1
|
Klaus L, Reichardt SD, Neif M, Walter L, Gayer FA, Reichardt HM. Teratoma Development in 129.MOLF-Chr19 Mice Elicits Two Waves of Immune Cell Infiltration. Int J Mol Sci 2024; 25:12750. [PMID: 39684459 DOI: 10.3390/ijms252312750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Teratomas are a highly differentiated type of testicular germ cell tumors (TGCTs), the most common type of solid cancer in young men. Prominent inflammatory infiltrates are a hallmark of TGCTs, although their compositions and dynamics in teratomas remain elusive. Here, we reached out to characterize the infiltrating immune cells and their activation and polarization state by using high-throughput gene expression analysis of 129.MOLF-Chr19 mice that spontaneously develop testicular teratomas. We showed that inconspicuous testes without any apparent alterations in size or morphology can be clustered into three groups based on their expression of stemness and immune genes, supporting a model in which initial oncogenic transformation elicits a first wave of T-cell infiltration. Moderately and severely enlarged tumorous testes then displayed a progressive infiltration with T cells, monocytes/macrophages, and B cells. Importantly, T cells seem to adopt an inactive state caused by an overexpression of immune checkpoint molecules and the polarization of monocytes/macrophages to an anti-inflammatory phenotype. Our findings are supported by the analysis of metabolic gene expression, which unveiled alterations indicative of tumor growth and immune cell infiltration. Collectively, testicular teratomas, at least in mice, are characterized by a diverse inflammatory infiltrate containing T cells that putatively become inactivated, allowing the tumors to further grow. We believe that these findings may provide a rationale for the development of new immunomodulatory therapies for TGCTs.
Collapse
Affiliation(s)
- Lucas Klaus
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Sybille D Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Maria Neif
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany
- Department of Dermatology, University Hospital Münster, 48149 Münster, Germany
| | - Lutz Walter
- German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Fabian A Gayer
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany
- Clinic of Urology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Holger M Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany
| |
Collapse
|
2
|
Jia H, Wang W, Zhou Z, Chen Z, Lan Z, Bo H, Fan L. Single-cell RNA sequencing technology in human spermatogenesis: Progresses and perspectives. Mol Cell Biochem 2024; 479:2017-2033. [PMID: 37659974 DOI: 10.1007/s11010-023-04840-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/14/2023] [Indexed: 09/04/2023]
Abstract
Spermatogenesis, a key part of the spermiation process, is regulated by a combination of key cells, such as primordial germ cells, spermatogonial stem cells, and somatic cells, such as Sertoli cells. Abnormal spermatogenesis can lead to azoospermia, testicular tumors, and other diseases related to male infertility. The application of single-cell RNA sequencing (scRNA-seq) technology in male reproduction is gradually increasing with its unique insight into deep mining and analysis. The data cover different periods of neonatal, prepubertal, pubertal, and adult stages. Different types of male infertility diseases including obstructive and non-obstructive azoospermia (NOA), Klinefelter Syndrome (KS), Sertoli Cell Only Syndrome (SCOS), and testicular tumors are also covered. We briefly review the principles and application of scRNA-seq and summarize the research results and application directions in spermatogenesis in different periods and pathological states. Moreover, we discuss the challenges of applying this technology in male reproduction and the prospects of combining it with other technologies.
Collapse
Affiliation(s)
- Hanbo Jia
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Wei Wang
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Zhaowen Zhou
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Zhiyi Chen
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Zijun Lan
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Hao Bo
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China.
| | - Liqing Fan
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China.
| |
Collapse
|
3
|
Gayer FA, Klaus L, Reichardt SD, Fichtner A, Reichardt HM. Phenotype and gene signature of testicular tumors in 129.MOLF-Chr19 mice resemble human teratomas. Andrology 2024. [PMID: 39074032 DOI: 10.1111/andr.13717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/02/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND Testicular germ cell tumor (TGCT) is the most common type of tumor in young men. Type II germ cell tumors including postpubertal-type teratomas are derived from the germ cell neoplasia in situ (GCNIS), whereas prepubertal-type teratomas arise independently of the GCNIS. The consomic mouse strain 129.MOLF-Chr19 (M19) is a suitable murine model of such tumors, but its characterization remains incomplete. OBJECTIVE Here, we interrogated the suitability of testicular tumors in M19 mice as a model of human TGCT by analyzing their histological features and gene expression signature. MATERIAL AND METHODS Testes collected from M19 mice of different ages were categorized by macroscopic appearance based on size and the degree of suspected tumorigenesis. Histological sections from selected tumors were stained with Hematoxylin and Eosin, and expression of genes associated with tumorigenesis was determined in frozen tissue samples from a large range of tumors of different subclasses using RT-qPCR and Fluidigm Dynamic Arrays. RESULTS Macroscopically, testicular specimens appeared very heterogeneous concerning size and signs indicating the presence of a tumor. Histological analysis confirmed the development of teratomas with areas of cells corresponding to all three germ cell layers. Gene expression analyses indicated upregulation of markers related to proliferation, vascular invasive potential and pluripotency, and revealed a strong correlation of gene expression with tumor size and a significant intercorrelation of individual genes. DISCUSSION AND CONCLUSION TGCT in M19 mice is reminiscent of human testicular teratomas presenting with areas of cells derived from all germ layers and showing a typical gene signature. We thus confirm that these mice can serve as a suitable murine model of pure teratomas for preclinical research.
Collapse
Affiliation(s)
- Fabian A Gayer
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
- Clinic of Urology, University Medical Center Göttingen, Göttingen, Germany
| | - Lucas Klaus
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Sybille D Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Alexander Fichtner
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Holger M Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
4
|
Bustamante-Marin XM, Capel B. Oxygen availability influences the incidence of testicular teratoma in Dnd1Ter/+ mice. Front Genet 2023; 14:1179256. [PMID: 37180974 PMCID: PMC10169730 DOI: 10.3389/fgene.2023.1179256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/14/2023] [Indexed: 05/16/2023] Open
Abstract
Testicular teratomas and teratocarcinomas are the most common testicular germ cell tumors in early childhood and young men, and they are frequently found unilaterally in the left testis. In 129/SvJ mice carrying a heterozygous copy of the potent modifier of tumor incidence Ter, a point mutation in the dead-end homolog one gene (Dnd1 Ter/+), ∼70% of the unilateral teratomas arise in the left testis. We previously showed that in mice, left/right differences in vascular architecture are associated with reduced hemoglobin saturation and increased levels of the hypoxia inducible factor-1 alpha (HIF-1α) in the left compared to the right testis. To test the hypothesis that systemic reduction of oxygen availability in Dnd1 Ter/+ mice would lead to an increased incidence of bilateral tumors, we placed pregnant females from 129/SvJ Dnd1 Ter/+ intercross matings in a hypobaric chamber for 12-h intervals. Our results show that in 129/SvJ Dnd1 Ter/+ male gonads, the incidence of bilateral teratoma increased from 3.3% to 64% when fetuses were exposed to acute low oxygen conditions for 12-h between E13.8 and E14.3. The increase in tumor incidence correlated with the maintenance of high expression of pluripotency genes Oct4, Sox2 and Nanog, elevated activity of the Nodal signaling pathway, and suppression of germ cell mitotic arrest. We propose that the combination of heterozygosity for the Ter mutation and hypoxia causes a delay in male germ cell differentiation that promotes teratoma initiation.
Collapse
Affiliation(s)
- Ximena M. Bustamante-Marin
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States
- Departamento Biomédico, Facultad de Ciencias De La Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
5
|
Imai A, Matsuda K, Niimi Y, Suzuki A. Loss of Dead end1 induces testicular teratomas from primordial germ cells that failed to undergo sexual differentiation in embryonic testes. Sci Rep 2023; 13:6398. [PMID: 37076592 PMCID: PMC10115811 DOI: 10.1038/s41598-023-33706-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/18/2023] [Indexed: 04/21/2023] Open
Abstract
Spontaneous testicular teratomas (STTs) are tumours comprising a diverse array of cell and tissue types, which are derived from pluripotent stem-like cells called embryonal carcinoma cells (ECCs). Although mouse ECCs originate from primordial germ cells (PGCs) in embryonic testes, the molecular basis underlying ECC development remains unclear. This study shows that the conditional deletion of mouse Dead end1 (Dnd1) from migrating PGCs leads to STT development. In Dnd1-conditional knockout (Dnd1-cKO) embryos, PGCs colonise the embryonic testes but fail to undergo sexual differentiation; subsequently, ECCs develop from a portion of the PGCs. Transcriptomic analyses reveal that PGCs not only fail to undergo sexual differentiation but are also prone to transformation into ECCs by upregulating the expression of marker genes for primed pluripotency in the testes of Dnd1-cKO embryos. Thus, our results clarify the role of Dnd1 in developing STTs and developmental process of ECC from PGC, providing novel insights into pathogenic mechanisms of STTs.
Collapse
Affiliation(s)
- Atsuki Imai
- Division of Materials Science and Chemical Engineering, Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa, Japan
| | - Kazuya Matsuda
- Division of Materials Science and Chemical Engineering, Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa, Japan
| | - Yuki Niimi
- Division of Materials Science and Chemical Engineering, Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa, Japan
- Research & Development Group, Center for Exploratory Research, Hitachi, Ltd., Kobe, Hyogo, Japan
| | - Atsushi Suzuki
- Division of Materials Science and Chemical Engineering, Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa, Japan.
- Division of Materials Science and Chemical Engineering, Faculty of Engineering, Yokohama National University, Yokohama, Kanagawa, Japan.
| |
Collapse
|
6
|
Noughabi MK, Matin MM, Farshchian M, Bahrami AR. Immunomodulatory Properties of Mouse Mesenchymal Stromal/Stem Cells Upon Ectopic Expression of Immunoregulator Nanos2. Stem Cell Rev Rep 2022; 19:734-753. [PMID: 36348161 DOI: 10.1007/s12015-022-10451-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Mesenchymal stromal/stem cells (MSCs) are known for their involvement in modulating the immune system of mammals. This potency could be enhanced by different strategies, including regulation of key proteins, in order to meet desirable therapeutic properties. Nanos2, encoding an RNA-binding protein involved in regulation of key spermatogonial signaling pathways, has been demonstrated to downregulate a range of immune related genes in mouse embryonic fibroblasts (MEFs). Accordingly, it was hypothesized that Nanos2 functions as a potent immunosuppressing factor. This study was aimed to measure the expression profile of the immune-related genes in mouse mesenchymal stromal/stem cells (mMSCs) and assess their functional properties after Nanos2 ectopic expression. METHODS As inflammatory mediators, interferon (IFN-γ) and poly(I:C) were used to provoke an immune response. The interactions between the control and engineered mMSCs overexpressing Nanos2, with mouse peripheral blood mononuclear cells (mPBMCs) were then compared. The sensitivity of these cells to an inflammatory environment was assessed by using a conditioned medium containing high levels of inflammatory cytokines. Finally, the functional properties of the cells were investigated both in vivo and in vitro in presence of tumor and immune cells. RESULTS Deep transcriptome analysis indicated that numerous genes were downregulated as a result of higher Nanos2 expression. Most of the genes subjected to gene expression alteration, were responsible for controlling responses to external stimuli, cell-cell adhesion, and wound healing. In comparison to the control cells, Nanos2-overexpressing cells showed lower expression of several immune-related genes after pretreatment with IFN-γ and poly(I:C). They also exhibited inhibitory effects against mPBMCs proliferation. Tumor growth rate, in B16-F0 administered mice was obviously increased upon their treatment with the Nanos2-mMSCs, while no tumor or very small ones were developed in the control group. In addition, the cytotoxic environment had no significant effects on Nanos2-mMSCs. CONCLUSIONS According to the literature, MSCs are believed to be tuned very precisely by their internal and external conditions to act as either pro-inflammatory or anti-inflammatory agents. We show here that Nanos2 plays a significant role in promoting anti-inflammatory properties when expressed at higher levels by MSCs. This approach could be adopted for controlling the excessive inflammatory conditions in clinical programs, however more experiments are required to confirm it. In Brief Viral transduction was used to over express Nanos2 in mouse mesenchymal stromal/stem cells (mMSCs). Induced expression of Nanos2 downregulated the expression of immune-related genes and proteins. These modified mMSCs switched to an immunosuppressive state, even in the presence of pro-inflammatory cytokines; and could also contribute to tumor progression in a mouse model.
Collapse
Affiliation(s)
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Moein Farshchian
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
7
|
Ilaslan E, Sajek MP, Jaruzelska J, Kusz-Zamelczyk K. Emerging Roles of NANOS RNA-Binding Proteins in Cancer. Int J Mol Sci 2022; 23:ijms23169408. [PMID: 36012673 PMCID: PMC9409212 DOI: 10.3390/ijms23169408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
In recent years, growing evidence demonstrates that mammalian Nanos RNA-binding proteins (Nanos1, Nanos2, and Nanos3), known for their indispensable roles in germline development, are overexpressed in a variety of cancers. This overexpression contributes to various oncogenic properties including cancer growth, invasiveness, and metastasis. Here, we highlight recent findings regarding the role of mammalian Nanos RNA-binding proteins and the mechanisms of their overexpression in cancer. In addition, we present expression profiles of human NANOS genes and their oncogenic transcriptional regulators obtained from publicly available cancer and normal tissue RNA-Seq datasets. Altogether, we emphasize the functional significance of NANOS proteins across human cancers as well as highlight the missing links to understanding the full scope of their role in carcinogenesis.
Collapse
Affiliation(s)
- Erkut Ilaslan
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland
- Correspondence: (E.I.); (K.K.-Z.)
| | - Marcin Piotr Sajek
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jadwiga Jaruzelska
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland
| | - Kamila Kusz-Zamelczyk
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland
- Correspondence: (E.I.); (K.K.-Z.)
| |
Collapse
|
8
|
Cyst stem cell lineage eIF5 non-autonomously prevents testicular germ cell tumor formation via eIF1A/eIF2γ-mediated pre-initiation complex. Stem Cell Res Ther 2022; 13:351. [PMID: 35883200 PMCID: PMC9327282 DOI: 10.1186/s13287-022-03025-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Stem cell niche maintains stem cell population identity and is essential for the homeostasis of self-renewal and differentiation in Drosophila testes. However, the mechanisms of CySC lineage signals-mediated soma-germline communications in response to external stimuli are unclear. METHODS Pre-initiation complex functions were evaluated by UAS-Gal4-mediated cell effects. RNA sequencing was conducted in NC and eIF5 siRNA-treated cells. Genetic interaction analysis was used to indicate the relationships between eIF5 and eIF1A/eIF2γ in Drosophila testes. RESULTS Here, we demonstrated that in CySCs, translation initiation factor eIF5 mediates cyst cell differentiation and the non-autonomously affected germ cell differentiation process. CySCs lacking eIF5 displayed unbalanced cell proliferation and apoptosis, forming testicular germ cell tumors (TGCTs) during spermatogenesis. eIF5 transcriptional regulation network analysis identified multiple metabolic processes and several key factors that might be involved in germ cell differentiation and TGCT formation. Importantly, knockdown of eIF1A and eIF2γ, key components of pre-initiation complex, mimicked the phenotype of knocking down eIF5 in the stem cell niche of Drosophila testes. Genetic interaction analysis indicated that eIF5 was sufficient to rescue the phenotype of tumorlike structures induced by down-regulating eIF1A or eIF2γ in CySCs. CONCLUSIONS These findings demonstrated that CySC lineage eIF5, together with eIF1A or eIF2γ, mediates soma-germline communications for the stem cell niche homeostasis in Drosophila testes, providing new insights for the prevention of TGCTs.
Collapse
|
9
|
Kaushik A, Bhartiya D. Testicular cancer in mice: interplay between stem cells and endocrine insults. Stem Cell Res Ther 2022; 13:243. [PMID: 35676718 PMCID: PMC9175365 DOI: 10.1186/s13287-022-02784-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 02/22/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Incidence of type II germ cell tumors (T2GCT) has increased in young men possibly due to fetal/perinatal exposure to estrogenic compounds. Three-fold increased incidence of T2GCT was reported in men exposed in utero to diethylstilbestrol (DES). T2GCT is a development-related disease arising due to blocked differentiation of gonocytes into spermatogonia in fetal testes which survive as germ cell neoplasia in situ (GCNIS) and initiate T2GCT. In our earlier study, T2GCT-like features were observed in 9 out of 10 adult, 100-day-old mice testes upon neonatal exposure to DES (2 μg/pup/day on days 1-5). Neonatal DES exposure affected testicular very small embryonic-like stem cells (VSELs) and spermatogonial stem cells and resulted in infertility, reduced sperm counts and tumor-like changes leading to our postulate that testicular dysgenesis syndrome possibly has a stem cell basis. The present study was undertaken to further characterize testicular tumor in mice testes. METHODS DES-exposed mice pups (n = 70) were studied on D100 and after 12 months to understand how T2GCT progresses. Besides histological studies, a carefully selected panel of markers were studied by immuno-fluorescence and qRT-PCR. RESULTS DES resulted in either atrophied or highly vascularized, big-sized testes and extra-testicular growth was also observed. GCNIS-like cells with big, vacuolated cytoplasm and increased expression of OCT-4, SSEA-1, SCA-1 and CD166 (cancer stem cells marker) along with reduced c-KIT, MVH and PTEN were evident. Global hypomethylation was found associated with altered expression of Dnmts, Igf2-H19 and Dlk-Meg3 imprinted genes along with reduced expression of Ezh2, cell cycle regulator p57KIP2 and Meg3; however, Pten remained unaltered. Increased expression of PCNA and Ki67 was observed in concert with complete lack of SOX-9 suggesting Sertoli cells independent proliferation. CONCLUSIONS Mouse model for T2GCT is described which will have immense potential to understand cancer initiation, cancer stem cells and also to develop effective therapies in future. T2GCT initiates from tissue-resident, pluripotent VSELs due to their altered epigenome. Neonatal exposure to DES blocks differentiation (spermatogenesis) and VSELs get transformed into CD166 positive cancer stem cells that undergo excessive self-renewal and initiate cancer in adult life challenging existing concept of fetal origin of T2GCT.
Collapse
Affiliation(s)
- Ankita Kaushik
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive and Child Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - Deepa Bhartiya
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive and Child Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India.
| |
Collapse
|
10
|
O’Donnell L, Whiley PAF, Loveland KL. Activin A and Sertoli Cells: Key to Fetal Testis Steroidogenesis. Front Endocrinol (Lausanne) 2022; 13:898876. [PMID: 35685219 PMCID: PMC9171382 DOI: 10.3389/fendo.2022.898876] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/13/2022] [Indexed: 12/02/2022] Open
Abstract
The long-standing knowledge that Sertoli cells determine fetal testosterone production levels is not widespread, despite being first reported over a decade ago in studies of mice. Hence any ongoing use of testosterone as a marker of Leydig cell function in fetal testes is inappropriate. By interrogating new scRNAseq data from human fetal testes, we demonstrate this situation is also likely to be true in humans. This has implications for understanding how disruptions to either or both Leydig and Sertoli cells during the in utero masculinization programming window may contribute to the increasing incidence of hypospadias, cryptorchidism, testicular germ cell tumours and adult infertility. We recently discovered that activin A levels directly govern androgen production in mouse Sertoli cells, because the enzymes that drive the conversion of the precursor androgen androstenedione to generate testosterone are produced exclusively in Sertoli cells in response to activin A. This minireview addresses the implications of this growing understanding of how in utero exposures affect fetal masculinization for future research on reproductive health, including during programming windows that may ultimately be relevant for organ development in males and females.
Collapse
Affiliation(s)
- Liza O’Donnell
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Penny A. F. Whiley
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Kate L. Loveland
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Monash University, Clayton, VIC, Australia
- *Correspondence: Kate L. Loveland,
| |
Collapse
|
11
|
Zhang Y, Godavarthi JD, Williams-Villalobo A, Polk S, Matin A. The Role of DND1 in Cancers. Cancers (Basel) 2021; 13:cancers13153679. [PMID: 34359581 PMCID: PMC8345090 DOI: 10.3390/cancers13153679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
The Ter mutation in Dead-End 1 (Dnd1), Dnd1Ter, which leads to a premature stop codon, has been determined to be the cause for primordial germ cell deficiency, accompanied with a high incidence of congenital testicular germ cell tumors (TGCTs) or teratomas in the 129/Sv-Ter mice. As an RNA-binding protein, DND1 can bind the 3'-untranslated region (3'-UTR) of mRNAs and function in translational regulation. DND1 can block microRNA (miRNA) access to the 3'-UTR of target mRNAs, thus inhibiting miRNA-mediated mRNA degradation and up-regulating translation or can also function to degrade or repress mRNAs. Other mechanisms of DND1 activity include promoting translation initiation and modifying target protein activity. Although Dnd1Ter mutation causes spontaneous TGCT only in male 129 mice, it can also cause ovarian teratomas in mice when combined with other genetic defects or cause germ cell teratomas in both genders in the WKY/Ztm rat strain. Furthermore, studies on human cell lines, patient cancer tissues, and the use of human cancer genome analysis indicate that DND1 may possess either tumor-suppressive or -promoting functions in a variety of somatic cancers. Here we review the involvement of DND1 in cancers, including what appears to be its emerging role in somatic cancers.
Collapse
Affiliation(s)
- Yun Zhang
- Correspondence: (Y.Z.); (A.M.); Tel.: +1-713-313-7557 (Y.Z.); +1-713-313-7160 (A.M.)
| | | | | | | | - Angabin Matin
- Correspondence: (Y.Z.); (A.M.); Tel.: +1-713-313-7557 (Y.Z.); +1-713-313-7160 (A.M.)
| |
Collapse
|
12
|
To Be or Not to Be a Germ Cell: The Extragonadal Germ Cell Tumor Paradigm. Int J Mol Sci 2021; 22:ijms22115982. [PMID: 34205983 PMCID: PMC8199495 DOI: 10.3390/ijms22115982] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023] Open
Abstract
In the human embryo, the genetic program that orchestrates germ cell specification involves the activation of epigenetic and transcriptional mechanisms that make the germline a unique cell population continuously poised between germness and pluripotency. Germ cell tumors, neoplasias originating from fetal or neonatal germ cells, maintain such dichotomy and can adopt either pluripotent features (embryonal carcinomas) or germness features (seminomas) with a wide range of phenotypes in between these histotypes. Here, we review the basic concepts of cell specification, migration and gonadal colonization of human primordial germ cells (hPGCs) highlighting the analogies of transcriptional/epigenetic programs between these two cell types.
Collapse
|