1
|
Colgren J, Burkhardt P. Electrical signaling and coordinated behavior in the closest relative of animals. SCIENCE ADVANCES 2025; 11:eadr7434. [PMID: 39772683 PMCID: PMC11708886 DOI: 10.1126/sciadv.adr7434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025]
Abstract
The transition from simple to complex multicellularity involves division of labor and specialization of cell types. In animals, complex sensory-motor systems are primarily built around specialized cells of muscles and neurons, though the evolutionary origins of these and their integration remain unclear. Here, to investigate sensory-behavior coupling in the closest relatives of animals, we established a line of the choanoflagellate, Salpingoeca rosetta, which stably expresses the calcium indicator RGECO1. Using this, we identify a previously unknown cellular behavior associated with electrical signaling, in which ciliary arrest is coupled with apical-basal contraction of the cell. This behavior and the associated calcium transients are synchronized in the multicellular state and result in coordinated ciliary arrest and colony-wide contraction, suggesting that information is spread among the cells. Our work reveals fundamental insights into how choanoflagellates sense and respond to their environment and enhances our understanding of the integration of cellular and organism-wide behavior in the closest protistan relatives of animals.
Collapse
Affiliation(s)
- Jeffrey Colgren
- Michael Sars Centre, University of Bergen, 5008 Bergen, Norway
| | - Pawel Burkhardt
- Michael Sars Centre, University of Bergen, 5008 Bergen, Norway
| |
Collapse
|
2
|
Gao Y, Tan DS, Girbig M, Hu H, Zhou X, Xie Q, Yeung SW, Lee KS, Ho SY, Cojocaru V, Yan J, Hochberg GKA, de Mendoza A, Jauch R. The emergence of Sox and POU transcription factors predates the origins of animal stem cells. Nat Commun 2024; 15:9868. [PMID: 39543096 PMCID: PMC11564870 DOI: 10.1038/s41467-024-54152-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
Stem cells are a hallmark of animal multicellularity. Sox and POU transcription factors are associated with stemness and were believed to be animal innovations, reported absent in their unicellular relatives. Here we describe unicellular Sox and POU factors. Choanoflagellate and filasterean Sox proteins have DNA-binding specificity similar to mammalian Sox2. Choanoflagellate-but not filasterean-Sox can replace Sox2 to reprogram mouse somatic cells into induced pluripotent stem cells (iPSCs) through interacting with the mouse POU member Oct4. In contrast, choanoflagellate POU has a distinct DNA-binding profile and cannot generate iPSCs. Ancestrally reconstructed Sox proteins indicate that iPSC formation capacity is pervasive among resurrected sequences, thus loss of Sox2-like properties fostered Sox family subfunctionalization. Our findings imply that the evolution of animal stem cells might have involved the exaptation of a pre-existing set of transcription factors, where pre-animal Sox was biochemically similar to extant Sox, whilst POU factors required evolutionary innovations.
Collapse
Affiliation(s)
- Ya Gao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Translational Stem Cell Biology, Hong Kong SAR, China
| | - Daisylyn Senna Tan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Translational Stem Cell Biology, Hong Kong SAR, China
| | - Mathias Girbig
- Evolutionary Biochemistry Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Haoqing Hu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Translational Stem Cell Biology, Hong Kong SAR, China
| | - Xiaomin Zhou
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Qianwen Xie
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
- School of Medicine, Northwest University, Xi'an, China
| | - Shi Wing Yeung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Translational Stem Cell Biology, Hong Kong SAR, China
| | - Kin Shing Lee
- Transgenic Core Facility of the Centre for Comparative Medicine Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Sik Yin Ho
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Laboratory for Primate Embryogenesis, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, UK
| | - Vlad Cojocaru
- STAR-UBB Institute, Babeş-Bolyai University, Cluj-Napoca, Romania
- Computational Structural Biology Group, Utrecht University, Utrecht, The Netherlands
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Jian Yan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
- School of Medicine, Northwest University, Xi'an, China
| | - Georg K A Hochberg
- Evolutionary Biochemistry Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Department of Chemistry and Center for Synthetic Microbiology, Philipps University, Marburg, Germany
| | - Alex de Mendoza
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
- Centre for Epigenetics, Queen Mary University of London, Lodon, UK.
| | - Ralf Jauch
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
- Centre for Translational Stem Cell Biology, Hong Kong SAR, China.
| |
Collapse
|
3
|
Olivetta M, Bhickta C, Chiaruttini N, Burns J, Dudin O. A multicellular developmental program in a close animal relative. Nature 2024; 635:382-389. [PMID: 39506108 DOI: 10.1038/s41586-024-08115-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/25/2024] [Indexed: 11/08/2024]
Abstract
All animals develop from a single-celled zygote into a complex multicellular organism through a series of precisely orchestrated processes1,2. Despite the remarkable conservation of early embryogenesis across animals, the evolutionary origins of how and when this process first emerged remain elusive. Here, by combining time-resolved imaging and transcriptomic profiling, we show that single cells of the ichthyosporean Chromosphaera perkinsii-a close relative that diverged from animals about 1 billion years ago3,4-undergo symmetry breaking and develop through cleavage divisions to produce a prolonged multicellular colony with distinct co-existing cell types. Our findings about the autonomous and palintomic developmental program of C. perkinsii hint that such multicellular development either is much older than previously thought or evolved convergently in ichthyosporeans.
Collapse
Affiliation(s)
- Marine Olivetta
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Chandni Bhickta
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Nicolas Chiaruttini
- Bioimaging and Optics Core Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - John Burns
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA.
| | - Omaya Dudin
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.
- Department of Biochemistry, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
4
|
Holzem M, Boutros M, Holstein TW. The origin and evolution of Wnt signalling. Nat Rev Genet 2024; 25:500-512. [PMID: 38374446 DOI: 10.1038/s41576-024-00699-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 02/21/2024]
Abstract
The Wnt signal transduction pathway has essential roles in the formation of the primary body axis during development, cellular differentiation and tissue homeostasis. This animal-specific pathway has been studied extensively in contexts ranging from developmental biology to medicine for more than 40 years. Despite its physiological importance, an understanding of the evolutionary origin and primary function of Wnt signalling has begun to emerge only recently. Recent studies on very basal metazoan species have shown high levels of conservation of components of both canonical and non-canonical Wnt signalling pathways. Furthermore, some pathway proteins have been described also in non-animal species, suggesting that recruitment and functional adaptation of these factors has occurred in metazoans. In this Review, we summarize the current state of research regarding the evolutionary origin of Wnt signalling, its ancestral function and the characteristics of the primal Wnt ligand, with emphasis on the importance of genomic studies in various pre-metazoan and basal metazoan species.
Collapse
Affiliation(s)
- Michaela Holzem
- Division of Signalling and Functional Genomics, German Cancer Research Centre (DKFZ), Heidelberg, Germany.
- Department of Cell and Molecular Biology & BioQuant, Heidelberg University, Heidelberg, Germany.
- Faculty of Medicine Mannheim, Heidelberg University, Heidelberg, Germany.
- Institute for Human Genetics, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany.
| | - Michael Boutros
- Division of Signalling and Functional Genomics, German Cancer Research Centre (DKFZ), Heidelberg, Germany
- Department of Cell and Molecular Biology & BioQuant, Heidelberg University, Heidelberg, Germany
- Faculty of Medicine Mannheim, Heidelberg University, Heidelberg, Germany
- Institute for Human Genetics, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Thomas W Holstein
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
5
|
Thiery JP, Sheng G, Shu X, Runyan R. How studies in developmental epithelial-mesenchymal transition and mesenchymal-epithelial transition inspired new research paradigms in biomedicine. Development 2024; 151:dev200128. [PMID: 38300897 DOI: 10.1242/dev.200128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Epithelial-mesenchymal transition (EMT) and its reverse mechanism, mesenchymal-epithelial transition (MET), are evolutionarily conserved mechanisms initially identified in studies of early metazoan development. EMT may even have been established in choanoflagellates, the closest unicellular relative of Metazoa. These crucial morphological transitions operate during body plan formation and subsequently in organogenesis. These findings have prompted an increasing number of investigators in biomedicine to assess the importance of such mechanisms that drive epithelial cell plasticity in multiple diseases associated with congenital disabilities and fibrosis, and, most importantly, in the progression of carcinoma. EMT and MET also play crucial roles in regenerative medicine, notably by contributing epigenetic changes in somatic cells to initiate reprogramming into stem cells and their subsequent differentiation into distinct lineages.
Collapse
Affiliation(s)
| | - Guojun Sheng
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Xiaodong Shu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Raymond Runyan
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
6
|
Ruiz-Trillo I, Kin K, Casacuberta E. The Origin of Metazoan Multicellularity: A Potential Microbial Black Swan Event. Annu Rev Microbiol 2023; 77:499-516. [PMID: 37406343 DOI: 10.1146/annurev-micro-032421-120023] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
The emergence of animals from their unicellular ancestors is a major evolutionary event. Thanks to the study of diverse close unicellular relatives of animals, we now have a better grasp of what the unicellular ancestor of animals was like. However, it is unclear how that unicellular ancestor of animals became the first animals. To explain this transition, two popular theories, the choanoblastaea and the synzoospore, have been proposed. We will revise and expose the flaws in these two theories while showing that, due to the limits of our current knowledge, the origin of animals is a biological black swan event. As such, the origin of animals defies retrospective explanations. Therefore, we should be extra careful not to fall for confirmation biases based on few data and, instead, embrace this uncertainty and be open to alternative scenarios. With the aim to broaden the potential explanations on how animals emerged, we here propose two novel and alternative scenarios. In any case, to find the answer to how animals evolved, additional data will be required, as will the hunt for microscopic creatures that are closely related to animals but have not yet been sampled and studied.
Collapse
Affiliation(s)
- Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain;
- ICREA, Barcelona, Spain
| | - Koryu Kin
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain;
| | - Elena Casacuberta
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain;
| |
Collapse
|
7
|
Colgren J, Burkhardt P. Evolution: Was the nuclear-to-cytoplasmic ratio a key factor in the origin of animal multicellularity? Curr Biol 2023; 33:R298-R300. [PMID: 37098330 DOI: 10.1016/j.cub.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
The ichthyosporean Sphaeroforma arctica, a protist closely related to animals, displays coenocytic development followed by cellularization and cell release. A new study reveals that the nuclear-to-cytoplasmic ratio drives cellularization in these fascinating organisms.
Collapse
Affiliation(s)
- Jeffrey Colgren
- Michael Sars Centre, University of Bergen, 5008 Bergen, Norway.
| | - Pawel Burkhardt
- Michael Sars Centre, University of Bergen, 5008 Bergen, Norway.
| |
Collapse
|
8
|
Olivetta M, Dudin O. The nuclear-to-cytoplasmic ratio drives cellularization in the close animal relative Sphaeroforma arctica. Curr Biol 2023; 33:1597-1605.e3. [PMID: 36996815 DOI: 10.1016/j.cub.2023.03.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/17/2023] [Accepted: 03/07/2023] [Indexed: 03/31/2023]
Abstract
The ratio of nuclear content to cytoplasmic volume (N/C ratio) is a key regulator driving the maternal-to-zygotic transition in most animal embryos. Altering this ratio often impacts zygotic genome activation and deregulates the timing and outcome of embryogenesis.1,2,3 Despite being ubiquitous across animals, little is known about when the N/C ratio evolved to control multicellular development. Such capacity either originated with the emergence of animal multicellularity or was co-opted from the mechanisms present in unicellular organisms.4 An effective strategy to tackle this question is to investigate the close relatives of animals exhibiting life cycles with transient multicellular stages.5 Among these are ichthyosporeans, a lineage of protists undergoing coenocytic development followed by cellularization and cell release.6,7,8 During cellularization, a transient multicellular stage resembling animal epithelia is generated, offering a unique opportunity to examine whether the N/C ratio regulates multicellular development. Here, we use time-lapse microscopy to characterize how the N/C ratio affects the life cycle of the best-studied ichthyosporean model, Sphaeroforma arctica. We uncover that the last stages of cellularization coincide with a significant increase in the N/C ratio. Increasing the N/C ratio by reducing the coenocytic volume accelerates cellularization, whereas decreasing the N/C ratio by lowering the nuclear content halts it. Moreover, centrifugation and pharmacological inhibitor experiments suggest that the N/C ratio is locally sensed at the cortex and relies on phosphatase activity. Altogether, our results show that the N/C ratio drives cellularization in S. arctica, suggesting that its capacity to control multicellular development predates animal emergence.
Collapse
|
9
|
Fonseca C, Mendonça Filho JG, Reolid M, Duarte LV, de Oliveira AD, Souza JT, Lézin C. First putative occurrence in the fossil record of choanoflagellates, the sister group of Metazoa. Sci Rep 2023; 13:1242. [PMID: 36690681 PMCID: PMC9870899 DOI: 10.1038/s41598-022-26972-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/22/2022] [Indexed: 01/24/2023] Open
Abstract
Choanoflagellates are microeukaryotes that inhabit freshwater and marine environments and have long been regarded as the closest living relatives of Metazoa. Knowledge on the evolution of choanoflagellates is key for the understanding of the ancestry of animals, and although molecular clock evidence suggests the appearance of choanoflagellates by late Neoproterozoic, no specimens of choanoflagellates are known to occur in the fossil record. Here the first putative occurrence of choanoflagellates in sediments from the Cretaceous (Cenomanian-Turonian) is described by means of several cutting-edge petrographic techniques, and a discussion of its paleoenvironmental significance is performed. Furthermore, their placement in the organic matter classification systems is argued, with a placement in the Zoomorph Subgroup (Palynomorph Group) of the dispersed organic matter classification system being proposed. Regarding the ICCP System 1994, incorporation of choanoflagellates is, at a first glance, straightforward within the liptinite group, but the definition of a new maceral may be necessary to accommodate the genetic origin of these organisms. While modern choanoflagellates may bring light to the cellular foundations of animal origins, this discovery may provide an older term of comparison to their extant specimens and provide guidelines for possible identification of these organic components in other locations and ages throughout the geological record.
Collapse
Affiliation(s)
- Carolina Fonseca
- Laboratório de Palinofácies e Fácies Orgânica (LAFO), Departamento de Geologia, Instituto de Geociências, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira, 274, prédio do CCMN, sala J1020, Campus Ilha do Fundão, Cidade Universitária, Rio de Janeiro, RJ, CEP 21.949-900, Brazil.
- Universidade de Coimbra, MARE - Centro de Ciências do Mare do Ambiente, ARNET - Aquatic Research Network, Departamento de Ciências da Terra, Rua Sílvio Lima, 3030-790, Coimbra, Portugal.
| | - João Graciano Mendonça Filho
- Laboratório de Palinofácies e Fácies Orgânica (LAFO), Departamento de Geologia, Instituto de Geociências, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira, 274, prédio do CCMN, sala J1020, Campus Ilha do Fundão, Cidade Universitária, Rio de Janeiro, RJ, CEP 21.949-900, Brazil
| | - Matías Reolid
- Departamento de Geología and CEACTEMA, Universidad de Jaén, Campus Las Lagunillas sn, 23071, Jaén, Spain
| | - Luís V Duarte
- Universidade de Coimbra, MARE - Centro de Ciências do Mare do Ambiente, ARNET - Aquatic Research Network, Departamento de Ciências da Terra, Rua Sílvio Lima, 3030-790, Coimbra, Portugal
| | - António Donizeti de Oliveira
- Laboratório de Palinofácies e Fácies Orgânica (LAFO), Departamento de Geologia, Instituto de Geociências, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira, 274, prédio do CCMN, sala J1020, Campus Ilha do Fundão, Cidade Universitária, Rio de Janeiro, RJ, CEP 21.949-900, Brazil
| | - Jaqueline Torres Souza
- Laboratório de Palinofácies e Fácies Orgânica (LAFO), Departamento de Geologia, Instituto de Geociências, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira, 274, prédio do CCMN, sala J1020, Campus Ilha do Fundão, Cidade Universitária, Rio de Janeiro, RJ, CEP 21.949-900, Brazil
| | - Carine Lézin
- Université Toulouse III - Paul Sabatier, OMP, GET (Géosciences Environnement Toulouse), CNRS, IRD, 14 Avenue Édouard Belin, 31400, Toulouse, France
| |
Collapse
|
10
|
Nguyen NM, Merle T, Broders-Bondon F, Brunet AC, Battistella A, Land EBL, Sarron F, Jha A, Gennisson JL, Röttinger E, Fernández-Sánchez ME, Farge E. Mechano-biochemical marine stimulation of inversion, gastrulation, and endomesoderm specification in multicellular Eukaryota. Front Cell Dev Biol 2022; 10:992371. [PMID: 36531949 PMCID: PMC9754125 DOI: 10.3389/fcell.2022.992371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/01/2022] [Indexed: 07/29/2023] Open
Abstract
The evolutionary emergence of the primitive gut in Metazoa is one of the decisive events that conditioned the major evolutionary transition, leading to the origin of animal development. It is thought to have been induced by the specification of the endomesoderm (EM) into the multicellular tissue and its invagination (i.e., gastrulation). However, the biochemical signals underlying the evolutionary emergence of EM specification and gastrulation remain unknown. Herein, we find that hydrodynamic mechanical strains, reminiscent of soft marine flow, trigger active tissue invagination/gastrulation or curvature reversal via a Myo-II-dependent mechanotransductive process in both the metazoan Nematostella vectensis (cnidaria) and the multicellular choanoflagellate Choanoeca flexa. In the latter, our data suggest that the curvature reversal is associated with a sensory-behavioral feeding response. Additionally, like in bilaterian animals, gastrulation in the cnidarian Nematostella vectensis is shown to participate in the biochemical specification of the EM through mechanical activation of the β-catenin pathway via the phosphorylation of Y654-βcatenin. Choanoflagellates are considered the closest living relative to metazoans, and the common ancestor of choanoflagellates and metazoans dates back at least 700 million years. Therefore, the present findings using these evolutionarily distant species suggest that the primitive emergence of the gut in Metazoa may have been initiated in response to marine mechanical stress already in multicellular pre-Metazoa. Then, the evolutionary transition may have been achieved by specifying the EM via a mechanosensitive Y654-βcatenin dependent mechanism, which appeared during early Metazoa evolution and is specifically conserved in all animals.
Collapse
Affiliation(s)
- Ngoc Minh Nguyen
- Mechanics and Genetics of Embryonic Development Group, Institut Curie, Centre OCAV PSL Research University, CNRS, UMR168, Inserm, Sorbonne University, Paris, France
| | - Tatiana Merle
- Mechanics and Genetics of Embryonic Development Group, Institut Curie, Centre OCAV PSL Research University, CNRS, UMR168, Inserm, Sorbonne University, Paris, France
| | - Florence Broders-Bondon
- Mechanics and Genetics of Embryonic Development Group, Institut Curie, Centre OCAV PSL Research University, CNRS, UMR168, Inserm, Sorbonne University, Paris, France
| | - Anne-Christine Brunet
- Mechanics and Genetics of Embryonic Development Group, Institut Curie, Centre OCAV PSL Research University, CNRS, UMR168, Inserm, Sorbonne University, Paris, France
| | - Aude Battistella
- Biochemistry, Molecular Biology, and Cells Platform, Institut Curie, CNRS, UMR 168, Inserm, Sorbonne University, Paris, France
| | - Emelie Britt Linnea Land
- Mechanics and Genetics of Embryonic Development Group, Institut Curie, Centre OCAV PSL Research University, CNRS, UMR168, Inserm, Sorbonne University, Paris, France
| | - Florian Sarron
- Sorbonne Université, CNRS, UMR 7095, Institut d'Astrophysique de Paris, Paris, France
| | - Aditya Jha
- Laboratoire Physique et Mécanique des Milieux Hétérogènes (PMMH), CNRS, ESPCI ParisTech, Université Pierre et Marie Curie, Université Paris Diderot, Paris, France
| | - Jean-Luc Gennisson
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Eric Röttinger
- Université Côte d’Azur, CNRS, INSERM, Institute for Research on Cancer and Aging (IRCAN), Nice, France
- Université Côte d’Azur, Institut Fédératif de Recherche Ressources Marines (IFR MARRES), Nice, France
| | - María Elena Fernández-Sánchez
- Mechanics and Genetics of Embryonic Development Group, Institut Curie, Centre OCAV PSL Research University, CNRS, UMR168, Inserm, Sorbonne University, Paris, France
| | - Emmanuel Farge
- Mechanics and Genetics of Embryonic Development Group, Institut Curie, Centre OCAV PSL Research University, CNRS, UMR168, Inserm, Sorbonne University, Paris, France
| |
Collapse
|
11
|
Rust J. Phenotype-first hypotheses, spandrels and early metazoan evolution. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2022; 44:48. [PMID: 36257998 DOI: 10.1007/s40656-022-00531-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Against the neo-Darwinian assumption that genetic factors are the principal source of variation upon which natural selection operates, a phenotype-first hypothesis strikes us as revolutionary because development would seem to constitute an independent source of variability. Richard Watson and his co-authors have argued that developmental memory constitutes one such variety of phenotypic variability. While this version of the phenotype-first hypothesis is especially well-suited for the late metazoan context, where animals have a sufficient history of selection from which to draw, appeals to developmental memory seem less plausible in the evolutionary context of the early metazoans. I provide an interpretation of Stuart Newman's account of deep metazoan phylogenesis that suggests that spandrels are, in addition to developmental memory, an important reservoir of phenotypic variability. I conclude by arguing that Gerd Müller's "side-effect hypothesis" is an illuminating generalization of the proposed non-Watsonian version of the phenotype-first hypothesis.
Collapse
Affiliation(s)
- Joshua Rust
- Stetson University, Unit 8250, 104-C Elizabeth Hall, 421 North Woodland Boulevard, DeLand, Florida, 32723, USA.
| |
Collapse
|
12
|
D'Aniello S. Evolution: NO signaling at the stem of animal life. Curr Biol 2022; 32:R530-R532. [PMID: 35671729 DOI: 10.1016/j.cub.2022.04.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Nitric oxide (NO), an ancient gaseous signaling molecule, regulates several physiological processes across the kingdoms. A new study describes how NO controls collective cell contractions in the closest animal relatives, the choanoflagellates, to switch from feeding to swimming away.
Collapse
Affiliation(s)
- Salvatore D'Aniello
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy.
| |
Collapse
|
13
|
Yin Z, Sun W, Liu P, Chen J, Bottjer DJ, Li J, Zhu M. Diverse and complex developmental mechanisms of early Ediacaran embryo-like fossils from the Weng'an Biota, southwest China. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210032. [PMID: 35125006 PMCID: PMC8819369 DOI: 10.1098/rstb.2021.0032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The origin and early evolution of animal development remain among the many deep, unresolved problems in evolutionary biology. As a compelling case for the existence of pre-Cambrian animals, the Ediacaran embryo-like fossils (EELFs) from the Weng'an Biota (approx. 609 Myr old, Doushantuo Formation, South China) have great potential to cast light on the origin and early evolution of animal development. However, their biological implications can be fully realized only when their phylogenetic positions are correctly established, and unfortunately, this is the key problem under debate. As a significant feature of developmental biology, the cell division pattern (CDP) characterized by the dynamic spatial arrangement of cells and associated developmental mechanisms is critical to reassess these hypotheses and evaluate the diversity of the EELFs; however, their phylogenetic implications have not been fully realized. Additionally, the scarcity of fossil specimens representing late developmental stages with cell differentiation accounts for much of this debate too. Here, we reconstructed a large number of EELFs using submicron resolution X-ray tomographic microscopy and focused on the CDPs and associated developmental mechanisms as well as features of cell differentiation. Four types of CDPs and specimens with cell differentiation were identified. Contrary to the prevailing view, our results together with recent studies suggest that the diversity and complexity of developmental mechanisms documented by the EELFs are much higher than is often claimed. The diverse CDPs and associated development features including palintomic cleavage, maternal nutrition, asymmetric cell divisions, symmetry breaking, establishment of polarity or axis, spatial cell migration and differentiation constrain some, if not all, EELFs as total-group metazoans. This article is part of the theme issue ‘The impact of Chinese palaeontology on evolutionary research’.
Collapse
Affiliation(s)
- Zongjun Yin
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, People's Republic of China.,Centre for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing 210008, People's Republic of China.,Nanjing College, University of Chinese Academy of Sciences, Nanjing 211135, People's Republic of China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Weichen Sun
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, People's Republic of China.,University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Pengju Liu
- Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, People's Republic of China
| | - Junyuan Chen
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, People's Republic of China
| | - David J Bottjer
- Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Jinhua Li
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, People's Republic of China
| | - Maoyan Zhu
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, People's Republic of China.,Centre for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing 210008, People's Republic of China.,Nanjing College, University of Chinese Academy of Sciences, Nanjing 211135, People's Republic of China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
14
|
Polyploidy as a Fundamental Phenomenon in Evolution, Development, Adaptation and Diseases. Int J Mol Sci 2022; 23:ijms23073542. [PMID: 35408902 PMCID: PMC8998937 DOI: 10.3390/ijms23073542] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/02/2023] Open
Abstract
DNA replication during cell proliferation is 'vertical' copying, which reproduces an initial amount of genetic information. Polyploidy, which results from whole-genome duplication, is a fundamental complement to vertical copying. Both organismal and cell polyploidy can emerge via premature cell cycle exit or via cell-cell fusion, the latter giving rise to polyploid hybrid organisms and epigenetic hybrids of somatic cells. Polyploidy-related increase in biological plasticity, adaptation, and stress resistance manifests in evolution, development, regeneration, aging, oncogenesis, and cardiovascular diseases. Despite the prevalence in nature and importance for medicine, agri- and aquaculture, biological processes and epigenetic mechanisms underlying these fundamental features largely remain unknown. The evolutionarily conserved features of polyploidy include activation of transcription, response to stress, DNA damage and hypoxia, and induction of programs of morphogenesis, unicellularity, and longevity, suggesting that these common features confer adaptive plasticity, viability, and stress resistance to polyploid cells and organisms. By increasing cell viability, polyploidization can provide survival under stressful conditions where diploid cells cannot survive. However, in somatic cells it occurs at the expense of specific function, thus promoting developmental programming of adult cardiovascular diseases and increasing the risk of cancer. Notably, genes arising via evolutionary polyploidization are heavily involved in cancer and other diseases. Ploidy-related changes of gene expression presumably originate from chromatin modifications and the derepression of bivalent genes. The provided evidence elucidates the role of polyploidy in evolution, development, aging, and carcinogenesis, and may contribute to the development of new strategies for promoting regeneration and preventing cardiovascular diseases and cancer.
Collapse
|
15
|
Dudin O, Wielgoss S, New AM, Ruiz-Trillo I. Regulation of sedimentation rate shapes the evolution of multicellularity in a close unicellular relative of animals. PLoS Biol 2022; 20:e3001551. [PMID: 35349578 PMCID: PMC8963540 DOI: 10.1371/journal.pbio.3001551] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/21/2022] [Indexed: 01/03/2023] Open
Abstract
Significant increases in sedimentation rate accompany the evolution of multicellularity. These increases should lead to rapid changes in ecological distribution, thereby affecting the costs and benefits of multicellularity and its likelihood to evolve. However, how genetic and cellular traits control this process, their likelihood of emergence over evolutionary timescales, and the variation in these traits as multicellularity evolves are still poorly understood. Here, using isolates of the ichthyosporean genus Sphaeroforma-close unicellular relatives of animals with brief transient multicellular life stages-we demonstrate that sedimentation rate is a highly variable and evolvable trait affected by at least 2 distinct physical mechanisms. First, we find extensive (>300×) variation in sedimentation rates for different Sphaeroforma species, mainly driven by size and density during the unicellular-to-multicellular life cycle transition. Second, using experimental evolution with sedimentation rate as a focal trait, we readily obtained, for the first time, fast settling and multicellular Sphaeroforma arctica isolates. Quantitative microscopy showed that increased sedimentation rates most often arose by incomplete cellular separation after cell division, leading to clonal "clumping" multicellular variants with increased size and density. Strikingly, density increases also arose by an acceleration of the nuclear doubling time relative to cell size. Similar size- and density-affecting phenotypes were observed in 4 additional species from the Sphaeroforma genus, suggesting that variation in these traits might be widespread in the marine habitat. By resequencing evolved isolates to high genomic coverage, we identified mutations in regulators of cytokinesis, plasma membrane remodeling, and chromatin condensation that may contribute to both clump formation and the increase in the nuclear number-to-volume ratio. Taken together, this study illustrates how extensive cellular control of density and size drive sedimentation rate variation, likely shaping the onset and further evolution of multicellularity.
Collapse
Affiliation(s)
- Omaya Dudin
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Sébastien Wielgoss
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Aaron M. New
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Spain
- ICREA, Barcelona, Spain
| |
Collapse
|
16
|
Monroig Ó, Shu-Chien A, Kabeya N, Tocher D, Castro L. Desaturases and elongases involved in long-chain polyunsaturated fatty acid biosynthesis in aquatic animals: From genes to functions. Prog Lipid Res 2022; 86:101157. [DOI: 10.1016/j.plipres.2022.101157] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/17/2021] [Accepted: 01/22/2022] [Indexed: 01/01/2023]
|