1
|
Bare Y, Matusek T, Vriz S, Deffieu MS, Thérond PP, Gaudin R. TMED10 mediates the loading of neosynthesised Sonic Hedgehog in COPII vesicles for efficient secretion and signalling. Cell Mol Life Sci 2023; 80:266. [PMID: 37624561 PMCID: PMC11072717 DOI: 10.1007/s00018-023-04918-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/24/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
The morphogen Sonic Hedgehog (SHH) plays an important role in coordinating embryonic development. Short- and long-range SHH signalling occurs through a variety of membrane-associated and membrane-free forms. However, the molecular mechanisms that govern the early events of the trafficking of neosynthesised SHH in mammalian cells are still poorly understood. Here, we employed the retention using selective hooks (RUSH) system to show that newly-synthesised SHH is trafficked through the classical biosynthetic secretory pathway, using TMED10 as an endoplasmic reticulum (ER) cargo receptor for efficient ER-to-Golgi transport and Rab6 vesicles for Golgi-to-cell surface trafficking. TMED10 and SHH colocalized at ER exit sites (ERES), and TMED10 depletion significantly delays SHH loading onto ERES and subsequent exit leading to significant SHH release defects. Finally, we utilised the Drosophila wing imaginal disc model to demonstrate that the homologue of TMED10, Baiser (Bai), participates in Hedgehog (Hh) secretion and signalling in vivo. In conclusion, our work highlights the role of TMED10 in cargo-specific egress from the ER and sheds light on novel important partners of neosynthesised SHH secretion with potential impact on embryonic development.
Collapse
Affiliation(s)
- Yonis Bare
- Institut de Recherche en Infectiologie de Montpellier (IRIM) CNRS, 1919 Route de Mende, 34293, Montpellier, France
- Université de Montpellier, 34090, Montpellier, France
| | - Tamás Matusek
- Université Côte d'Azur, UMR7277 CNRS, Inserm 1091, Institut de Biologie de Valrose (iBV), Parc Valrose, Nice, France
| | - Sophie Vriz
- Laboratoire des Biomolécules (LBM), Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
- Faculty of Science, Université de Paris, Paris, France
| | - Maika S Deffieu
- Institut de Recherche en Infectiologie de Montpellier (IRIM) CNRS, 1919 Route de Mende, 34293, Montpellier, France
- Université de Montpellier, 34090, Montpellier, France
| | - Pascal P Thérond
- Université Côte d'Azur, UMR7277 CNRS, Inserm 1091, Institut de Biologie de Valrose (iBV), Parc Valrose, Nice, France
| | - Raphael Gaudin
- Institut de Recherche en Infectiologie de Montpellier (IRIM) CNRS, 1919 Route de Mende, 34293, Montpellier, France.
- Université de Montpellier, 34090, Montpellier, France.
| |
Collapse
|
2
|
Patel A, Wu Y, Han X, Su Y, Maugel T, Shroff H, Roy S. Cytonemes coordinate asymmetric signaling and organization in the Drosophila muscle progenitor niche. Nat Commun 2022; 13:1185. [PMID: 35246530 PMCID: PMC8897416 DOI: 10.1038/s41467-022-28587-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/02/2022] [Indexed: 12/29/2022] Open
Abstract
Asymmetric signaling and organization in the stem-cell niche determine stem-cell fates. Here, we investigate the basis of asymmetric signaling and stem-cell organization using the Drosophila wing-disc that creates an adult muscle progenitor (AMP) niche. We show that AMPs extend polarized cytonemes to contact the disc epithelial junctions and adhere themselves to the disc/niche. Niche-adhering cytonemes localize FGF-receptor to selectively adhere to the FGF-producing disc and receive FGFs in a contact-dependent manner. Activation of FGF signaling in AMPs, in turn, reinforces disc-specific cytoneme polarity/adhesion, which maintains their disc-proximal positions. Loss of cytoneme-mediated adhesion promotes AMPs to lose niche occupancy and FGF signaling, occupy a disc-distal position, and acquire morphological hallmarks of differentiation. Niche-specific AMP organization and diversification patterns are determined by localized expression and presentation patterns of two different FGFs in the wing-disc and their polarized target-specific distribution through niche-adhering cytonemes. Thus, cytonemes are essential for asymmetric signaling and niche-specific AMP organization.
Collapse
Affiliation(s)
- Akshay Patel
- grid.164295.d0000 0001 0941 7177Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD USA
| | - Yicong Wu
- grid.94365.3d0000 0001 2297 5165Laboratory of High-Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD USA
| | - Xiaofei Han
- grid.94365.3d0000 0001 2297 5165Laboratory of High-Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD USA
| | - Yijun Su
- grid.94365.3d0000 0001 2297 5165Laboratory of High-Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD USA ,grid.94365.3d0000 0001 2297 5165Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD USA
| | - Tim Maugel
- grid.164295.d0000 0001 0941 7177Department of Biology, Laboratory for Biological Ultrastructure, University of Maryland, College Park, MD USA
| | - Hari Shroff
- grid.94365.3d0000 0001 2297 5165Laboratory of High-Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD USA ,grid.94365.3d0000 0001 2297 5165Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD USA
| | - Sougata Roy
- grid.164295.d0000 0001 0941 7177Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD USA
| |
Collapse
|
3
|
Li X, Zhang F, Coates B, Wei C, Zhu X, Zhang Y, Zhou X. Temporal analysis of microRNAs associated with wing development in the English grain aphid, Sitobion avenae (F.) (Homoptera: Aphidiae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 142:103579. [PMID: 33894361 DOI: 10.1016/j.ibmb.2021.103579] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Molecular mechanisms underlying wing evolution and development have been a point of scientific inquiry for decades. Phloem-feeding aphids are one of the most devastating global insect pests, where dispersal of winged morphs lead to annual movements, migrations, and range expansions. Aphids show a polyphenic wing dimorphism trait, and offer a model to study the role of environment in determining morphological plasticity of a single genotype. Despite recent progresses in the genetic understanding of wing polyphenism, the influence of environmental cues remains unclear. To investigate the involvement of miRNAs in wing development, we sequenced small RNA libraries of the English grain aphid, Sitobion avenae (F.) across six different developmental stages. As a result, we identified 113 conserved and 193 S. avenae-specific miRNAs. Gene Ontology and KEGG pathway analyses of putative target mRNAs for the six differentially expressed miRNAs are enriched for wing development processes. Dietary uptake of miR-263a, miR-316, and miR-184a agomirs and antagomirs led to significantly higher mortality (>70%) and a lower proportion of winged morphs (<5%). On the other hand, wing malformation was observed in miR-2 and miR-306 agomirs and miR-2 and miR-14 antagomirs, respectively, suggesting their involvement in S. avenae wing morphogenesis. These combined results not only shed light on the regulatory role of miRNAs in wing dimorphism, but also provide potential novel targets for the long-term sustainable management of S. avenae, a devastating global grain pest.
Collapse
Affiliation(s)
- Xiangrui Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Fangmei Zhang
- Henan Provincial South Henan Crop Pest Green Prevention and Control Academician Workstation, Xinyang Agriculture and Forestry University, Xinyang, 46400, China
| | - Brad Coates
- United States Department of Agriculture, Agricultural Research Service, Corn Insects & Crop Genetics Research Unit, Ames, IA, 50011, USA
| | - Changping Wei
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xun Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yunhui Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, 40546-0091, USA.
| |
Collapse
|
4
|
Abstract
The Drosophila wing imaginal disc is a tissue of undifferentiated cells that are precursors of the wing and most of the notum of the adult fly. The wing disc first forms during embryogenesis from a cluster of ∼30 cells located in the second thoracic segment, which invaginate to form a sac-like structure. They undergo extensive proliferation during larval stages to form a mature larval wing disc of ∼35,000 cells. During this time, distinct cell fates are assigned to different regions, and the wing disc develops a complex morphology. Finally, during pupal stages the wing disc undergoes morphogenetic processes and then differentiates to form the adult wing and notum. While the bulk of the wing disc comprises epithelial cells, it also includes neurons and glia, and is associated with tracheal cells and muscle precursor cells. The relative simplicity and accessibility of the wing disc, combined with the wealth of genetic tools available in Drosophila, have combined to make it a premier system for identifying genes and deciphering systems that play crucial roles in animal development. Studies in wing imaginal discs have made key contributions to many areas of biology, including tissue patterning, signal transduction, growth control, regeneration, planar cell polarity, morphogenesis, and tissue mechanics.
Collapse
Affiliation(s)
- Bipin Kumar Tripathi
- Department of Molecular Biology and Biochemistry, Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Kenneth D Irvine
- Department of Molecular Biology and Biochemistry, Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
5
|
Daly CA, Hall ET, Ogden SK. Regulatory mechanisms of cytoneme-based morphogen transport. Cell Mol Life Sci 2022; 79:119. [PMID: 35119540 PMCID: PMC8816744 DOI: 10.1007/s00018-022-04148-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 01/07/2023]
Abstract
During development and tissue homeostasis, cells must communicate with their neighbors to ensure coordinated responses to instructional cues. Cues such as morphogens and growth factors signal at both short and long ranges in temporal- and tissue-specific manners to guide cell fate determination, provide positional information, and to activate growth and survival responses. The precise mechanisms by which such signals traverse the extracellular environment to ensure reliable delivery to their intended cellular targets are not yet clear. One model for how this occurs suggests that specialized filopodia called cytonemes extend between signal-producing and -receiving cells to function as membrane-bound highways along which information flows. A growing body of evidence supports a crucial role for cytonemes in cell-to-cell communication. Despite this, the molecular mechanisms by which cytonemes are initiated, how they grow, and how they deliver specific signals are only starting to be revealed. Herein, we discuss recent advances toward improved understanding of cytoneme biology. We discuss similarities and differences between cytonemes and other types of cellular extensions, summarize what is known about how they originate, and discuss molecular mechanisms by which their activity may be controlled in development and tissue homeostasis. We conclude by highlighting important open questions regarding cytoneme biology, and comment on how a clear understanding of their function may provide opportunities for treating or preventing disease.
Collapse
Affiliation(s)
- Christina A Daly
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Pl. MS340, Memphis, TN, 38105, USA
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Pl, MS 1500, Memphis, TN, 38105, USA
| | - Eric T Hall
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Pl. MS340, Memphis, TN, 38105, USA
| | - Stacey K Ogden
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Pl. MS340, Memphis, TN, 38105, USA.
| |
Collapse
|
6
|
Gradilla AC, Guerrero I. Hedgehog on track: Long-distant signal transport and transfer through direct cell-to-cell contact. Curr Top Dev Biol 2022; 150:1-24. [DOI: 10.1016/bs.ctdb.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Hatori R, Wood BM, Oliveira Barbosa G, Kornberg TB. Regulated delivery controls Drosophila Hedgehog, Wingless, and Decapentaplegic signaling. eLife 2021; 10:71744. [PMID: 34292155 PMCID: PMC8376250 DOI: 10.7554/elife.71744] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023] Open
Abstract
Morphogen signaling proteins disperse across tissues to activate signal transduction in target cells. We investigated dispersion of Hedgehog (Hh), Wnt homolog Wingless (Wg), and Bone morphogenic protein homolog Decapentaplegic (Dpp) in the Drosophila wing imaginal disc. We discovered that delivery of Hh, Wg, and Dpp to their respective targets is regulated. We found that <5% of Hh and <25% of Wg are taken up by disc cells and activate signaling. The amount of morphogen that is taken up and initiates signaling did not change when the level of morphogen expression was varied between 50 and 200% (Hh) or 50 and 350% (Wg). Similar properties were observed for Dpp. We analyzed an area of 150 μm×150 μm that includes Hh-responding cells of the disc as well as overlying tracheal cells and myoblasts that are also activated by disc-produced Hh. We found that the extent of signaling in the disc was unaffected by the presence or absence of the tracheal and myoblast cells, suggesting that the mechanism that disperses Hh specifies its destinations to particular cells, and that target cells do not take up Hh from a common pool.
Collapse
Affiliation(s)
- Ryo Hatori
- Cardiovascular Research Institute University of California, San Francisco, San Francisco, United States
| | - Brent M Wood
- Cardiovascular Research Institute University of California, San Francisco, San Francisco, United States
| | | | - Thomas B Kornberg
- Cardiovascular Research Institute University of California, San Francisco, San Francisco, United States
| |
Collapse
|
8
|
Everetts NJ, Worley MI, Yasutomi R, Yosef N, Hariharan IK. Single-cell transcriptomics of the Drosophila wing disc reveals instructive epithelium-to-myoblast interactions. eLife 2021; 10:61276. [PMID: 33749594 PMCID: PMC8021398 DOI: 10.7554/elife.61276] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 03/21/2021] [Indexed: 12/20/2022] Open
Abstract
In both vertebrates and invertebrates, generating a functional appendage requires interactions between ectoderm-derived epithelia and mesoderm-derived cells. To investigate such interactions, we used single-cell transcriptomics to generate a temporal cell atlas of the Drosophila wing disc from two developmental time points. Using these data, we visualized gene expression using a multilayered model of the wing disc and cataloged ligand–receptor pairs that could mediate signaling between epithelial cells and adult muscle precursors (AMPs). We found that localized expression of the fibroblast growth factor ligands, Thisbe and Pyramus, in the disc epithelium regulates the number and location of the AMPs. In addition, Hedgehog ligand from the epithelium activates a specific transcriptional program within adjacent AMP cells, defined by AMP-specific targets Neurotactin and midline, that is critical for proper formation of direct flight muscles. More generally, our annotated temporal cell atlas provides an organ-wide view of potential cell–cell interactions between epithelial and myogenic cells.
Collapse
Affiliation(s)
- Nicholas J Everetts
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Department of Electrical Engineering & Computer Science, Center for Computational Biology, UC Berkeley, University of California, Berkeley, Berkeley, United States
| | - Melanie I Worley
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Riku Yasutomi
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Nir Yosef
- Department of Electrical Engineering & Computer Science, Center for Computational Biology, UC Berkeley, University of California, Berkeley, Berkeley, United States
| | - Iswar K Hariharan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|