathways involved in the effect of crocin on ophthalmic diseases are also reviewed. Preclinical evidence shows the cytoprotective, antioxidative, anti-inflammatory, and blood-flow enhancing effects of crocin in retinal tissue. Crocin also affects the retinal pathologies by activating PI3K/Akt and inhibiting NF-κB signalling pathways. Clinical evidence suggests that crocin improves outcomes in patients with retinal degenerations, retinal dystrophies, and glaucoma. Overall, crocin can be suggested as a potential vision supplement in healthy populations and patients with eye diseases. However, more clinical studies with larger sample sizes and longer follow-up durations are needed to confirm the current evidence.
Collapse
Affiliation(s)
- Mojtaba Heydari
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mousa Zare
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Badie
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohammad Reza Talebnejad
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrdad Afarid
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
31
|
Blackshaw S. Why Has the Ability to Regenerate Following CNS Injury Been Repeatedly Lost Over the Course of Evolution? Front Neurosci 2022; 16:831062. [PMID: 35185460 PMCID: PMC8854365 DOI: 10.3389/fnins.2022.831062] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/13/2022] [Indexed: 12/30/2022] Open
Abstract
While many vertebrates can regenerate both damaged neurons and severed axons in the central nervous system (CNS) following injury, others, including all birds and mammals, have lost this ability for reasons that are still unclear. The repeated evolutionary loss of regenerative competence seems counterintuitive, and any explanation must account for the fact that regenerative competence is lost in both cold-blooded and all warm-blooded clades, that both injury-induced neurogenesis and axonal regeneration tend to be lost in tandem, and that mammals have evolved dedicated gene regulatory networks to inhibit injury-induced glia-to-neuron reprogramming. Here, different hypotheses that have been proposed to account for evolutionary loss of regenerative competence are discussed in the light of new insights obtained into molecular mechanisms that control regeneration in the central nervous system. These include pleiotropic effects of continuous growth, enhanced thyroid hormone signaling, prevention of neoplasia, and improved memory consolidation. Recent evidence suggests that the most compelling hypothesis, however, may be selection for greater resistance to the spread of intra-CNS infections, which has led to both enhanced reactive gliosis and a loss of injury-induced neurogenesis and axonal regeneration. Means of testing these hypotheses, and additional data that are urgently needed to better understand the evolutionary pressures and mechanisms driving loss of regenerative competence, are also discussed.
Collapse
Affiliation(s)
- Seth Blackshaw
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Seth Blackshaw,
| |
Collapse
|
32
|
Strettoi E, Di Marco B, Orsini N, Napoli D. Retinal Plasticity. Int J Mol Sci 2022; 23:ijms23031138. [PMID: 35163059 PMCID: PMC8835074 DOI: 10.3390/ijms23031138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/28/2022] Open
Abstract
Brain plasticity is a well-established concept designating the ability of central nervous system (CNS) neurons to rearrange as a result of learning, when adapting to changeable environmental conditions or else while reacting to injurious factors. As a part of the CNS, the retina has been repeatedly probed for its possible ability to respond plastically to a variably altered environment or to pathological insults. However, numerous studies support the conclusion that the retina, outside the developmental stage, is endowed with only limited plasticity, exhibiting, instead, a remarkable ability to maintain a stable architectural and functional organization. Reviewed here are representative examples of hippocampal and cortical paradigms of plasticity and of retinal structural rearrangements found in organization and circuitry following altered developmental conditions or occurrence of genetic diseases leading to neuronal degeneration. The variable rate of plastic changes found in mammalian retinal neurons in different circumstances is discussed, focusing on structural plasticity. The likely adaptive value of maintaining a low level of plasticity in an organ subserving a sensory modality that is dominant for the human species and that requires elevated fidelity is discussed.
Collapse
Affiliation(s)
- Enrica Strettoi
- CNR Neuroscience Institute, 56124 Pisa, Italy; (B.D.M.); (N.O.); (D.N.)
- Correspondence: ; Tel.: +39-0503153213
| | - Beatrice Di Marco
- CNR Neuroscience Institute, 56124 Pisa, Italy; (B.D.M.); (N.O.); (D.N.)
- Regional Doctorate School in Neuroscience, Universities of Florence, Pisa and Siena, 50134 Florence, Italy
| | - Noemi Orsini
- CNR Neuroscience Institute, 56124 Pisa, Italy; (B.D.M.); (N.O.); (D.N.)
- Regional Doctorate School in Neuroscience, Universities of Florence, Pisa and Siena, 50134 Florence, Italy
| | - Debora Napoli
- CNR Neuroscience Institute, 56124 Pisa, Italy; (B.D.M.); (N.O.); (D.N.)
- Regional Doctorate School in Neuroscience, Universities of Florence, Pisa and Siena, 50134 Florence, Italy
| |
Collapse
|
33
|
El-Hodiri HM, Campbell WA, Kelly LE, Hawthorn EC, Schwartz M, Jalligampala A, McCall MA, Meyer K, Fischer AJ. Nuclear Factor I in neurons, glia and during the formation of Müller glia-derived progenitor cells in avian, porcine and primate retinas. J Comp Neurol 2021; 530:1213-1230. [PMID: 34729776 DOI: 10.1002/cne.25270] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/21/2021] [Indexed: 11/10/2022]
Abstract
The regenerative potential of Müller glia (MG) is extraordinary in fish, poor in chick and terrible in mammals. In the chick model, MG readily reprogram into proliferating Müller glia-derived progenitor cells (MGPCs), but neuronal differentiation is very limited. The factors that suppress the neurogenic potential of MGPCs in the chick are slowly being revealed. Isoforms of Nuclear Factor I (NFI) are cell-intrinsic factors that limit neurogenic potential; these factors are required for the formation of MG in the developing mouse retina (Clark et al., 2019) and deletion of these factors reprograms MG into neuron-like cells in mature mouse retina (Hoang et al., 2020). Accordingly, we sought to characterize the patterns of expression NFIs in the developing, mature and damaged chick retina. In addition, we characterized patterns of expression of NFIs in the retinas of large mammals, pigs and monkeys. Using a combination of single cell RNA-sequencing (scRNA-seq) and immunolabeling we probed for patterns of expression. In embryonic chick, levels of NFIs are very low in early E5 (embryonic day 5) retinal progenitor cells (RPCs), up-regulated in E8 RPCs, further up-regulated in differentiating MG at E12 and E15. NFIs are maintained in mature resting MG, microglia and neurons. Levels of NFIs are reduced in activated MG in retinas treated with NMDA and/or insulin+FGF2, and further down-regulated in proliferating MGPCs. However, levels of NFIs in MGPCs were significantly higher than those seen in RPCs. Immunolabeling for NFIA and NFIB closely matched patterns of expression revealed in different types of retinal neurons and glia, consistent with findings from scRNA-seq. In addition, we find expression of NFIA and NFIB through progenitors in the circumferential marginal zone at the far periphery of the retina. We find similar patterns of expression for NFIs in scRNA-seq databases for pig and monkey retinas. Patterns of expression of NFIA and NFIB were validated with immunofluorescence in pig and monkey retinas wherein these factors were predominantly detected in MG and a few types of inner retinal neurons. In summary, NFIA and NFIB are prominently expressed in developing chick retina and by mature neurons and glia in the retinas of chicks, pigs and monkeys. Although levels of NFIs are decreased in chick, in MGPCs these levels remain higher than those seen in neurogenic RPCs. We propose that the neurogenic potential of MGPCs in the chick retina is suppressed by NFIs. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Heithem M El-Hodiri
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH.,Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY
| | - Warren A Campbell
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH
| | - Lisa E Kelly
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH
| | - Evan C Hawthorn
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH
| | - Maura Schwartz
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH
| | - Archana Jalligampala
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY
| | - Maureen A McCall
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY
| | - Kathrin Meyer
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH
| |
Collapse
|
34
|
Insights on the Regeneration Potential of Müller Glia in the Mammalian Retina. Cells 2021; 10:cells10081957. [PMID: 34440726 PMCID: PMC8394255 DOI: 10.3390/cells10081957] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/11/2021] [Accepted: 07/26/2021] [Indexed: 12/25/2022] Open
Abstract
Müller glia, the major glial cell types in the retina, maintain retinal homeostasis and provide structural support to retinal photoreceptors. They also possess regenerative potential that might be used for retinal repair in response to injury or disease. In teleost fish (such as zebrafish), the Müller glia response to injury involves reprogramming events that result in a population of proliferative neural progenitors that can regenerate the injured retina. Recent studies have revealed several important mechanisms for the regenerative capacity of Müller glia in fish, which may shed more light on the mechanisms of Müller glia reprogramming and regeneration in mammals. Mammalian Müller glia can adopt stem cell characteristics, and in response to special conditions, be persuaded to proliferate and regenerate, although their native regeneration potential is limited. In this review, we consider the work to date revealing the regenerative potential of the mammalian Müller glia and discuss whether they are a potential source for cell regeneration therapy in humans.
Collapse
|
35
|
Alesci A, Pergolizzi S, Lo Cascio P, Fumia A, Lauriano ER. Neuronal regeneration: Vertebrates comparative overview and new perspectives for neurodegenerative diseases. ACTA ZOOL-STOCKHOLM 2021. [DOI: 10.1111/azo.12397] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Simona Pergolizzi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Patrizia Lo Cascio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Angelo Fumia
- Department of Clinical and Experimental Medicine University of Messina Messina Italy
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| |
Collapse
|
36
|
Campbell WA, Blum S, Reske A, Hoang T, Blackshaw S, Fischer AJ. Cannabinoid signaling promotes the de-differentiation and proliferation of Müller glia-derived progenitor cells. Glia 2021; 69:2503-2521. [PMID: 34231253 DOI: 10.1002/glia.24056] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022]
Abstract
Endocannabinoids (eCB) are lipid-based neurotransmitters that are known to influence synaptic function in the visual system. eCBs are also known to suppress neuroinflammation in different pathological states. However, nothing is known about the roles of the eCB system during the transition of Müller glia (MG) into proliferating progenitor-like cells in the retina. Accordingly, we used the chick and mouse model to characterize expression patterns of eCB-related genes and applied pharmacological agents to investigate how the eCB system impacts glial reactivity and the capacity of MG to become Müller glia-derived progenitor cells (MGPCs). We queried single cell RNA-seq libraries to identify eCB-related genes and identify cells with dynamic patterns of expression in damaged retinas. MG and inner retinal neurons expressed the eCB receptor CNR1, as well as enzymes involved in eCB metabolism. In the chick, intraocular injections of cannabinoids, 2-Arachidonoylglycerol (2-AG) and Anandamide (AEA), stimulated the formation of MGPCs. Cannabinoid Receptor 1 (CNR1)-agonists and Monoglyceride Lipase-inhibitor promoted the formation of MGPCs, whereas CNR1-antagonist and inhibitors of eCB synthesis suppressed this process. In damaged mouse retinas where MG activate NFkB-signaling, activation of CNR1 decreased and inhibition of CNR1 increased NFkB, whereas levels of neuronal cell death were unaffected. Surprisingly, retinal microglia were largely unaffected by increases or decreases in eCB-signaling in both chick and mouse retinas. We conclude that the eCB system in the retina influences the reactivity of MG and the formation of proliferating MGPCs, but does not influence the reactivity of immune cells in the retina.
Collapse
Affiliation(s)
- Warren A Campbell
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Sydney Blum
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Alana Reske
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Thanh Hoang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
37
|
Nagashima M, Hitchcock PF. Inflammation Regulates the Multi-Step Process of Retinal Regeneration in Zebrafish. Cells 2021; 10:cells10040783. [PMID: 33916186 PMCID: PMC8066466 DOI: 10.3390/cells10040783] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 12/20/2022] Open
Abstract
The ability to regenerate tissues varies between species and between tissues within a species. Mammals have a limited ability to regenerate tissues, whereas zebrafish possess the ability to regenerate almost all tissues and organs, including fin, heart, kidney, brain, and retina. In the zebrafish brain, injury and cell death activate complex signaling networks that stimulate radial glia to reprogram into neural stem-like cells that repair the injury. In the retina, a popular model for investigating neuronal regeneration, Müller glia, radial glia unique to the retina, reprogram into stem-like cells and undergo a single asymmetric division to generate multi-potent retinal progenitors. Müller glia-derived progenitors then divide rapidly, numerically matching the magnitude of the cell death, and differentiate into the ablated neurons. Emerging evidence reveals that inflammation plays an essential role in this multi-step process of retinal regeneration. This review summarizes the current knowledge of the inflammatory events during retinal regeneration and highlights the mechanisms whereby inflammatory molecules regulate the quiescence and division of Müller glia, the proliferation of Müller glia-derived progenitors and the survival of regenerated neurons.
Collapse
|
38
|
Campbell WA, Fritsch-Kelleher A, Palazzo I, Hoang T, Blackshaw S, Fischer AJ. Midkine is neuroprotective and influences glial reactivity and the formation of Müller glia-derived progenitor cells in chick and mouse retinas. Glia 2021; 69:1515-1539. [PMID: 33569849 DOI: 10.1002/glia.23976] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 01/03/2023]
Abstract
Recent studies suggest midkine (MDK) is involved in the development and regeneration of the zebrafish retina. We investigate the expression patterns of MDK and related factors, roles in neuronal survival, and influence upon the formation of Müller glia-derived progenitor cells (MGPCs) in chick and mouse model systems. By using single-cell RNA-sequencing, we find that MDK and pleiotrophin (PTN), a MDK-related cytokine, are upregulated by Müller glia (MG) during later stages of development in chick. While PTN is downregulated, MDK is dramatically upregulated in mature MG after retinal damage or FGF2 and insulin treatment. By comparison, MDK and PTN are downregulated by MG in damaged mouse retinas. In both chick and mouse retinas, exogenous MDK induces expression of cFos and pS6 in MG. In the chick, MDK significantly decreases numbers dying neurons, reactive microglia, and proliferating MGPCs, whereas PTN has no effect. Inhibition of MDK-signaling with Na3 VO4 blocks neuroprotective effects with an increase in the number of dying cells and negates the pro-proliferative effects on MGPCs in damaged retinas. Inhibitors of PP2A and Pak1, which are associated with MDK-signaling through integrin β1, suppressed the formation of MGPCs in damaged chick retinas. In mice, MDK promotes a small but significant increase in proliferating MGPCs in damaged retinas and potently decreases the number of dying cells. We conclude that MDK expression is dynamically regulated in Müller glia during embryonic maturation, following retinal injury, and during reprogramming into MGPCs. MDK mediates glial activity, neuronal survival, and the re-programming of Müller glia into proliferating MGPCs.
Collapse
Affiliation(s)
- Warren A Campbell
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Amanda Fritsch-Kelleher
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Isabella Palazzo
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Thanh Hoang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
39
|
Hoang T, Wang J, Boyd P, Wang F, Santiago C, Jiang L, Yoo S, Lahne M, Todd LJ, Jia M, Saez C, Keuthan C, Palazzo I, Squires N, Campbell WA, Rajaii F, Parayil T, Trinh V, Kim DW, Wang G, Campbell LJ, Ash J, Fischer AJ, Hyde DR, Qian J, Blackshaw S. Gene regulatory networks controlling vertebrate retinal regeneration. Science 2020; 370:eabb8598. [PMID: 33004674 PMCID: PMC7899183 DOI: 10.1126/science.abb8598] [Citation(s) in RCA: 267] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 09/16/2020] [Indexed: 12/14/2022]
Abstract
Injury induces retinal Müller glia of certain cold-blooded vertebrates, but not those of mammals, to regenerate neurons. To identify gene regulatory networks that reprogram Müller glia into progenitor cells, we profiled changes in gene expression and chromatin accessibility in Müller glia from zebrafish, chick, and mice in response to different stimuli. We identified evolutionarily conserved and species-specific gene networks controlling glial quiescence, reactivity, and neurogenesis. In zebrafish and chick, the transition from quiescence to reactivity is essential for retinal regeneration, whereas in mice, a dedicated network suppresses neurogenic competence and restores quiescence. Disruption of nuclear factor I transcription factors, which maintain and restore quiescence, induces Müller glia to proliferate and generate neurons in adult mice after injury. These findings may aid in designing therapies to restore retinal neurons lost to degenerative diseases.
Collapse
Affiliation(s)
- Thanh Hoang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jie Wang
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Patrick Boyd
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN 46556, USA
- Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Fang Wang
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Clayton Santiago
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lizhi Jiang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sooyeon Yoo
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Manuela Lahne
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN 46556, USA
- Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Levi J Todd
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Meng Jia
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN 46556, USA
- Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Cristian Saez
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Casey Keuthan
- Department of Ophthalmology, University of Florida School of Medicine, Gainesville, FL 32610, USA
| | - Isabella Palazzo
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Natalie Squires
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Warren A Campbell
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Fatemeh Rajaii
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Trisha Parayil
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Vickie Trinh
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dong Won Kim
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Guohua Wang
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Leah J Campbell
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN 46556, USA
- Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - John Ash
- Department of Ophthalmology, University of Florida School of Medicine, Gainesville, FL 32610, USA
| | - Andy J Fischer
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - David R Hyde
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN 46556, USA
- Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jiang Qian
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Human Systems Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
40
|
Wang Y, Liu X, Zhu L, Li W, Li Z, Lu X, Liu J, Hua W, Zhou Y, Gu Y, Zhu M. PG545 alleviates diabetic retinopathy by promoting retinal Müller cell autophagy to inhibit the inflammatory response. Biochem Biophys Res Commun 2020; 531:452-458. [PMID: 32800548 DOI: 10.1016/j.bbrc.2020.07.134] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 10/23/2022]
Abstract
Diabetic retinopathy (DR), a major cause of blindness in working-age people, is attributed to the inflammatory response of retinal Müller cells (RMCs). The heparanase inhibitor PG545 plays proautophagic and anti-inflammatory roles. Intraperitoneal injection of PG545 at a dose of 20 mg/kg/d clearly reduced diabetes-induced body weight changes and fasting blood glucose levels in mice. PG545 also mitigated the reduction in retinal thickness and the formation of microaneurysms by promoting autophagy to inhibit the inflammatory response. In vitro, PG545 stimulated autophagy to downregulate the inflammatory response in high glucose-induced primary adult mouse RMCs. These data suggest that PG545 mitigates DR by promoting RMC autophagy to inhibit the inflammatory response.
Collapse
Affiliation(s)
- Ying Wang
- Department of Ophthalmology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Xiaojuan Liu
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, Jiangsu, China
| | - Linling Zhu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wendie Li
- Department of Ophthalmology, Ningbo Eye Hospital, Ningbo, China
| | - Zhizhe Li
- Department of Ophthalmology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Xiting Lu
- Department of Ophthalmology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Jie Liu
- Department of Ophthalmology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Wenjuan Hua
- Department of Ophthalmology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Yamei Zhou
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, Jiangsu, China
| | - Yonghui Gu
- Department of Ophthalmology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China.
| | - Manhui Zhu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
41
|
García-García D, Locker M, Perron M. Update on Müller glia regenerative potential for retinal repair. Curr Opin Genet Dev 2020; 64:52-59. [PMID: 32619816 DOI: 10.1016/j.gde.2020.05.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/08/2020] [Accepted: 05/24/2020] [Indexed: 12/20/2022]
Abstract
Retinal regeneration efficiency from Müller glia varies tremendously among vertebrate species, being extremely limited in mammals. Efforts towards the identification of molecular mechanisms underlying Müller cell proliferative and neurogenic potential should help finding strategies to awake them and ensure regeneration in mammals. We provide here an update on the most recent and original progresses made in the field. These include remarkable discoveries regarding (i) unprecedented cross-species comparison of Müller cell transcriptome using single-cell technologies, (ii) the identification of new strategies to promote both the proliferative and the neurogenic potential of mammalian Müller cells, (iii) the role of the epigenome in regulating Müller glia plasticity, (iv) miRNA-based regulatory mechanisms of Müller cell response to injury, and (v) the influence of inflammatory signals on the regenerative process.
Collapse
Affiliation(s)
- Diana García-García
- Université Paris-Saclay, CNRS, Retina France, Institut des Neurosciences Paris Saclay, Orsay, France
| | - Morgane Locker
- Université Paris-Saclay, CNRS, Retina France, Institut des Neurosciences Paris Saclay, Orsay, France
| | - Muriel Perron
- Université Paris-Saclay, CNRS, Retina France, Institut des Neurosciences Paris Saclay, Orsay, France.
| |
Collapse
|