1
|
Schröder S, Fuchs U, Gisa V, Pena T, Krüger DM, Hempel N, Burkhardt S, Salinas G, Schütz AL, Delalle I, Sananbenesi F, Fischer A. PRDM16-DT is a novel lncRNA that regulates astrocyte function in Alzheimer's disease. Acta Neuropathol 2024; 148:32. [PMID: 39207536 PMCID: PMC11362476 DOI: 10.1007/s00401-024-02787-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Astrocytes provide crucial support for neurons, contributing to synaptogenesis, synaptic maintenance, and neurotransmitter recycling. Under pathological conditions, deregulation of astrocytes contributes to neurodegenerative diseases such as Alzheimer's disease (AD). While most research in this field has focused on protein-coding genes, non-coding RNAs, particularly long non-coding RNAs (lncRNAs), have emerged as significant regulatory molecules. In this study, we identified the lncRNA PRDM16-DT as highly enriched in the human brain, where it is almost exclusively expressed in astrocytes. PRDM16-DT and its murine homolog, Prdm16os, are downregulated in the brains of AD patients and in AD models. In line with this, knockdown of PRDM16-DT and Prdm16os revealed its critical role in maintaining astrocyte homeostasis and supporting neuronal function by regulating genes essential for glutamate uptake, lactate release, and neuronal spine density through interactions with the RE1-Silencing Transcription factor (Rest) and Polycomb Repressive Complex 2 (PRC2). Notably, CRISPR-mediated overexpression of Prdm16os mitigated functional deficits in astrocytes induced by stimuli linked to AD pathogenesis. These findings underscore the importance of PRDM16-DT in astrocyte function and its potential as a novel therapeutic target for neurodegenerative disorders characterized by astrocyte dysfunction.
Collapse
Affiliation(s)
- Sophie Schröder
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Ulrike Fuchs
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Verena Gisa
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Tonatiuh Pena
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Bioinformatics Unit, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Dennis M Krüger
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Bioinformatics Unit, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Nina Hempel
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Susanne Burkhardt
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Gabriela Salinas
- NGS- Integrative Genomics Core Unit, Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Anna-Lena Schütz
- Research Group for Genome Dynamics in Brain Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Ivana Delalle
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, 670 Albany Street, Boston, MA, 02118, USA
| | - Farahnaz Sananbenesi
- Research Group for Genome Dynamics in Brain Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Andre Fischer
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
2
|
García MT, Tran DN, Peterson RE, Stegmann SK, Hanson SM, Reid CM, Xie Y, Vu S, Harwell CC. A developmentally defined population of neurons in the lateral septum controls responses to aversive stimuli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.24.559205. [PMID: 37873286 PMCID: PMC10592641 DOI: 10.1101/2023.09.24.559205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
When interacting with their environment, animals must balance exploratory and defensive behavior to evaluate and respond to potential threats. The lateral septum (LS) is a structure in the ventral forebrain that calibrates the magnitude of behavioral responses to stress-related external stimuli, including the regulation of threat avoidance. The complex connectivity between the LS and other parts of the brain, together with its largely unexplored neuronal diversity, makes it difficult to understand how defined LS circuits control specific behaviors. Here, we describe a mouse model in which a population of neurons with a common developmental origin (Nkx2.1-lineage neurons) are absent from the LS. Using a combination of circuit tracing and behavioral analyses, we found that these neurons receive inputs from the perifornical area of the anterior hypothalamus (PeFAH) and are specifically activated in stressful contexts. Mice lacking Nkx2.1-lineage LS neurons display increased exploratory behavior even under stressful conditions. Our study extends the current knowledge about how defined neuronal populations within the LS can evaluate contextual information to select appropriate behavioral responses. This is a necessary step towards understanding the crucial role that the LS plays in neuropsychiatric conditions where defensive behavior is dysregulated, such as anxiety and aggression disorders.
Collapse
Affiliation(s)
- Miguel Turrero García
- Department of Neurology, University of California, San Francisco; San Francisco, CA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research; San Francisco, CA
| | - Diana N. Tran
- Department of Neurobiology, Harvard Medical School; Boston, MA
| | | | | | - Sarah M. Hanson
- Department of Neurology, University of California, San Francisco; San Francisco, CA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research; San Francisco, CA
| | - Christopher M. Reid
- Department of Neurology, University of California, San Francisco; San Francisco, CA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research; San Francisco, CA
- Ph.D. Program in Neuroscience, Harvard University; Boston, MA
| | - Yajun Xie
- Department of Neurology, University of California, San Francisco; San Francisco, CA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research; San Francisco, CA
| | - Steve Vu
- Department of Neurobiology, Harvard Medical School; Boston, MA
| | - Corey C. Harwell
- Department of Neurology, University of California, San Francisco; San Francisco, CA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research; San Francisco, CA
- Chan Zuckerberg Biohub San Francisco; San Francisco, CA
- Lead contact
| |
Collapse
|
3
|
Suresh V, Bhattacharya B, Tshuva RY, Danan Gotthold M, Olender T, Bose M, Pradhan SJ, Ben Zeev B, Smith RS, Tole S, Galande S, Harwell C, Baizabal JM, Reiner O. PRDM16 co-operates with LHX2 to shape the human brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.12.553065. [PMID: 37609127 PMCID: PMC10441425 DOI: 10.1101/2023.08.12.553065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
PRDM16 is a dynamic transcriptional regulator of various stem cell niches, including adipocytic, hematopoietic, cardiac progenitors, and neural stem cells. PRDM16 has been suggested to contribute to 1p36 deletion syndrome, one of the most prevalent subtelomeric microdeletion syndromes. We report a patient with a de novo nonsense mutation in the PRDM16 coding sequence, accompanied by lissencephaly and microcephaly features. Human stem cells were genetically modified to mimic this mutation, generating cortical organoids that exhibited altered cell cycle dynamics. RNA sequencing of cortical organoids at day 32 unveiled changes in cell adhesion and WNT-signaling pathways. ChIP-seq of PRDM16 identified binding sites in postmortem human fetal cortex, indicating the conservation of PRDM16 binding to developmental genes in mice and humans, potentially at enhancer sites. A shared motif between PRDM16 and LHX2 was identified and further examined through comparison with LHX2 ChIP-seq data from mice. These results suggested a collaborative partnership between PRDM16 and LHX2 in regulating a common set of genes and pathways in cortical radial glia cells, possibly via their synergistic involvement in cortical development.
Collapse
|
4
|
Fame RM, Lehtinen MK. Mitochondria in Early Forebrain Development: From Neurulation to Mid-Corticogenesis. Front Cell Dev Biol 2021; 9:780207. [PMID: 34888312 PMCID: PMC8650308 DOI: 10.3389/fcell.2021.780207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/10/2021] [Indexed: 01/07/2023] Open
Abstract
Function of the mature central nervous system (CNS) requires a substantial proportion of the body’s energy consumption. During development, the CNS anlage must maintain its structure and perform stage-specific functions as it proceeds through discrete developmental stages. While key extrinsic signals and internal transcriptional controls over these processes are well appreciated, metabolic and mitochondrial states are also critical to appropriate forebrain development. Specifically, metabolic state, mitochondrial function, and mitochondrial dynamics/localization play critical roles in neurulation and CNS progenitor specification, progenitor proliferation and survival, neurogenesis, neural migration, and neurite outgrowth and synaptogenesis. With the goal of integrating neurodevelopmental biologists and mitochondrial specialists, this review synthesizes data from disparate models and processes to compile and highlight key roles of mitochondria in the early development of the CNS with specific focus on forebrain development and corticogenesis.
Collapse
Affiliation(s)
- Ryann M Fame
- Department of Pathology, Boston Children's Hospital, Boston, MA, United States
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
5
|
Turrero García M, Stegmann SK, Lacey TE, Reid CM, Hrvatin S, Weinreb C, Adam MA, Nagy MA, Harwell CC. Transcriptional profiling of sequentially generated septal neuron fates. eLife 2021; 10:71545. [PMID: 34851821 PMCID: PMC8694698 DOI: 10.7554/elife.71545] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/22/2021] [Indexed: 01/11/2023] Open
Abstract
The septum is a ventral forebrain structure known to regulate innate behaviors. During embryonic development, septal neurons are produced in multiple proliferative areas from neural progenitors following transcriptional programs that are still largely unknown. Here, we use a combination of single-cell RNA sequencing, histology, and genetic models to address how septal neuron diversity is established during neurogenesis. We find that the transcriptional profiles of septal progenitors change along neurogenesis, coinciding with the generation of distinct neuron types. We characterize the septal eminence, an anatomically distinct and transient proliferative zone composed of progenitors with distinctive molecular profiles, proliferative capacity, and fate potential compared to the rostral septal progenitor zone. We show that Nkx2.1-expressing septal eminence progenitors give rise to neurons belonging to at least three morphological classes, born in temporal cohorts that are distributed across different septal nuclei in a sequential fountain-like pattern. Our study provides insight into the molecular programs that control the sequential production of different neuronal types in the septum, a structure with important roles in regulating mood and motivation.
Collapse
Affiliation(s)
| | - Sarah K Stegmann
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Tiara E Lacey
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States,Biological and Biomedical Sciences PhD program at Harvard UniversityCambridgeUnited States
| | - Christopher M Reid
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States,PhD Program in Neuroscience at Harvard UniversityCambridgeUnited States
| | - Sinisa Hrvatin
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Caleb Weinreb
- Department of Systems Biology, Harvard Medical SchoolBostonUnited States,PhD Program in Systems Biology at Harvard UniversityCambridgeUnited States
| | - Manal A Adam
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - M Aurel Nagy
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States,PhD Program in Neuroscience at Harvard UniversityCambridgeUnited States
| | - Corey C Harwell
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| |
Collapse
|