1
|
McCaig CD. Electrical Forces in Lumen Formation. Rev Physiol Biochem Pharmacol 2025; 187:53-60. [PMID: 39838008 DOI: 10.1007/978-3-031-68827-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Epithelial sheets evolved the capacity to fold and reform to create a lumen and therefore new environments. For humans, forming a lumen during gastrulation has been viewed as perhaps the most crucial biological process of our life and it is regulated by multiple electrical forces.
Collapse
Affiliation(s)
- Colin D McCaig
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| |
Collapse
|
2
|
Shinoda S, Sakai Y, Matsui T, Uematsu M, Koyama-Honda I, Sakamaki JI, Yamamoto H, Mizushima N. Syntaxin 17 recruitment to mature autophagosomes is temporally regulated by PI4P accumulation. eLife 2024; 12:RP92189. [PMID: 38831696 PMCID: PMC11152571 DOI: 10.7554/elife.92189] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
During macroautophagy, cytoplasmic constituents are engulfed by autophagosomes. Lysosomes fuse with closed autophagosomes but not with unclosed intermediate structures. This is achieved in part by the late recruitment of the autophagosomal SNARE syntaxin 17 (STX17) to mature autophagosomes. However, how STX17 recognizes autophagosome maturation is not known. Here, we show that this temporally regulated recruitment of STX17 depends on the positively charged C-terminal region of STX17. Consistent with this finding, mature autophagosomes are more negatively charged compared with unclosed intermediate structures. This electrostatic maturation of autophagosomes is likely driven by the accumulation of phosphatidylinositol 4-phosphate (PI4P) in the autophagosomal membrane. Accordingly, dephosphorylation of autophagosomal PI4P prevents the association of STX17 to autophagosomes. Furthermore, molecular dynamics simulations support PI4P-dependent membrane insertion of the transmembrane helices of STX17. Based on these findings, we propose a model in which STX17 recruitment to mature autophagosomes is temporally regulated by a PI4P-driven change in the surface charge of autophagosomes.
Collapse
Affiliation(s)
- Saori Shinoda
- Department of Biochemistry and Molecular Biology, Graduated School of Medicine, The University of TokyoTokyoJapan
| | - Yuji Sakai
- Department of Biochemistry and Molecular Biology, Graduated School of Medicine, The University of TokyoTokyoJapan
- Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto UniversityKyotoJapan
| | - Takahide Matsui
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical SchoolTokyoJapan
| | - Masaaki Uematsu
- Department of Biochemistry and Molecular Biology, Graduated School of Medicine, The University of TokyoTokyoJapan
| | - Ikuko Koyama-Honda
- Department of Biochemistry and Molecular Biology, Graduated School of Medicine, The University of TokyoTokyoJapan
| | - Jun-ichi Sakamaki
- Department of Biochemistry and Molecular Biology, Graduated School of Medicine, The University of TokyoTokyoJapan
| | - Hayashi Yamamoto
- Department of Biochemistry and Molecular Biology, Graduated School of Medicine, The University of TokyoTokyoJapan
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical SchoolTokyoJapan
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduated School of Medicine, The University of TokyoTokyoJapan
| |
Collapse
|
3
|
Alavizargar A, Gass M, Krahn MP, Heuer A. Elucidating the Membrane Binding Process of a Disordered Protein: Dynamic Interplay of Anionic Lipids and the Polybasic Region. ACS PHYSICAL CHEMISTRY AU 2024; 4:167-179. [PMID: 38560754 PMCID: PMC10979486 DOI: 10.1021/acsphyschemau.3c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 04/04/2024]
Abstract
Intrinsically disordered regions of proteins are responsible for many biological processes such as in the case of liver kinase B1 (LKB1)-a serine/threonine kinase relevant for cell proliferation and cell polarity. LKB1 becomes fully activated upon recruitment to the plasma membrane by binding of its disordered C-terminal polybasic motif consisting of eight lysines/arginines to phospholipids. Here, we present extensive molecular dynamics (MD) simulations of the polybasic motif interacting with a model membrane composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleyl phosphatidic acid (PA) and cell culture experiments. Protein-membrane binding effects are due to the electrostatic interactions between the polybasic amino acids and PAs. For significant binding, the first three lysines turn out to be dispensable, which was also recapitulated in cell culture using transfected GFP-LKB1 variants. LKB1-membrane binding results in nonmonotonous changes in the structure of the protein as well as the membrane, in particular, accumulation of PAs and reduced thickness at the protein-membrane contact area. The protein-lipid binding turns out to be highly dynamic due to an interplay of PA-PA repulsion and protein-PA attraction. The thermodynamics of this interplay is captured by a statistical fluctuation model, which allows the estimation of both energies. Quantification of the significance of each polar amino acid in the polybasic provides detailed insights into the molecular mechanism of protein-membrane binding of LKB1. These results can likely be transferred to other proteins, which interact by intrinsically disordered polybasic regions with anionic membranes.
Collapse
Affiliation(s)
- Azadeh Alavizargar
- Institute
of Physical Chemistry, University of Münster, Corrensstr. 28/30, 48149 Münster, Germany
| | - Maximilian Gass
- Medical
Cell Biology, Medical Clinic D, University
Hospital of Münster, Albert-Schweitzer Campus 1-A14, 48149 Münster, Germany
| | - Michael P. Krahn
- Medical
Cell Biology, Medical Clinic D, University
Hospital of Münster, Albert-Schweitzer Campus 1-A14, 48149 Münster, Germany
| | - Andreas Heuer
- Institute
of Physical Chemistry, University of Münster, Corrensstr. 28/30, 48149 Münster, Germany
| |
Collapse
|
4
|
Apical-basal polarity and the control of epithelial form and function. Nat Rev Mol Cell Biol 2022; 23:559-577. [PMID: 35440694 DOI: 10.1038/s41580-022-00465-y] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2022] [Indexed: 02/02/2023]
Abstract
Epithelial cells are the most common cell type in all animals, forming the sheets and tubes that compose most organs and tissues. Apical-basal polarity is essential for epithelial cell form and function, as it determines the localization of the adhesion molecules that hold the cells together laterally and the occluding junctions that act as barriers to paracellular diffusion. Polarity must also target the secretion of specific cargoes to the apical, lateral or basal membranes and organize the cytoskeleton and internal architecture of the cell. Apical-basal polarity in many cells is established by conserved polarity factors that define the apical (Crumbs, Stardust/PALS1, aPKC, PAR-6 and CDC42), junctional (PAR-3) and lateral (Scribble, DLG, LGL, Yurt and RhoGAP19D) domains, although recent evidence indicates that not all epithelia polarize by the same mechanism. Research has begun to reveal the dynamic interactions between polarity factors and how they contribute to polarity establishment and maintenance. Elucidating these mechanisms is essential to better understand the roles of apical-basal polarity in morphogenesis and how defects in polarity contribute to diseases such as cancer.
Collapse
|
5
|
Khoury MJ, Bilder D. Minimal functional domains of the core polarity regulator Dlg. Biol Open 2022; 11:276053. [PMID: 35722710 PMCID: PMC9346270 DOI: 10.1242/bio.059408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/14/2022] [Indexed: 11/20/2022] Open
Abstract
The compartmentalized domains of polarized epithelial cells arise from mutually antagonistic actions between the apical Par complex and the basolateral Scrib module. In Drosophila, the Scrib module proteins Scribble (Scrib) and Discs-large (Dlg) are required to limit Lgl phosphorylation at the basolateral cortex, but how Scrib and Dlg could carry out such a ‘protection’ activity is not clear. We tested Protein Phosphatase 1α (PP1) as a potential mediator of this activity, but demonstrate that a significant component of Scrib and Dlg regulation of Lgl is PP1 independent, and found no evidence for a Scrib-Dlg-PP1 protein complex. However, the Dlg SH3 domain plays a role in Lgl protection and, in combination with the N-terminal region of the Dlg HOOK domain, in recruitment of Scrib to the membrane. We identify a ‘minimal Dlg’ comprised of the SH3 and HOOK domains that is both necessary and sufficient for Scrib localization and epithelial polarity function in vivo. This article has an associated First Person interview with the first author of the paper. Summary: A minimal SH3-HOOK fragment of Dlg is sufficient to support epithelial polarity through mechanisms independent of the PP1 phosphatase.
Collapse
Affiliation(s)
- Mark J Khoury
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley CA 94720, USA
| | - David Bilder
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley CA 94720, USA
| |
Collapse
|
6
|
Lu J, Dong W, Hammond GR, Hong Y. Hypoxia controls plasma membrane targeting of polarity proteins by dynamic turnover of PI4P and PI(4,5)P2. eLife 2022; 11:79582. [PMID: 35678383 PMCID: PMC9242647 DOI: 10.7554/elife.79582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
Phosphatidylinositol 4-phosphate (PI4P) and phosphatidylinositol 4,5-biphosphate (PIP2) are key phosphoinositides that determine the identity of the plasma membrane (PM) and regulate numerous key biological events there. To date, mechanisms regulating the homeostasis and dynamic turnover of PM PI4P and PIP2 in response to various physiological conditions and stresses remain to be fully elucidated. Here, we report that hypoxia in Drosophila induces acute and reversible depletion of PM PI4P and PIP2 that severely disrupts the electrostatic PM targeting of multiple polybasic polarity proteins. Genetically encoded ATP sensors confirmed that hypoxia induces acute and reversible reduction of cellular ATP levels which showed a strong real-time correlation with the levels of PM PI4P and PIP2 in cultured cells. By combining genetic manipulations with quantitative imaging assays we showed that PI4KIIIα, as well as Rbo/EFR3 and TTC7 that are essential for targeting PI4KIIIα to PM, are required for maintaining the homeostasis and dynamic turnover of PM PI4P and PIP2 under normoxia and hypoxia. Our results revealed that in cells challenged by energetic stresses triggered by hypoxia, ATP inhibition and possibly ischemia, dramatic turnover of PM PI4P and PIP2 could have profound impact on many cellular processes including electrostatic PM targeting of numerous polybasic proteins.
Collapse
Affiliation(s)
- Juan Lu
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, China [CN]
| | - Wei Dong
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, United States
| | - Gerald R Hammond
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, United States
| | - Yang Hong
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, United States
| |
Collapse
|
7
|
Sharp KA, Khoury MJ, Wirtz-Peitz F, Bilder D. Evidence for a nuclear role for Drosophila Dlg as a regulator of the NURF complex. Mol Biol Cell 2021; 32:ar23. [PMID: 34495684 PMCID: PMC8693970 DOI: 10.1091/mbc.e21-04-0187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/17/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022] Open
Abstract
Scribble (Scrib), Discs-large (Dlg), and Lethal giant larvae (Lgl) are basolateral regulators of epithelial polarity and tumor suppressors whose molecular mechanisms of action remain unclear. We used proximity biotinylation to identify proteins localized near Dlg in the Drosophila wing imaginal disc epithelium. In addition to expected membrane- and cytoskeleton-associated protein classes, nuclear proteins were prevalent in the resulting mass spectrometry dataset, including all four members of the nucleosome remodeling factor (NURF) chromatin remodeling complex. Subcellular fractionation demonstrated a nuclear pool of Dlg and proximity ligation confirmed its position near the NURF complex. Genetic analysis showed that NURF activity is also required for the overgrowth of dlg tumors, and this growth suppression correlated with a reduction in Hippo pathway gene expression. Together, these data suggest a nuclear role for Dlg in regulating chromatin and transcription through a more direct mechanism than previously thought.
Collapse
Affiliation(s)
- Katherine A. Sharp
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley CA 94720
| | - Mark J. Khoury
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley CA 94720
| | | | - David Bilder
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley CA 94720
| |
Collapse
|
8
|
Nakajima YI. Scrib module proteins: Control of epithelial architecture and planar spindle orientation. Int J Biochem Cell Biol 2021; 136:106001. [PMID: 33962021 DOI: 10.1016/j.biocel.2021.106001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 01/15/2023]
Abstract
The Scrib module proteins, Scrib, Dlg, and Lgl, are conserved regulators of cell polarity in diverse biological contexts. Originally discovered as neoplastic tumor suppressors in the fruit fly Drosophila melanogaster, disruption of Scrib module components leads to tumorigenesis in mammalian epithelia and is associated with human cancers. With multiple protein interacting domains, Scrib module proteins function as determinants of basolateral identity in epithelial cells with apical-basal polarity while acting as signaling platform scaffold proteins. Recent studies have further revealed novel roles of the Scrib module in the control of epithelial architecture, ranging from polarity establishment and tricellular junction formation to planar spindle orientation during cell division. This review updates the current understanding of the molecular nature and physiological functions of the Scrib module with a focus on in vivo studies, providing a framework for how these protein dynamics affect the processes of epithelial organization.
Collapse
Affiliation(s)
- Yu-Ichiro Nakajima
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan; Graduate School of Life Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|