1
|
Zhang J, Tan Z, Qin Q, Peng H, Shi W, Yu H, Dong B. Integrated multi-omics identify key signalling pathways for notochord lumenogenesis in ascidian Ciona savignyi. Open Biol 2025; 15:240402. [PMID: 40199341 PMCID: PMC11978462 DOI: 10.1098/rsob.240402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/06/2025] [Accepted: 03/06/2025] [Indexed: 04/10/2025] Open
Abstract
Lumen formation and inflation are crucial for tubular organ morphogenesis and function. However, the key signalling pathways for lumenogenesis regulation were not well identified. Here, we performed tissue-specific transcriptomic sequencing for the isolated Ciona notochord tissue, in which 10 551 genes in total were identified. To investigate crucial signalling pathways in regulating lumenogenesis, KEGG was performed and the results showed that the Rap1 signalling pathway, vascular endothelial growth factor signalling pathway, mitogen activated protein kinase (MAPK) signalling pathway (plant) and Ras signalling pathway might play important roles in lumenogenesis. Moreover, correlation analysis with proteomic data and comparison analysis of single-cell transcriptomic data were further utilized to identify the potential critical roles of the Rap1 signalling pathway and Ras signalling pathway in lumenogenesis. To verify their functions in lumenogenesis, the Ras/calcium-Rap1-MAPK signalling axis was blocked, and the results showed that the notochord lumenogenesis failed. Meanwhile, we identified that CDC42 was a potential downstream target factor of the Ras-Rap1-MAPK signalling axis, playing crucial functions in notochord lumenogenesis. Overall, we systematically revealed the key regulatory signalling pathways for notochord lumen formation and verified a lumenogenesis-related signalling axis, providing a foundational data resource for exploring the mechanisms of lumenogenesis.
Collapse
Affiliation(s)
- Jin Zhang
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao266003, People's Republic of China
| | - Zicheng Tan
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao266003, People's Republic of China
| | - Qishu Qin
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao266003, People's Republic of China
| | - Hongzhe Peng
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao266003, People's Republic of China
| | - Wenjie Shi
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao266003, People's Republic of China
| | - Haiyan Yu
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao266003, People's Republic of China
| | - Bo Dong
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao266003, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao266237, People's Republic of China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao266003, People's Republic of China
| |
Collapse
|
2
|
Negrón-Piñeiro LJ, Wu Y, Mehta R, Maguire JE, Chou C, Lee J, Dahia CL, Di Gregorio A. Fine-Tuned Expression of Evolutionarily Conserved Signaling Molecules in the Ciona Notochord. Int J Mol Sci 2024; 25:13631. [PMID: 39769393 PMCID: PMC11728170 DOI: 10.3390/ijms252413631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025] Open
Abstract
The notochord is an axial structure required for the development of all chordate embryos, from sea squirts to humans. Over the course of more than half a billion years of chordate evolution, in addition to its structural function, the notochord has acquired increasingly relevant patterning roles for its surrounding tissues. This process has involved the co-option of signaling pathways and the acquisition of novel molecular mechanisms responsible for the precise timing and modalities of their deployment. To reconstruct this evolutionary route, we surveyed the expression of signaling molecules in the notochord of the tunicate Ciona, an experimentally amenable and informative chordate. We found that several genes encoding for candidate components of diverse signaling pathways are expressed during notochord development, and in some instances, display distinctive regionalized and/or lineage-specific patterns. We identified and deconstructed notochord enhancers associated with TGF-β and Ctgf, two evolutionarily conserved signaling genes that are expressed dishomogeneously in the Ciona notochord, and shed light on the cis-regulatory origins of their peculiar expression patterns.
Collapse
Affiliation(s)
- Lenny J. Negrón-Piñeiro
- Department of Molecular Pathobiology, New York University College of Dentistry, 345 E 24th Street, New York, NY 10010, USA
| | - Yushi Wu
- Department of Molecular Pathobiology, New York University College of Dentistry, 345 E 24th Street, New York, NY 10010, USA
| | - Ravij Mehta
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY 10021, USA
| | - Julie E. Maguire
- Department of Molecular Pathobiology, New York University College of Dentistry, 345 E 24th Street, New York, NY 10010, USA
| | - Cindy Chou
- Department of Molecular Pathobiology, New York University College of Dentistry, 345 E 24th Street, New York, NY 10010, USA
| | - Joyce Lee
- Department of Molecular Pathobiology, New York University College of Dentistry, 345 E 24th Street, New York, NY 10010, USA
| | - Chitra L. Dahia
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY 10021, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, Graduate School of Medical Science, New York, NY 10065, USA
| | - Anna Di Gregorio
- Department of Molecular Pathobiology, New York University College of Dentistry, 345 E 24th Street, New York, NY 10010, USA
| |
Collapse
|
3
|
Negrón-Piñeiro LJ, Di Gregorio A. Single-cell Transcriptomic Studies Unveil Potential Nodes of the Notochord Gene Regulatory Network. Integr Comp Biol 2024; 64:1194-1213. [PMID: 38914463 PMCID: PMC11579531 DOI: 10.1093/icb/icae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/01/2024] [Accepted: 06/16/2024] [Indexed: 06/26/2024] Open
Abstract
Transcription factors (TFs) are DNA-binding proteins able to modulate the timing, location, and levels of gene expression by binding to regulatory DNA regions. Therefore, the repertoire of TFs present in the genome of a multicellular organism and the expression of variable constellations of TFs in different cellular cohorts determine the distinctive characteristics of developing tissues and organs. The information on tissue-specific assortments of TFs, their cross-regulatory interactions, and the genes/regulatory regions targeted by each TF is summarized in gene regulatory networks (GRNs), which provide genetic blueprints for the specification, development, and differentiation of multicellular structures. In this study, we review recent transcriptomic studies focused on the complement of TFs expressed in the notochord, a distinctive feature of all chordates. We analyzed notochord-specific datasets available from organisms representative of the three chordate subphyla, and highlighted lineage-specific variations in the suite of TFs expressed in their notochord. We framed the resulting findings within a provisional evolutionary scenario, which allows the formulation of hypotheses on the genetic/genomic changes that sculpted the structure and function of the notochord on an evolutionary scale.
Collapse
Affiliation(s)
- Lenny J Negrón-Piñeiro
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Anna Di Gregorio
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| |
Collapse
|
4
|
Zhang Y, Liang C, Xu H, Li Y, Xia K, Wang L, Huang X, Chen J, Shu J, Cheng F, Shi K, Wang J, Tao Y, Wang S, Zhang Y, Li H, Feng S, Li F, Zhou X, Chen Q. Dedifferentiation-like reprogramming of degenerative nucleus pulposus cells into notochordal-like cells by defined factors. Mol Ther 2024; 32:2563-2583. [PMID: 38879755 PMCID: PMC11405157 DOI: 10.1016/j.ymthe.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/09/2024] [Accepted: 06/14/2024] [Indexed: 07/14/2024] Open
Abstract
The extensive degeneration of functional somatic cells and the depletion of endogenous stem/progenitor populations present significant challenges to tissue regeneration in degenerative diseases. Currently, a cellular reprogramming approach enabling directly generating corresponding progenitor populations from degenerative somatic cells remains elusive. The present study focused on intervertebral disc degeneration (IVDD) and identified a three-factor combination (OCT4, FOXA2, TBXT [OFT]) that could induce the dedifferentiation-like reprogramming of degenerative nucleus pulposus cells (dNPCs) toward induced notochordal-like cells (iNCs). Single-cell transcriptomics dissected the transitions of cell identity during reprogramming. Further, OCT4 was found to directly interact with bromodomain PHD-finger transcription factor to remodel the chromatin during the early phases, which was crucial for initiating this dedifferentiation-like reprogramming. In rat models, intradiscal injection of adeno-associated virus carrying OFT generated iNCs from in situ dNPCs and reversed IVDD. These results collectively present a proof-of-concept for dedifferentiation-like reprogramming of degenerated somatic cells into corresponding progenitors through the development of a factor-based strategy, providing a promising approach for regeneration in degenerative disc diseases.
Collapse
Affiliation(s)
- Yuang Zhang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine; Hangzhou City, Zhejiang Province 310009, China; Orthopedics Research Institute of Zhejiang University; Hangzhou City, Zhejiang Province 310009, China
| | - Chengzhen Liang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine; Hangzhou City, Zhejiang Province 310009, China; Orthopedics Research Institute of Zhejiang University; Hangzhou City, Zhejiang Province 310009, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province; Hangzhou City, Zhejiang Province 310009, China
| | - Haibin Xu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine; Hangzhou City, Zhejiang Province 310009, China; Orthopedics Research Institute of Zhejiang University; Hangzhou City, Zhejiang Province 310009, China
| | - Yi Li
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine; Hangzhou City, Zhejiang Province 310009, China; Orthopedics Research Institute of Zhejiang University; Hangzhou City, Zhejiang Province 310009, China
| | - Kaishun Xia
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine; Hangzhou City, Zhejiang Province 310009, China; Orthopedics Research Institute of Zhejiang University; Hangzhou City, Zhejiang Province 310009, China
| | - Liyin Wang
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University; Shanghai 200031, China
| | - Xianpeng Huang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine; Hangzhou City, Zhejiang Province 310009, China; Orthopedics Research Institute of Zhejiang University; Hangzhou City, Zhejiang Province 310009, China
| | - Jiangjie Chen
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine; Hangzhou City, Zhejiang Province 310009, China; Orthopedics Research Institute of Zhejiang University; Hangzhou City, Zhejiang Province 310009, China
| | - Jiawei Shu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine; Hangzhou City, Zhejiang Province 310009, China; Orthopedics Research Institute of Zhejiang University; Hangzhou City, Zhejiang Province 310009, China
| | - Feng Cheng
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine; Hangzhou City, Zhejiang Province 310009, China; Orthopedics Research Institute of Zhejiang University; Hangzhou City, Zhejiang Province 310009, China
| | - Kesi Shi
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine; Hangzhou City, Zhejiang Province 310009, China; Orthopedics Research Institute of Zhejiang University; Hangzhou City, Zhejiang Province 310009, China
| | - Jingkai Wang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine; Hangzhou City, Zhejiang Province 310009, China; Orthopedics Research Institute of Zhejiang University; Hangzhou City, Zhejiang Province 310009, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province; Hangzhou City, Zhejiang Province 310009, China
| | - Yiqing Tao
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine; Hangzhou City, Zhejiang Province 310009, China; Orthopedics Research Institute of Zhejiang University; Hangzhou City, Zhejiang Province 310009, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province; Hangzhou City, Zhejiang Province 310009, China
| | - Shaoke Wang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine; Hangzhou City, Zhejiang Province 310009, China; Orthopedics Research Institute of Zhejiang University; Hangzhou City, Zhejiang Province 310009, China
| | - Yongxiang Zhang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine; Hangzhou City, Zhejiang Province 310009, China; Orthopedics Research Institute of Zhejiang University; Hangzhou City, Zhejiang Province 310009, China
| | - Hao Li
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine; Hangzhou City, Zhejiang Province 310009, China; Orthopedics Research Institute of Zhejiang University; Hangzhou City, Zhejiang Province 310009, China
| | - Shoumin Feng
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine; Hangzhou City, Zhejiang Province 310009, China; Orthopedics Research Institute of Zhejiang University; Hangzhou City, Zhejiang Province 310009, China
| | - Fangcai Li
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine; Hangzhou City, Zhejiang Province 310009, China; Orthopedics Research Institute of Zhejiang University; Hangzhou City, Zhejiang Province 310009, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province; Hangzhou City, Zhejiang Province 310009, China.
| | - Xiaopeng Zhou
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine; Hangzhou City, Zhejiang Province 310009, China; Orthopedics Research Institute of Zhejiang University; Hangzhou City, Zhejiang Province 310009, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province; Hangzhou City, Zhejiang Province 310009, China.
| | - Qixin Chen
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine; Hangzhou City, Zhejiang Province 310009, China; Orthopedics Research Institute of Zhejiang University; Hangzhou City, Zhejiang Province 310009, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province; Hangzhou City, Zhejiang Province 310009, China.
| |
Collapse
|
5
|
Negrón-Piñeiro LJ, Wu Y, Popsuj S, José-Edwards DS, Stolfi A, Di Gregorio A. Cis-regulatory interfaces reveal the molecular mechanisms underlying the notochord gene regulatory network of Ciona. Nat Commun 2024; 15:3025. [PMID: 38589372 PMCID: PMC11001920 DOI: 10.1038/s41467-024-46850-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/12/2024] [Indexed: 04/10/2024] Open
Abstract
Tissue-specific gene expression is fundamental in development and evolution, and is mediated by transcription factors and by the cis-regulatory regions (enhancers) that they control. Transcription factors and their respective tissue-specific enhancers are essential components of gene regulatory networks responsible for the development of tissues and organs. Although numerous transcription factors have been characterized from different organisms, the knowledge of the enhancers responsible for their tissue-specific expression remains fragmentary. Here we use Ciona to study the enhancers associated with ten transcription factors expressed in the notochord, an evolutionary hallmark of the chordate phylum. Our results illustrate how two evolutionarily conserved transcription factors, Brachyury and Foxa2, coordinate the deployment of other notochord transcription factors. The results of these detailed cis-regulatory analyses delineate a high-resolution view of the essential notochord gene regulatory network of Ciona, and provide a reference for studies of transcription factors, enhancers, and their roles in development, disease, and evolution.
Collapse
Affiliation(s)
- Lenny J Negrón-Piñeiro
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Yushi Wu
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Sydney Popsuj
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Diana S José-Edwards
- Post-Baccalaureate Premedical Program, Washington University, St. Louis, MO, 63130, USA
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Anna Di Gregorio
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA.
| |
Collapse
|
6
|
Nishida HY, Hamada K, Koshita M, Ohta Y, Nishida H. Ascidian gastrulation and blebbing activity of isolated endoderm blastomeres. Dev Biol 2023; 496:24-35. [PMID: 36702215 DOI: 10.1016/j.ydbio.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023]
Abstract
Gastrulation is the first dynamic cell movement during embryogenesis. Endoderm and mesoderm cells are internalized into embryos during this process. Ascidian embryos provide a simple system for studying gastrulation in chordates. Gastrulation starts in spherical late 64-cell embryos with 10 endoderm blastomeres. The mechanisms of gastrulation in ascidians have been investigated, and a two-step model has been proposed. The first step involves apical constriction of endoderm cells, followed by apicobasal shortening in the second step. In this study, isolated ascidian endoderm progenitor cells displayed dynamic blebbing activity at the gastrula stage, although such a dynamic cell-shape change was not recognized in toto. Blebbing is often observed in migrating animal cells. In ascidians, endoderm cells displayed blebbing activity, while mesoderm and ectoderm cells did not. The timing of blebbing of isolated endoderm cells coincided with that of cell invagination. The constriction rate of apical surfaces correlated with the intensity of blebbing activity in each endoderm-lineage cell. Fibroblast growth factor (FGF) signaling was both necessary and sufficient for inducing blebbing activity, independent of cell fate specification. In contrast, the timing of initiation of blebbing and intensity of blebbing response to FGF signaling were controlled by intrinsic cellular factors. It is likely that the difference in intensity of blebbing activity between the anterior A-line and posterior B-line cells could account for the anteroposterior difference in the steepness of the archenteron wall. Inhibition of zygotic transcription, FGF signaling, and Rho kinase, all of which suppressed blebbing activity, resulted in incomplete apical constriction and failure of the eventual formation of cup-shaped gastrulae. Blebbing activity was involved in the progression and maintenance of apical constriction, but not in apicobasal shortening in whole embryos. Apical constriction is mediated by distinct blebbing-dependent and blebbing-independent mechanisms. Surface tension and consequent membrane contraction may not be the sole mechanical force for apical constriction and formation of cup-shaped gastrulae. The present study reveals the hidden cellular potential of endodermal cells during gastrulation and discusses the possible roles of blebbing in the invagination process.
Collapse
Affiliation(s)
- Haruka Y Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Kaho Hamada
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Mika Koshita
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Yuki Ohta
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan.
| |
Collapse
|
7
|
Song BP, Ragsac MF, Tellez K, Jindal GA, Grudzien JL, Le SH, Farley EK. Diverse logics and grammar encode notochord enhancers. Cell Rep 2023; 42:112052. [PMID: 36729834 PMCID: PMC10387507 DOI: 10.1016/j.celrep.2023.112052] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/07/2022] [Accepted: 01/17/2023] [Indexed: 02/03/2023] Open
Abstract
The notochord is a defining feature of all chordates. The transcription factors Zic and ETS regulate enhancer activity within the notochord. We conduct high-throughput screens of genomic elements within developing Ciona embryos to understand how Zic and ETS sites encode notochord activity. Our screen discovers an enhancer located near Lama, a gene critical for notochord development. Reversing the orientation of an ETS site within this enhancer abolishes expression, indicating that enhancer grammar is critical for notochord activity. Similarly organized clusters of Zic and ETS sites occur within mouse and human Lama1 introns. Within a Brachyury (Bra) enhancer, FoxA and Bra, in combination with Zic and ETS binding sites, are necessary and sufficient for notochord expression. This binding site logic also occurs within other Ciona and vertebrate Bra enhancers. Collectively, this study uncovers the importance of grammar within notochord enhancers and discovers signatures of enhancer logic and grammar conserved across chordates.
Collapse
Affiliation(s)
- Benjamin P Song
- Department of Medicine, Health Sciences, University of California San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA; Biological Sciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Michelle F Ragsac
- Department of Medicine, Health Sciences, University of California San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Krissie Tellez
- Department of Medicine, Health Sciences, University of California San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Granton A Jindal
- Department of Medicine, Health Sciences, University of California San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Jessica L Grudzien
- Department of Medicine, Health Sciences, University of California San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Sophia H Le
- Department of Medicine, Health Sciences, University of California San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Emma K Farley
- Department of Medicine, Health Sciences, University of California San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
8
|
Abstract
The ascidian Ciona intestinalis type A (or Ciona robusta) is an important organism for elucidating the mechanisms that make the chordate body plan. CRISPR/Cas9 and TAL effector nuclease (TALEN) are widely used to quickly address genetic functions in Ciona. Our previously reported method of CRISPR/Cas9-mediated mutagenesis in this animal has inferior mutation rates compared to those of TALENs. We here describe an updated way to effectively mutate genes with CRISPR/Cas9 in Ciona. Although the construction of TALENs is much more laborious than that of CRISPR/Cas9, this technique is useful for tissue-specific knockouts that are not easy even by the optimized CRISPR/Cas9 method.
Collapse
|
9
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
10
|
Shimai K, Veeman M. Quantitative Dissection of the Proximal Ciona brachyury Enhancer. Front Cell Dev Biol 2022; 9:804032. [PMID: 35127721 PMCID: PMC8814421 DOI: 10.3389/fcell.2021.804032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
A major goal in biology is to understand the rules by which cis-regulatory sequences control spatially and temporally precise expression patterns. Here we present a systematic dissection of the proximal enhancer for the notochord-specific transcription factor brachyury in the ascidian chordate Ciona. The study uses a quantitative image-based reporter assay that incorporates a dual-reporter strategy to control for variable electroporation efficiency. We identified and mutated multiple predicted transcription factor binding sites of interest based on statistical matches to the JASPAR binding motif database. Most sites (Zic, Ets, FoxA, RBPJ) were selected based on prior knowledge of cell fate specification in both the primary and secondary notochord. We also mutated predicted Brachyury sites to investigate potential autoregulation as well as Fos/Jun (AP1) sites that had very strong matches to JASPAR. Our goal was to quantitatively define the relative importance of these different sites, to explore the importance of predicted high-affinity versus low-affinity motifs, and to attempt to design mutant enhancers that were specifically expressed in only the primary or secondary notochord lineages. We found that the mutation of all predicted high-affinity sites for Zic, FoxA or Ets led to quantifiably distinct effects. The FoxA construct caused a severe loss of reporter expression whereas the Ets construct had little effect. A strong Ets phenotype was only seen when much lower-scoring binding sites were also mutated. This supports the enhancer suboptimization hypothesis proposed by Farley and Levine but suggests that it may only apply to some but not all transcription factor families. We quantified reporter expression separately in the two notochord lineages with the expectation that Ets mutations and RBPJ mutations would have distinct effects given that primary notochord is induced by Ets-mediated FGF signaling whereas secondary notochord is induced by RBPJ/Su(H)-mediated Notch/Delta signaling. We found, however, that ETS mutations affected primary and secondary notochord expression relatively equally and that RBPJ mutations were only moderately more severe in their effect on secondary versus primary notochord. Our results point to the promise of quantitative reporter assays for understanding cis-regulatory logic but also highlight the challenge of arbitrary statistical thresholds for predicting potentially important sites.
Collapse
|
11
|
Wu Y, Devotta A, José-Edwards DS, Kugler JE, Negrón-Piñeiro LJ, Braslavskaya K, Addy J, Saint-Jeannet JP, Di Gregorio A. Xbp1 and Brachyury establish an evolutionarily conserved subcircuit of the notochord gene regulatory network. eLife 2022; 11:e73992. [PMID: 35049502 PMCID: PMC8803312 DOI: 10.7554/elife.73992] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Gene regulatory networks coordinate the formation of organs and structures that compose the evolving body plans of different organisms. We are using a simple chordate model, the Ciona embryo, to investigate the essential gene regulatory network that orchestrates morphogenesis of the notochord, a structure necessary for the proper development of all chordate embryos. Although numerous transcription factors expressed in the notochord have been identified in different chordates, several of them remain to be positioned within a regulatory framework. Here, we focus on Xbp1, a transcription factor expressed during notochord formation in Ciona and other chordates. Through the identification of Xbp1-downstream notochord genes in Ciona, we found evidence of the early co-option of genes involved in the unfolded protein response to the notochord developmental program. We report the regulatory interplay between Xbp1 and Brachyury, and by extending these results to Xenopus, we show that Brachyury and Xbp1 form a cross-regulatory subcircuit of the notochord gene regulatory network that has been consolidated during chordate evolution.
Collapse
Affiliation(s)
- Yushi Wu
- Department of Molecular Pathobiology, New York University College of DentistryNew YorkUnited States
| | - Arun Devotta
- Department of Molecular Pathobiology, New York University College of DentistryNew YorkUnited States
| | - Diana S José-Edwards
- Department of Molecular Pathobiology, New York University College of DentistryNew YorkUnited States
| | - Jamie E Kugler
- Department of Molecular Pathobiology, New York University College of DentistryNew YorkUnited States
| | - Lenny J Negrón-Piñeiro
- Department of Molecular Pathobiology, New York University College of DentistryNew YorkUnited States
| | - Karina Braslavskaya
- Department of Molecular Pathobiology, New York University College of DentistryNew YorkUnited States
| | - Jermyn Addy
- Department of Molecular Pathobiology, New York University College of DentistryNew YorkUnited States
| | | | - Anna Di Gregorio
- Department of Molecular Pathobiology, New York University College of DentistryNew YorkUnited States
| |
Collapse
|
12
|
Schwaner MJ, Hsieh ST, Braasch I, Bradley S, Campos CB, Collins CE, Donatelli CM, Fish FE, Fitch OE, Flammang BE, Jackson BE, Jusufi A, Mekdara PJ, Patel A, Swalla BJ, Vickaryous M, McGowan CP. Future Tail Tales: A Forward-Looking, Integrative Perspective on Tail Research. Integr Comp Biol 2021; 61:521-537. [PMID: 33999184 PMCID: PMC8680820 DOI: 10.1093/icb/icab082] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Synopsis Tails are a defining characteristic of chordates and show enormous diversity in function and shape. Although chordate tails share a common evolutionary and genetic-developmental origin, tails are extremely versatile in morphology and function. For example, tails can be short or long, thin or thick, and feathered or spiked, and they can be used for propulsion, communication, or balancing, and they mediate in predator-prey outcomes. Depending on the species of animal the tail is attached to, it can have extraordinarily multi-functional purposes. Despite its morphological diversity and broad functional roles, tails have not received similar scientific attention as, for example, the paired appendages such as legs or fins. This forward-looking review article is a first step toward interdisciplinary scientific synthesis in tail research. We discuss the importance of tail research in relation to five topics: (1) evolution and development, (2) regeneration, (3) functional morphology, (4) sensorimotor control, and (5) computational and physical models. Within each of these areas, we highlight areas of research and combinations of long-standing and new experimental approaches to move the field of tail research forward. To best advance a holistic understanding of tail evolution and function, it is imperative to embrace an interdisciplinary approach, re-integrating traditionally siloed fields around discussions on tail-related research.
Collapse
Affiliation(s)
- M J Schwaner
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA 92697, USA
| | - S T Hsieh
- Department of Biology, Temple University, Philadelphia, PA 19122, USA
| | - I Braasch
- Department of Integrative Biology and Program in Ecology, Evolution, and Behavior (EEB), Michigan State University, East Lansing, MI 48824, USA
| | - S Bradley
- Department of Biomedical Science, University of Guelph, Guelph N1G 2W1, Canada
| | - C B Campos
- Department of Biological Sciences, Sacramento State University, Sacramento, CA 95819, USA
| | - C E Collins
- Department of Biological Sciences, Sacramento State University, Sacramento, CA 95819, USA
| | - C M Donatelli
- Department of Biology, University of Ottawa, Ontario K1N 6N5, Canada
| | - F E Fish
- Department of Biology, West Chester University, West Chester, PA 19383, USA
| | - O E Fitch
- Department of Integrative Biology and Program in Ecology, Evolution, and Behavior (EEB), Michigan State University, East Lansing, MI 48824, USA
| | - B E Flammang
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - B E Jackson
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA 23909, USA
| | - A Jusufi
- Max Planck Institute for Intelligent Systems, Stuttgart 70569, Germany
| | - P J Mekdara
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - A Patel
- Department of Electrical Engineering, University of Cape Town, Cape Town 7701, South Africa
| | - B J Swalla
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - M Vickaryous
- Department of Biomedical Science, University of Guelph, Guelph N1G 2W1, Canada
| | - C P McGowan
- Department of Integrative Anatomical Sciences, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
13
|
Winkley KM, Reeves WM, Veeman MT. Single-cell analysis of cell fate bifurcation in the chordate Ciona. BMC Biol 2021; 19:180. [PMID: 34465302 PMCID: PMC8408944 DOI: 10.1186/s12915-021-01122-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/12/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Inductive signaling interactions between different cell types are a major mechanism for the further diversification of embryonic cell fates. Most blastomeres in the model chordate Ciona robusta become restricted to a single predominant fate between the 64-cell and mid-gastrula stages. The deeply stereotyped and well-characterized Ciona embryonic cell lineages allow the transcriptomic analysis of newly established cell types very early in their divergence from sibling cell states without the pseudotime inference needed in the analysis of less synchronized cell populations. This is the first ascidian study to use droplet scRNAseq with large numbers of analyzed cells as early as the 64-cell stage when major lineages such as primary notochord first become fate restricted. RESULTS AND CONCLUSIONS We identify 59 distinct cell states, including new subregions of the b-line neural lineage and the early induction of the tail tip epidermis. We find that 34 of these cell states are directly or indirectly dependent on MAPK-mediated signaling critical to early Ciona patterning. Most of the MAPK-dependent bifurcations are canalized with the signal-induced cell fate lost upon MAPK inhibition, but the posterior endoderm is unique in being transformed into a novel state expressing some but not all markers of both endoderm and muscle. Divergent gene expression between newly bifurcated sibling cell types is dominated by upregulation in the induced cell type. The Ets family transcription factor Elk1/3/4 is uniquely upregulated in nearly all the putatively direct inductions. Elk1/3/4 upregulation together with Ets transcription factor binding site enrichment analysis enables inferences about which bifurcations are directly versus indirectly controlled by MAPK signaling. We examine notochord induction in detail and find that the transition between a Zic/Ets-mediated regulatory state and a Brachyury/FoxA-mediated regulatory state is unexpectedly late. This supports a "broad-hourglass" model of cell fate specification in which many early tissue-specific genes are induced in parallel to key tissue-specific transcriptional regulators via the same set of transcriptional inputs.
Collapse
Affiliation(s)
- Konner M Winkley
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Wendy M Reeves
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Michael T Veeman
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
14
|
Oonuma K, Yamamoto M, Moritsugu N, Okawa N, Mukai M, Sotani M, Tsunemi S, Sugimoto H, Nakagome E, Hasegawa Y, Shimai K, Horie T, Kusakabe TG. Evolution of Developmental Programs for the Midline Structures in Chordates: Insights From Gene Regulation in the Floor Plate and Hypochord Homologues of Ciona Embryos. Front Cell Dev Biol 2021; 9:704367. [PMID: 34235159 PMCID: PMC8256262 DOI: 10.3389/fcell.2021.704367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 05/25/2021] [Indexed: 11/24/2022] Open
Abstract
In vertebrate embryos, dorsal midline tissues, including the notochord, the prechordal plate, and the floor plate, play important roles in patterning of the central nervous system, somites, and endodermal tissues by producing extracellular signaling molecules, such as Sonic hedgehog (Shh). In Ciona, hedgehog.b, one of the two hedgehog genes, is expressed in the floor plate of the embryonic neural tube, while none of the hedgehog genes are expressed in the notochord. We have identified a cis-regulatory region of hedgehog.b that was sufficient to drive a reporter gene expression in the floor plate. The hedgehog.b cis-regulatory region also drove ectopic expression of the reporter gene in the endodermal strand, suggesting that the floor plate and the endodermal strand share a part of their gene regulatory programs. The endodermal strand occupies the same topographic position of the embryo as does the vertebrate hypochord, which consists of a row of single cells lined up immediately ventral to the notochord. The hypochord shares expression of several genes with the floor plate, including Shh and FoxA, and play a role in dorsal aorta development. Whole-embryo single-cell transcriptome analysis identified a number of genes specifically expressed in both the floor plate and the endodermal strand in Ciona tailbud embryos. A Ciona FoxA ortholog FoxA.a is shown to be a candidate transcriptional activator for the midline gene battery. The present findings suggest an ancient evolutionary origin of a common developmental program for the midline structures in Olfactores.
Collapse
Affiliation(s)
- Kouhei Oonuma
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan.,Institute for Integrative Neurobiology, Graduate School of Natural Science, Konan University, Kobe, Japan
| | - Maho Yamamoto
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan
| | - Naho Moritsugu
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan
| | - Nanako Okawa
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan.,Institute for Integrative Neurobiology, Graduate School of Natural Science, Konan University, Kobe, Japan
| | - Megumi Mukai
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan.,Institute for Integrative Neurobiology, Graduate School of Natural Science, Konan University, Kobe, Japan
| | - Miku Sotani
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan.,Institute for Integrative Neurobiology, Graduate School of Natural Science, Konan University, Kobe, Japan
| | - Shuto Tsunemi
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan.,Institute for Integrative Neurobiology, Graduate School of Natural Science, Konan University, Kobe, Japan
| | - Haruka Sugimoto
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan
| | - Eri Nakagome
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan
| | - Yuichi Hasegawa
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan.,Institute for Integrative Neurobiology, Graduate School of Natural Science, Konan University, Kobe, Japan
| | - Kotaro Shimai
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan.,Institute for Integrative Neurobiology, Graduate School of Natural Science, Konan University, Kobe, Japan
| | - Takeo Horie
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Japan
| | - Takehiro G Kusakabe
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan.,Institute for Integrative Neurobiology, Graduate School of Natural Science, Konan University, Kobe, Japan
| |
Collapse
|
15
|
Harder MJ, Hix J, Reeves WM, Veeman MT. Ciona Brachyury proximal and distal enhancers have different FGF dose-response relationships. PLoS Genet 2021; 17:e1009305. [PMID: 33465083 PMCID: PMC7846015 DOI: 10.1371/journal.pgen.1009305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/29/2021] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Many genes are regulated by two or more enhancers that drive similar expression patterns. Evolutionary theory suggests that these seemingly redundant enhancers must have functionally important differences. In the simple ascidian chordate Ciona, the transcription factor Brachyury is induced exclusively in the presumptive notochord downstream of lineage specific regulators and FGF-responsive Ets family transcription factors. Here we exploit the ability to finely titrate FGF signaling activity via the MAPK pathway using the MEK inhibitor U0126 to quantify the dependence of transcription driven by different Brachyury reporter constructs on this direct upstream regulator. We find that the more powerful promoter-adjacent proximal enhancer and a weaker distal enhancer have fundamentally different dose-response relationships to MAPK inhibition. The Distal enhancer is more sensitive to MAPK inhibition but shows a less cooperative response, whereas the Proximal enhancer is less sensitive and more cooperative. A longer construct containing both enhancers has a complex dose-response curve that supports the idea that the proximal and distal enhancers are moderately super-additive. We show that the overall expression loss from intermediate doses of U0126 is not only a function of the fraction of cells expressing these reporters, but also involves graded decreases in expression at the single-cell level. Expression of the endogenous gene shows a comparable dose-response relationship to the full length reporter, and we find that different notochord founder cells are differentially sensitive to MAPK inhibition. Together, these results indicate that although the two Brachyury enhancers have qualitatively similar expression patterns, they respond to FGF in quantitatively different ways and act together to drive high levels of Brachyury expression with a characteristic input/output relationship. This indicates that they are fundamentally not equivalent genetic elements.
Collapse
Affiliation(s)
- Matthew J. Harder
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Julie Hix
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Wendy M. Reeves
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Michael T. Veeman
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| |
Collapse
|