1
|
Wu B, Neupane J, Zhou Y, Zhang J, Chen Y, Surani MA, Zhang Y, Bao S, Li X. Stem cell-based embryo models: a tool to study early human development. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2741-1. [PMID: 39969747 DOI: 10.1007/s11427-024-2741-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/23/2024] [Indexed: 02/20/2025]
Abstract
How a mammalian fertilized egg acquires totipotency and develops into a full-term offspring is a fundamental scientific question. Human embryonic development is difficult to study due to limited resources, technical challenges and ethics. Moreover, the precise regulatory mechanism underlying early human embryonic development remains unknown. In recent years, the emergence of stem cell-based embryo models (SCBEM) provides the opportunity to reconstitute pre- to post-implantation development in vitro. These models to some extent mimic the embryo morphologically and transcriptionally, and thus may be used to study key events in mammalian pre- and post-implantation development. Many groups have successfully generated SCBEM of the mouse and human. Here, we provide a comparative review of the mouse and human SCBEM, discuss the capability of these models to mimic natural embryos and give a perspective on their potential future applications.
Collapse
Affiliation(s)
- Baojiang Wu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
| | - Jitesh Neupane
- The Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK
| | - Yang Zhou
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
| | - Jingcheng Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Yanglin Chen
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
| | - M Azim Surani
- The Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK
| | - Yong Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
| | - Siqin Bao
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China.
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China.
| | - Xihe Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China.
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China.
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animals, Hohhot, 011517, China.
| |
Collapse
|
2
|
Ma S, Li S, Jiang S, Wang L, Zhan D, Xiong M, Jiang Y, Huang Q, Kui H, Li X. Maternal Exposure to Polystyrene Nanoplastics Disrupts Spermatogenesis in Mouse Offspring by Inducing Prdm14 Overexpression in Undifferentiated Spermatogonia. ACS NANO 2025; 19:2148-2161. [PMID: 39791560 DOI: 10.1021/acsnano.4c10701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Undifferentiated spermatogonia (Undiff-SPG) plays a critical role in maintaining continual spermatogenesis. However, the toxic effects and molecular mechanisms of maternal exposure to nanoplastics on offspring Undiff-SPG remain elusive. Here, we utilized a multiomics combined cytomorphological approach to explore the reproductive toxicity and mechanisms of polystyrene nanoplastics (PS-NPs) on offspring Undiff-SPG in mice after maternal exposure. The results indicated that PS-NPs decreased testosterone levels and reduced sperm concentration and quality in offspring male mice through maternal exposure. Moreover, PS-NPs could enter offspring Undiff-SPG, increase ROS levels, and decrease the viability of Undiff-SPG. According to the transcriptomics and proteomics analyses, PS-NPs caused offspring male mice Undiff-SPG inflammation by increasing the expression of Tnfsf18/Nlrp6. Mechanistically, we found that inflammation induced overexpression of the transcription factor Prdm14 in Undiff-SPG, which suppressed the expression of Ccdc33 and Tcirg1. Additionally, PS-NPs disrupted offspring spermatogenesis by inhibiting the Osbp2/Zcwpw1/Dhps expression. Furthermore, PS-NPs reduced the Undiff-SPG autophagic flux by reducing the expression of Igbp1/Gabarapl2. In conclusion, maternal exposure to PS-NPs caused inflammation in offspring Undiff-SPG, which resulted in Prdm14 overexpression that could disrupt spermatogenesis and normal autophagy.
Collapse
Affiliation(s)
- Sheng Ma
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200241, China
- Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200241, China
| | - Sisi Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200241, China
- Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200241, China
| | - Shengyao Jiang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200241, China
- Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200241, China
| | - Lirui Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200241, China
- Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200241, China
| | - Dian Zhan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200241, China
- Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200241, China
| | - Manyi Xiong
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200241, China
- Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200241, China
| | - Yanping Jiang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200241, China
- Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200241, China
| | - Qixian Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200241, China
- Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200241, China
| | - Haozhan Kui
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200241, China
- Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200241, China
| | - Xinhong Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200241, China
- Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200241, China
| |
Collapse
|
3
|
Shirasawa A, Hayashi M, Shono M, Ideta A, Yoshino T, Hayashi K. Efficient derivation of embryonic stem cells and primordial germ cell-like cells in cattle. J Reprod Dev 2024; 70:82-95. [PMID: 38355134 PMCID: PMC11017101 DOI: 10.1262/jrd.2023-087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/06/2024] [Indexed: 02/16/2024] Open
Abstract
The induction of the germ cell lineage from pluripotent stem cells (in vitro gametogenesis) will help understand the mechanisms underlying germ cell differentiation and provide an alternative source of gametes for reproduction. This technology is especially important for cattle, which are among the most important livestock species for milk and meat production. Here, we developed a new method for robust induction of primordial germ cell-like cells (PGCLCs) from newly established bovine embryonic stem (bES) cells. First, we refined the pluripotent culture conditions for pre-implantation embryos and ES cells. Inhibition of RHO increased the number of epiblast cells in the pre-implantation embryos and dramatically improved the efficiency of ES cell establishment. We then determined suitable culture conditions for PGCLC differentiation using bES cells harboring BLIMP1-tdTomato and TFAP2C-mNeonGreen (BTTN) reporter constructs. After a 24-h culture with bone morphogenetic protein 4 (BMP4), followed by three-dimensional culture with BMP4 and a chemical agonist and WNT signaling chemical antagonist, bES cells became positive for the reporters. A set of primordial germ cells (PGC) marker genes, including PRDM1/BLIMP1, TFAP2C, SOX17, and NANOS3, were expressed in BTTN-positive cells. These bovine PGCLCs (bPGCLCs) were isolated as KIT/CD117-positive and CD44-negative cell populations. We anticipate that this method for the efficient establishment of bES cells and induction of PGCLCs will be useful for stem cell-based reproductive technologies in cattle.
Collapse
Affiliation(s)
- Atsushi Shirasawa
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Zen-noh Embryo Transfer Center, Fukuoka 810-0001, Japan
| | - Masafumi Hayashi
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Mayumi Shono
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Atsushi Ideta
- Zen-noh Embryo Transfer Center, Fukuoka 810-0001, Japan
| | - Takashi Yoshino
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Katsuhiko Hayashi
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
4
|
Oikawa M, Hirabayashi M, Kobayashi T. Induction of Primordial Germ Cell-Like Cells from Rat Pluripotent Stem Cells. Methods Mol Biol 2024; 2770:99-111. [PMID: 38351449 DOI: 10.1007/978-1-0716-3698-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
In vitro induction of primordial germ cell like-cells (PGCLCs) from pluripotent stem cells (PSCs) is a robust method that will contribute to understanding the fundamentals of cell fate decisions, animal breeding, and future reproductive medicine. Here, we introduce this system established in the rat model. We describe a stepwise protocol to induce epiblast-like cells and subsequent PGCLCs by forming spherical aggregates from rat PSCs. We also describe a protocol to mature these PGCLCs from specified/migratory to the gonadal stage by aggregation with female gonadal somatic cells.
Collapse
Affiliation(s)
- Mami Oikawa
- Division of Mammalian Embryology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Laboratory of Regenerative Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Masumi Hirabayashi
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi, Japan
- The Graduate University of Advanced Studies, Aichi, Japan
| | - Toshihiro Kobayashi
- Division of Mammalian Embryology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi, Japan.
| |
Collapse
|
5
|
Irie N, Kobayashi T, Azim Surani M. Human Primordial Germ Cell-Like Cell Induction from Pluripotent Stem Cells by SOX17 and PRDM1 Expression. Methods Mol Biol 2024; 2770:87-97. [PMID: 38351448 DOI: 10.1007/978-1-0716-3698-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Human primordial germ cell (PGC) development initiates about 2 weeks after fertilization during embryogenesis. Unique molecular events follow, including epigenetic resetting, to establish functional gametes (egg and sperm). Due to the inaccessibility of human embryos, it is essential to have an amenable experimental platform to investigate the mechanisms and potential dysfunctions of the events. We previously established a PGC-like cell (PGCLC) differentiation method using human pluripotent stem cells (PSCs) via induction of precursor cells followed by stimulation with a cytokine cocktail including BMP. We also revealed that the expression of PGC specifiers, SOX17 and PRDM1, can robustly induce PGCLCs from PSCs without the cytokines. The balance of SOX17 and PRDM1 is critical for germ cell fate since the two factors also regulate endoderm differentiation. Here we describe a detailed procedure for PGCLC differentiation with the balanced induction of SOX17 and PRDM1. The protocol can be used for PGC induction in other mammalian species exhibiting PGCs with SOX17 expression. Together, these studies will advance the understanding of germ cell biology and its applications in reproductive technology and medicine.
Collapse
Affiliation(s)
- Naoko Irie
- Wellcome Trust/Cancer Research U.K. Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, UK.
- Metabolic Systems Laboratory, Live Imaging Center, Central Institute for Experimental Animals, Kawasaki-ku, Kanagawa, Japan.
| | - Toshihiro Kobayashi
- Division of Mammalian Embryology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - M Azim Surani
- Wellcome Trust/Cancer Research U.K. Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, UK.
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, UK.
| |
Collapse
|
6
|
Irie N, Lee SM, Lorenzi V, Xu H, Chen J, Inoue M, Kobayashi T, Sancho-Serra C, Drousioti E, Dietmann S, Vento-Tormo R, Song CX, Surani MA. DMRT1 regulates human germline commitment. Nat Cell Biol 2023; 25:1439-1452. [PMID: 37709822 PMCID: PMC10567552 DOI: 10.1038/s41556-023-01224-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/07/2023] [Indexed: 09/16/2023]
Abstract
Germline commitment following primordial germ cell (PGC) specification during early human development establishes an epigenetic programme and competence for gametogenesis. Here we follow the progression of nascent PGC-like cells derived from human embryonic stem cells in vitro. We show that switching from BMP signalling for PGC specification to Activin A and retinoic acid resulted in DMRT1 and CDH5 expression, the indicators of migratory PGCs in vivo. Moreover, the induction of DMRT1 and SOX17 in PGC-like cells promoted epigenetic resetting with striking global enrichment of 5-hydroxymethylcytosine and locus-specific loss of 5-methylcytosine at DMRT1 binding sites and the expression of DAZL representing DNA methylation-sensitive genes, a hallmark of the germline commitment programme. We provide insight into the unique role of DMRT1 in germline development for advances in human germ cell biology and in vitro gametogenesis.
Collapse
Affiliation(s)
- Naoko Irie
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, UK.
- Metabolic Systems Laboratory, Live Imaging Center, Central Institute for Experimental Animals, Kanagawa, Japan.
| | - Sun-Min Lee
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, UK
- Department of Physics, Konkuk University, Seoul, Republic of Korea
| | - Valentina Lorenzi
- Wellcome Sanger Institute, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | - Haiqi Xu
- Ludwig Institute for Cancer Research and Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jinfeng Chen
- Ludwig Institute for Cancer Research and Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Masato Inoue
- Ludwig Institute for Cancer Research and Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Toshihiro Kobayashi
- Division of Mammalian Embryology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi, Japan
| | | | - Elena Drousioti
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, UK
| | - Sabine Dietmann
- Department of Developmental Biology and Institute for Informatics, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Chun-Xiao Song
- Ludwig Institute for Cancer Research and Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - M Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, UK.
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, UK.
| |
Collapse
|
7
|
Abstract
Male germ cells undergo a complex sequence of developmental events throughout fetal and postnatal life that culminate in the formation of haploid gametes: the spermatozoa. Errors in these processes result in infertility and congenital abnormalities in offspring. Male germ cell development starts when pluripotent cells undergo specification to sexually uncommitted primordial germ cells, which act as precursors of both oocytes and spermatozoa. Male-specific development subsequently occurs in the fetal testes, resulting in the formation of spermatogonial stem cells: the foundational stem cells responsible for lifelong generation of spermatozoa. Although deciphering such developmental processes is challenging in humans, recent studies using various models and single-cell sequencing approaches have shed new insight into human male germ cell development. Here, we provide an overview of cellular, signaling and epigenetic cascades of events accompanying male gametogenesis, highlighting conserved features and the differences between humans and other model organisms.
Collapse
Affiliation(s)
- John Hargy
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Kotaro Sasaki
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
Iwatsuki K, Oikawa M, Kobayashi H, Penfold CA, Sanbo M, Yamamoto T, Hochi S, Kurimoto K, Hirabayashi M, Kobayashi T. Rat post-implantation epiblast-derived pluripotent stem cells produce functional germ cells. CELL REPORTS METHODS 2023; 3:100542. [PMID: 37671016 PMCID: PMC10475792 DOI: 10.1016/j.crmeth.2023.100542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/10/2023] [Accepted: 07/03/2023] [Indexed: 09/07/2023]
Abstract
In mammals, pluripotent cells transit through a continuum of distinct molecular and functional states en route to initiating lineage specification. Capturing pluripotent stem cells (PSCs) mirroring in vivo pluripotent states provides accessible in vitro models to study the pluripotency program and mechanisms underlying lineage restriction. Here, we develop optimal culture conditions to derive and propagate post-implantation epiblast-derived PSCs (EpiSCs) in rats, a valuable model for biomedical research. We show that rat EpiSCs (rEpiSCs) can be reset toward the naive pluripotent state with exogenous Klf4, albeit not with the other five candidate genes (Nanog, Klf2, Esrrb, Tfcp2l1, and Tbx3) effective in mice. Finally, we demonstrate that rat EpiSCs retain competency to produce authentic primordial germ cell-like cells that undergo functional gametogenesis leading to the birth of viable offspring. Our findings in the rat model uncover principles underpinning pluripotency and germline competency across species.
Collapse
Affiliation(s)
- Kenyu Iwatsuki
- Division of Mammalian Embryology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Graduate School of Medicine, Science and Technology, Shinshu University, Nagano 386-8567, Japan
| | - Mami Oikawa
- Division of Mammalian Embryology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Laboratory of Regenerative Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Hisato Kobayashi
- Department of Embryology, Nara Medical University, Nara 634-0813, Japan
| | - Christopher A. Penfold
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK
- Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK
- Wellcome Trust – Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Makoto Sanbo
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi 444-8787, Japan
| | - Takuya Yamamoto
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8501, Japan
- Medical-risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project, Kyoto 606-8501, Japan
| | - Shinichi Hochi
- Graduate School of Medicine, Science and Technology, Shinshu University, Nagano 386-8567, Japan
- Faculty of Textile Science and Technology, Shinshu University, Nagano 386-8567, Japan
| | - Kazuki Kurimoto
- Department of Embryology, Nara Medical University, Nara 634-0813, Japan
| | - Masumi Hirabayashi
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi 444-8787, Japan
- The Graduate University of Advanced Studies, Aichi 444-8787, Japan
| | - Toshihiro Kobayashi
- Division of Mammalian Embryology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi 444-8787, Japan
| |
Collapse
|
9
|
Hayashi M, Zywitza V, Naitou Y, Hamazaki N, Goeritz F, Hermes R, Holtze S, Lazzari G, Galli C, Stejskal J, Diecke S, Hildebrandt TB, Hayashi K. Robust induction of primordial germ cells of white rhinoceros on the brink of extinction. SCIENCE ADVANCES 2022; 8:eabp9683. [PMID: 36490332 PMCID: PMC9733929 DOI: 10.1126/sciadv.abp9683] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 10/27/2022] [Indexed: 05/27/2023]
Abstract
In vitro gametogenesis, the process of generating gametes from pluripotent cells in culture, is a powerful tool for improving our understanding of germ cell development and an alternative source of gametes. Here, we induced primordial germ cell-like cells (PGCLCs) from pluripotent stem cells of the northern white rhinoceros (NWR), a species for which only two females remain, and southern white rhinoceros (SWR), the closest species to the NWR. PGCLC differentiation from SWR embryonic stem cells is highly reliant on bone morphogenetic protein and WNT signals. Genetic analysis revealed that SRY-box transcription factor 17 (SOX17) is essential for SWR-PGCLC induction. Under the defined condition, NWR induced pluripotent stem cells differentiated into PGCLCs. We also identified cell surface markers, CD9 and Integrin subunit alpha 6 (ITGA6), that enabled us to isolate PGCLCs without genetic alteration in pluripotent stem cells. This study provides a first step toward the production of NWR gametes in culture and understanding of the basic mechanism of primordial germ cell specification in a large animal.
Collapse
Affiliation(s)
- Masafumi Hayashi
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Vera Zywitza
- Technology Platform Pluripotent Stem Cells, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin 13125, Germany
| | - Yuki Naitou
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Nobuhiko Hamazaki
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Frank Goeritz
- Leibniz Institute for Zoo and Wildlife Research, Berlin 10315, Germany
| | - Robert Hermes
- Leibniz Institute for Zoo and Wildlife Research, Berlin 10315, Germany
| | - Susanne Holtze
- Leibniz Institute for Zoo and Wildlife Research, Berlin 10315, Germany
| | - Giovanna Lazzari
- Avantea, Laboratory of Reproductive Technologies, Cremona 26100, Italy
- Fondazione Avantea, Cremona 26100, Italy
| | - Cesare Galli
- Avantea, Laboratory of Reproductive Technologies, Cremona 26100, Italy
- Fondazione Avantea, Cremona 26100, Italy
| | - Jan Stejskal
- ZOO Dvůr Králové, Dvůr Králové nad Labem 54401, Czech Republic
| | - Sebastian Diecke
- Technology Platform Pluripotent Stem Cells, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin 13125, Germany
| | - Thomas B. Hildebrandt
- Leibniz Institute for Zoo and Wildlife Research, Berlin 10315, Germany
- Freie Universitaet Berlin, Berlin D-14195, Germany
| | - Katsuhiko Hayashi
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
10
|
Cheng H, Shang D, Zhou R. Germline stem cells in human. Signal Transduct Target Ther 2022; 7:345. [PMID: 36184610 PMCID: PMC9527259 DOI: 10.1038/s41392-022-01197-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 12/02/2022] Open
Abstract
The germline cells are essential for the propagation of human beings, thus essential for the survival of mankind. The germline stem cells, as a unique cell type, generate various states of germ stem cells and then differentiate into specialized cells, spermatozoa and ova, for producing offspring, while self-renew to generate more stem cells. Abnormal development of germline stem cells often causes severe diseases in humans, including infertility and cancer. Primordial germ cells (PGCs) first emerge during early embryonic development, migrate into the gentile ridge, and then join in the formation of gonads. In males, they differentiate into spermatogonial stem cells, which give rise to spermatozoa via meiosis from the onset of puberty, while in females, the female germline stem cells (FGSCs) retain stemness in the ovary and initiate meiosis to generate oocytes. Primordial germ cell-like cells (PGCLCs) can be induced in vitro from embryonic stem cells or induced pluripotent stem cells. In this review, we focus on current advances in these embryonic and adult germline stem cells, and the induced PGCLCs in humans, provide an overview of molecular mechanisms underlying the development and differentiation of the germline stem cells and outline their physiological functions, pathological implications, and clinical applications.
Collapse
Affiliation(s)
- Hanhua Cheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, 430072, Wuhan, China.
| | - Dantong Shang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, 430072, Wuhan, China
| | - Rongjia Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, 430072, Wuhan, China.
| |
Collapse
|
11
|
Zvick J, Tarnowska-Sengül M, Ghosh A, Bundschuh N, Gjonlleshaj P, Hinte LC, Trautmann CL, Noé F, Qabrati X, Domenig SA, Kim I, Hennek T, von Meyenn F, Bar-Nur O. Exclusive generation of rat spermatozoa in sterile mice utilizing blastocyst complementation with pluripotent stem cells. Stem Cell Reports 2022; 17:1942-1958. [PMID: 35931077 PMCID: PMC9481912 DOI: 10.1016/j.stemcr.2022.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Blastocyst complementation denotes a technique that aims to generate organs, tissues, or cell types in animal chimeras via injection of pluripotent stem cells (PSCs) into genetically compromised blastocyst-stage embryos. Here, we report on successful complementation of the male germline in adult chimeras following injection of mouse or rat PSCs into mouse blastocysts carrying a mutation in Tsc22d3, an essential gene for spermatozoa production. Injection of mouse PSCs into Tsc22d3-Knockout (KO) blastocysts gave rise to intraspecies chimeras exclusively embodying PSC-derived functional spermatozoa. In addition, injection of rat embryonic stem cells (rESCs) into Tsc22d3-KO embryos produced interspecies mouse-rat chimeras solely harboring rat spermatids and spermatozoa capable of fertilizing oocytes. Furthermore, using single-cell RNA sequencing, we deconstructed rat spermatogenesis occurring in a mouse-rat chimera testis. Collectively, this study details a method for exclusive xenogeneic germ cell production in vivo, with implications that may extend to rat transgenesis, or endangered animal species conservation efforts.
Collapse
Affiliation(s)
- Joel Zvick
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Monika Tarnowska-Sengül
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Adhideb Ghosh
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland; Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich 8057, Switzerland
| | - Nicola Bundschuh
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Pjeter Gjonlleshaj
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Laura C Hinte
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Christine L Trautmann
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Falko Noé
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland; Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich 8057, Switzerland
| | - Xhem Qabrati
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Seraina A Domenig
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Inseon Kim
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Thomas Hennek
- ETH Phenomics Center, ETH Zurich, Zurich 8049, Switzerland
| | - Ferdinand von Meyenn
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Ori Bar-Nur
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland.
| |
Collapse
|
12
|
Oikawa M, Kobayashi H, Sanbo M, Mizuno N, Iwatsuki K, Takashima T, Yamauchi K, Yoshida F, Yamamoto T, Shinohara T, Nakauchi H, Kurimoto K, Hirabayashi M, Kobayashi T. Functional primordial germ cell-like cells from pluripotent stem cells in rats. Science 2022; 376:176-179. [PMID: 35389778 DOI: 10.1126/science.abl4412] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The in vitro generation of germ cells from pluripotent stem cells (PSCs) can have a substantial effect on future reproductive medicine and animal breeding. A decade ago, in vitro gametogenesis was established in the mouse. However, induction of primordial germ cell-like cells (PGCLCs) to produce gametes has not been achieved in any other species. Here, we demonstrate the induction of functional PGCLCs from rat PSCs. We show that epiblast-like cells in floating aggregates form rat PGCLCs. The gonadal somatic cells support maturation and epigenetic reprogramming of the PGCLCs. When rat PGCLCs are transplanted into the seminiferous tubules of germline-less rats, functional spermatids-that is, those capable of siring viable offspring-are generated. Insights from our rat model will elucidate conserved and divergent mechanisms essential for the broad applicability of in vitro gametogenesis.
Collapse
Affiliation(s)
- Mami Oikawa
- Division of Mammalian Embryology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan.,Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi 444-8787, Japan
| | - Hisato Kobayashi
- Department of Embryology, Nara Medical University, Kashihara, Nara 634-0813, Japan
| | - Makoto Sanbo
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi 444-8787, Japan
| | - Naoaki Mizuno
- Division of Stem Cell Therapy, Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Kenyu Iwatsuki
- Division of Mammalian Embryology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan.,Graduate School of Medicine, Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan
| | - Tomoya Takashima
- Department of Embryology, Nara Medical University, Kashihara, Nara 634-0813, Japan.,Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | - Keiko Yamauchi
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi 444-8787, Japan
| | - Fumika Yoshida
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi 444-8787, Japan
| | - Takuya Yamamoto
- Center for iPS Cell Research and Application, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan.,Institute for the Advanced Study of Human Biology, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.,Medical-risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takashi Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiromitsu Nakauchi
- Division of Stem Cell Therapy, Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan.,Institute for Stem Cell Biology and Regenerative Medicine, Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kazuki Kurimoto
- Department of Embryology, Nara Medical University, Kashihara, Nara 634-0813, Japan
| | - Masumi Hirabayashi
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi 444-8787, Japan.,The Graduate University of Advanced Studies, Okazaki, Aichi 444-8787, Japan
| | - Toshihiro Kobayashi
- Division of Mammalian Embryology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan.,Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
13
|
Oikawa M, Nagae M, Mizuno N, Iwatsuki K, Yoshida F, Inoue N, Uenoyama Y, Tsukamura H, Nakauchi H, Hirabayashi M, Kobayashi T. Generation of Tfap2c-T2A-tdTomato knock-in reporter rats via adeno-associated virus-mediated efficient gene targeting. Mol Reprod Dev 2022; 89:129-132. [PMID: 35170139 DOI: 10.1002/mrd.23562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/20/2021] [Accepted: 01/25/2022] [Indexed: 11/06/2022]
Abstract
Gene editing in mammalian zygotes enables us to generate genetically modified animals rapidly and efficiently. In this study, we compare multiple gene targeting strategies in rat zygotes by generating a novel knock-in reporter rat line to visualize the expression pattern of transcription factor AP-2 gamma (Tfap2c). The targeting vector is designed to replace the stop codon of Tfap2c with T2A-tdTomato sequence. We show that the combination of electroporation-mediated transduction of CRISPR/Cas9 components with adeno-associated virus-mediated transduction of the targeting vector is the most efficient in generating the targeted rat line. The Tfap2c-T2A-tdTomato fluorescence reflects the endogenous expression pattern of Tfap2c in preimplantation embryo, germline, placenta, and forebrain during rat embryo development. The reporter line generated here will be a reliable resource for identifying and purifying Tfap2c expressing cells in rats, and the gene targeting strategy we used can be widely applied for generating desired animals.
Collapse
Affiliation(s)
- Mami Oikawa
- Division of Mammalian Embryology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi, Japan
| | - Mayuko Nagae
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi, Japan
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
| | - Naoaki Mizuno
- Division of Stem Cell Therapy, Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kenyu Iwatsuki
- Division of Mammalian Embryology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi, Japan
- Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, Japan
| | - Fumika Yoshida
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi, Japan
| | - Naoko Inoue
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
| | - Yoshihisa Uenoyama
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
| | - Hiroko Tsukamura
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
| | - Hiromitsu Nakauchi
- Division of Stem Cell Therapy, Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Genetics, Stanford University School of Medicine, Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA
| | - Masumi Hirabayashi
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi, Japan
- The Graduate University of Advanced Studies, Aichi, Japan
| | - Toshihiro Kobayashi
- Division of Mammalian Embryology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi, Japan
| |
Collapse
|
14
|
Ramakrishna NB, Murison K, Miska EA, Leitch HG. Epigenetic Regulation during Primordial Germ Cell Development and Differentiation. Sex Dev 2021; 15:411-431. [PMID: 34847550 DOI: 10.1159/000520412] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/10/2021] [Indexed: 11/19/2022] Open
Abstract
Germline development varies significantly across metazoans. However, mammalian primordial germ cell (PGC) development has key conserved landmarks, including a critical period of epigenetic reprogramming that precedes sex-specific differentiation and gametogenesis. Epigenetic alterations in the germline are of unique importance due to their potential to impact the next generation. Therefore, regulation of, and by, the non-coding genome is of utmost importance during these epigenomic events. Here, we detail the key chromatin changes that occur during mammalian PGC development and how these interact with the expression of non-coding RNAs alongside broader epitranscriptomic changes. We identify gaps in our current knowledge, in particular regarding epigenetic regulation in the human germline, and we highlight important areas of future research.
Collapse
Affiliation(s)
- Navin B Ramakrishna
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Genome Institute of Singapore, A*STAR, Biopolis, Singapore, Singapore
| | - Keir Murison
- MRC London Institute of Medical Sciences, London, United Kingdom
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - Eric A Miska
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Harry G Leitch
- MRC London Institute of Medical Sciences, London, United Kingdom
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom
- Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
15
|
Kobayashi T, Castillo-Venzor A, Penfold CA, Morgan M, Mizuno N, Tang WWC, Osada Y, Hirao M, Yoshida F, Sato H, Nakauchi H, Hirabayashi M, Surani MA. Tracing the emergence of primordial germ cells from bilaminar disc rabbit embryos and pluripotent stem cells. Cell Rep 2021; 37:109812. [PMID: 34644585 DOI: 10.1016/j.celrep.2021.109812] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 07/02/2021] [Accepted: 09/17/2021] [Indexed: 10/20/2022] Open
Abstract
Rabbit embryos develop as bilaminar discs at gastrulation as in humans and most other mammals, whereas rodents develop as egg cylinders. Primordial germ cells (PGCs) appear to originate during gastrulation according to many systematic studies on mammalian embryos. Here, we show that rabbit PGC (rbPGC) specification occurs at the posterior epiblast at the onset of gastrulation. Using newly derived rabbit pluripotent stem cells, we show robust and rapid induction of rbPGC-like cells in vitro with WNT and BMP morphogens, which reveals SOX17 as the critical regulator of rbPGC fate as in several non-rodent mammals. We posit that development as a bilaminar disc is a crucial determinant of the PGC regulators, regardless of the highly diverse development of extraembryonic tissues, including the amnion. We propose that investigations on rabbits with short gestation, large litters, and where gastrulation precedes implantation can contribute significantly to advances in early mammalian development.
Collapse
Affiliation(s)
- Toshihiro Kobayashi
- Division of Mammalian Embryology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan; Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi 444-8787, Japan.
| | - Aracely Castillo-Venzor
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK; Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Chris A Penfold
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Michael Morgan
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Naoaki Mizuno
- Division of Stem Cell Therapy, Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Walfred W C Tang
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Yasuyuki Osada
- Ina Bio Center, Kitayama Labes Co., Ltd., Ina, Nagano 399-4501, Japan
| | - Masao Hirao
- Ina Bio Center, Kitayama Labes Co., Ltd., Ina, Nagano 399-4501, Japan
| | - Fumika Yoshida
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi 444-8787, Japan
| | - Hideyuki Sato
- Division of Stem Cell Therapy, Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Hiromitsu Nakauchi
- Division of Stem Cell Therapy, Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan; Institute for Stem Cell Biology and Regenerative Medicine, Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Masumi Hirabayashi
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi 444-8787, Japan; The Graduate University of Advanced Studies, Okazaki, Aichi 444-8787, Japan.
| | - M Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.
| |
Collapse
|
16
|
Hansen CL, Pelegri F. Primordial Germ Cell Specification in Vertebrate Embryos: Phylogenetic Distribution and Conserved Molecular Features of Preformation and Induction. Front Cell Dev Biol 2021; 9:730332. [PMID: 34604230 PMCID: PMC8481613 DOI: 10.3389/fcell.2021.730332] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/25/2021] [Indexed: 11/24/2022] Open
Abstract
The differentiation of primordial germ cells (PGCs) occurs during early embryonic development and is critical for the survival and fitness of sexually reproducing species. Here, we review the two main mechanisms of PGC specification, induction, and preformation, in the context of four model vertebrate species: mouse, axolotl, Xenopus frogs, and zebrafish. We additionally discuss some notable molecular characteristics shared across PGC specification pathways, including the shared expression of products from three conserved germline gene families, DAZ (Deleted in Azoospermia) genes, nanos-related genes, and DEAD-box RNA helicases. Then, we summarize the current state of knowledge of the distribution of germ cell determination systems across kingdom Animalia, with particular attention to vertebrate species, but include several categories of invertebrates - ranging from the "proto-vertebrate" cephalochordates to arthropods, cnidarians, and ctenophores. We also briefly highlight ongoing investigations and potential lines of inquiry that aim to understand the evolutionary relationships between these modes of specification.
Collapse
Affiliation(s)
| | - Francisco Pelegri
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
17
|
Sherstyuk VV, Zakian SM. Generation of Transgenic Rat Embryonic Stem Cells Using the CRISPR/Cpf1 System for Inducible Gene Knockout. BIOCHEMISTRY (MOSCOW) 2021; 86:843-851. [PMID: 34284709 DOI: 10.1134/s0006297921070051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Rat embryonic stem cells (ESCs) play an important role in the studies of genes involved in maintaining of pluripotent state and early development of this model organism. To study functions of the essential genes, as well as the processes of cell differentiation, the method of induced knockout is widely used. The CreERT2/loxP system allows obtaining an inducible knockout in cells expressing tamoxifen-inducible Cre recombinase (CreERT2) and containing loxP sites flanking the target gene by adding 4-hydroxy tamoxifen to the culture medium. However, the rat ESC lines expressing CreERT2 are absent. In this work, we tested three CRISPR/Cas systems for introduction of double-strand breaks into the Rosa26 locus in the rat ESCs and inserted tamoxifen-dependent Cre recombinase into this locus using the CRISPR/Cpf1 system. It was shown that the obtained transgenic rat ESC lines retained the characteristics of pluripotent cells. Tamoxifen-inducible Cre recombinase activity was analyzed using a reporter vector.
Collapse
Affiliation(s)
- Vladimir V Sherstyuk
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | - Suren M Zakian
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| |
Collapse
|
18
|
Zheng C, Ballard EB, Wu J. The road to generating transplantable organs: from blastocyst complementation to interspecies chimeras. Development 2021; 148:dev195792. [PMID: 34132325 PMCID: PMC10656466 DOI: 10.1242/dev.195792] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Growing human organs in animals sounds like something from the realm of science fiction, but it may one day become a reality through a technique known as interspecies blastocyst complementation. This technique, which was originally developed to study gene function in development, involves injecting donor pluripotent stem cells into an organogenesis-disabled host embryo, allowing the donor cells to compensate for missing organs or tissues. Although interspecies blastocyst complementation has been achieved between closely related species, such as mice and rats, the situation becomes much more difficult for species that are far apart on the evolutionary tree. This is presumably because of layers of xenogeneic barriers that are a result of divergent evolution. In this Review, we discuss the current status of blastocyst complementation approaches and, in light of recent progress, elaborate on the keys to success for interspecies blastocyst complementation and organ generation.
Collapse
Affiliation(s)
- Canbin Zheng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Microsurgery, Orthopaedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Emily B. Ballard
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
19
|
Blastocyst complementation using Prdm14-deficient rats enables efficient germline transmission and generation of functional mouse spermatids in rats. Nat Commun 2021; 12:1328. [PMID: 33637711 PMCID: PMC7910474 DOI: 10.1038/s41467-021-21557-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 01/29/2021] [Indexed: 02/06/2023] Open
Abstract
Murine animal models from genetically modified pluripotent stem cells (PSCs) are essential for functional genomics and biomedical research, which require germline transmission for the establishment of colonies. However, the quality of PSCs, and donor-host cell competition in chimeras often present strong barriers for germline transmission. Here, we report efficient germline transmission of recalcitrant PSCs via blastocyst complementation, a method to compensate for missing tissues or organs in genetically modified animals via blastocyst injection of PSCs. We show that blastocysts from germline-deficient Prdm14 knockout rats provide a niche for the development of gametes originating entirely from the donor PSCs without any detriment to somatic development. We demonstrate the potential of this approach by creating PSC-derived Pax2/Pax8 double mutant anephric rats, and rescuing germline transmission of a PSC carrying a mouse artificial chromosome. Furthermore, we generate mouse PSC-derived functional spermatids in rats, which provides a proof-of-principle for the generation of xenogenic gametes in vivo. We believe this approach will become a useful system for generating PSC-derived germ cells in the future.
Collapse
|
20
|
Szpirer C. Rat models of human diseases and related phenotypes: a systematic inventory of the causative genes. J Biomed Sci 2020; 27:84. [PMID: 32741357 PMCID: PMC7395987 DOI: 10.1186/s12929-020-00673-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022] Open
Abstract
The laboratory rat has been used for a long time as the model of choice in several biomedical disciplines. Numerous inbred strains have been isolated, displaying a wide range of phenotypes and providing many models of human traits and diseases. Rat genome mapping and genomics was considerably developed in the last decades. The availability of these resources has stimulated numerous studies aimed at discovering causal disease genes by positional identification. Numerous rat genes have now been identified that underlie monogenic or complex diseases and remarkably, these results have been translated to the human in a significant proportion of cases, leading to the identification of novel human disease susceptibility genes, helping in studying the mechanisms underlying the pathological abnormalities and also suggesting new therapeutic approaches. In addition, reverse genetic tools have been developed. Several genome-editing methods were introduced to generate targeted mutations in genes the function of which could be clarified in this manner [generally these are knockout mutations]. Furthermore, even when the human gene causing a disease had been identified without resorting to a rat model, mutated rat strains (in particular KO strains) were created to analyze the gene function and the disease pathogenesis. Today, over 350 rat genes have been identified as underlying diseases or playing a key role in critical biological processes that are altered in diseases, thereby providing a rich resource of disease models. This article is an update of the progress made in this research and provides the reader with an inventory of these disease genes, a significant number of which have similar effects in rat and humans.
Collapse
Affiliation(s)
- Claude Szpirer
- Université Libre de Bruxelles, B-6041, Gosselies, Belgium.
- , Waterloo, Belgium.
| |
Collapse
|