1
|
Guo W, Liu X, Pang L, Kong Z, Lin Z, Ren J, Dong Z, Chen G, Liu D. DjsoxP-1 and Djsox5 are essential for tissue homeostasis and regeneration in Dugesia japonica. Cell Tissue Res 2025; 399:337-350. [PMID: 39762587 DOI: 10.1007/s00441-024-03939-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/15/2024] [Indexed: 03/01/2025]
Abstract
Sox genes encode a family of transcription factors that regulate multiple biological processes during metazoan development, including embryogenesis, tissue homeostasis, nervous system specification, and stem cell maintenance. The planarian Dugesia japonica contains a reservoir of stem cells that grow and divide continuously to support cellular turnover. However, whether SOX proteins retain these conserved functions in planarians remains to be determined. In this study, three sox gene homologs, DjsoxP-1, DjsoxP-5, and Djsox5, were identified in the planarian transcriptome, and their roles were investigated. The results showed that the amino acids deduced from the three sox genes all contained high-mobility group (HMG) domain sequences, which are highly conserved in sox family members. Whole-mount in situ hybridization (WISH) and real-time quantitative PCR (RT-qPCR) results indicated that the three sox genes were mainly expressed in parenchymal tissues and regenerative blastema. Additionally, X-ray irradiation assay and dFISH suggested that the three Djsox genes were expressed in neoblasts and other cell types. Head regression in intact planarian and smaller blastemas in both head or tail fragments of regenerating planarians were exhibited with DjsoxP-1 and Djsox5 RNA interference (RNAi) compared to the control animals, suggesting that DjsoxP-1 and Djsox5 have essential roles during cellular turnover and regeneration in planarians; conversely, there was no obvious phenotypic abnormalities or regeneration defect in DjsoxP-5 RNAi animals. Knockdown of DjsoxP-1 or Djsox5 decreased neoblast proliferation and promoted cell apoptosis. In conclusion, our findings demonstrate that DjsoxP-1 and Djsox5 are involved in cellular turnover and regeneration in planarians by modulating coordination between cell proliferation and apoptosis.
Collapse
Affiliation(s)
- Weiyun Guo
- College of Life Science, Henan Normal University, No. 46, Jianshe Road, Xinxiang 453007, Henan, China
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453002, Henan, China
| | - Xiao Liu
- College of Life Science, Henan Normal University, No. 46, Jianshe Road, Xinxiang 453007, Henan, China
| | - Lina Pang
- College of Life Science, Henan Normal University, No. 46, Jianshe Road, Xinxiang 453007, Henan, China
| | - Zhihong Kong
- College of Life Science, Henan Normal University, No. 46, Jianshe Road, Xinxiang 453007, Henan, China
| | - Ziyi Lin
- College of Life Science, Henan Normal University, No. 46, Jianshe Road, Xinxiang 453007, Henan, China
| | - Jing Ren
- College of Life Science, Henan Normal University, No. 46, Jianshe Road, Xinxiang 453007, Henan, China
| | - Zimei Dong
- College of Life Science, Henan Normal University, No. 46, Jianshe Road, Xinxiang 453007, Henan, China.
| | - Guangwen Chen
- College of Life Science, Henan Normal University, No. 46, Jianshe Road, Xinxiang 453007, Henan, China.
| | - Dezeng Liu
- College of Life Science, Henan Normal University, No. 46, Jianshe Road, Xinxiang 453007, Henan, China
| |
Collapse
|
2
|
Kashima M, Komura R, Sato Y, Hashimoto C, Hirata H. A resource of single-cell gene expression profiles in a planarian Dugesia japonica. Dev Growth Differ 2024; 66:43-55. [PMID: 37779230 DOI: 10.1111/dgd.12893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
The freshwater planarian Dugesia japonica maintains an abundant heterogeneous cell population called neoblasts, which include adult pluripotent stem cells. Thus, it is an excellent model organism for stem cell and regeneration research. Recently, many single-cell RNA sequencing (scRNA-seq) databases of several model organisms, including other planarian species, have become publicly available; these are powerful and useful resources to search for gene expression in various tissues and cells. However, the only scRNA-seq dataset for D. japonica has been limited by the number of genes detected. Herein, we collected D. japonica cells, and conducted an scRNA-seq analysis. A novel, automatic, iterative cell clustering strategy produced a dataset of 3,404 cells, which could be classified into 63 cell types based on gene expression profiles. We introduced two examples for utilizing the scRNA-seq dataset in this study using D. japonica. First, the dataset provided results consistent with previous studies as well as novel functionally relevant insights, that is, the expression of DjMTA and DjP2X-A genes in neoblasts that give rise to differentiated cells. Second, we conducted an integrative analysis of the scRNA-seq dataset and time-course bulk RNA-seq of irradiated animals, demonstrating that the dataset can help interpret differentially expressed genes captured via bulk RNA-seq. Using the R package "Seurat" and GSE223927, researchers can easily access and utilize this dataset.
Collapse
Affiliation(s)
- Makoto Kashima
- College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan
- Department of Molecular Biology, Faculty of Science, Toho University, Funabashi, Japan
| | - Rei Komura
- College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan
| | - Yuki Sato
- JT Biohistory Research Hall, Takatsuki, Japan
| | - Chikara Hashimoto
- JT Biohistory Research Hall, Takatsuki, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Hiromi Hirata
- College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan
| |
Collapse
|
3
|
Pun SH, O’Neill KM, Edgar KS, Gill EK, Moez A, Naderi-Meshkin H, Malla SB, Hookham MB, Alsaggaf M, Madishetti VV, Botezatu B, King W, Brunssen C, Morawietz H, Dunne PD, Brazil DP, Medina RJ, Watson CJ, Grieve DJ. PLAC8-Mediated Activation of NOX4 Signalling Restores Angiogenic Function of Endothelial Colony-Forming Cells in Experimental Hypoxia. Cells 2023; 12:2220. [PMID: 37759443 PMCID: PMC10526321 DOI: 10.3390/cells12182220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Ischaemic cardiovascular disease is associated with tissue hypoxia as a significant determinant of angiogenic dysfunction and adverse remodelling. While cord blood-derived endothelial colony-forming cells (CB-ECFCs) hold clear therapeutic potential due to their enhanced angiogenic and proliferative capacity, their impaired functionality within the disease microenvironment represents a major barrier to clinical translation. The aim of this study was to define the specific contribution of NOX4 NADPH oxidase, which we previously reported as a key CB-ECFC regulator, to hypoxia-induced dysfunction and its potential as a therapeutic target. CB-ECFCs exposed to experimental hypoxia demonstrated downregulation of NOX4-mediated reactive oxygen species (ROS) signalling linked with a reduced tube formation, which was partially restored by NOX4 plasmid overexpression. siRNA knockdown of placenta-specific 8 (PLAC8), identified by microarray analysis as an upstream regulator of NOX4 in hypoxic versus normoxic CB-ECFCs, enhanced tube formation, NOX4 expression and hydrogen peroxide generation, and induced several key transcription factors associated with downstream Nrf2 signalling. Taken together, these findings indicated that activation of the PLAC8-NOX4 signalling axis improved CB-ECFC angiogenic functions in experimental hypoxia, highlighting this pathway as a potential target for protecting therapeutic cells against the ischaemic cardiovascular disease microenvironment.
Collapse
Affiliation(s)
- Shun Hay Pun
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast BT9 7AE, UK; (S.H.P.); (K.M.O.); (K.S.E.); (E.K.G.); (A.M.); (H.N.-M.); (M.B.H.); (M.A.); (V.V.M.); (B.B.); (W.K.); (D.P.B.); (R.J.M.); (C.J.W.)
| | - Karla M. O’Neill
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast BT9 7AE, UK; (S.H.P.); (K.M.O.); (K.S.E.); (E.K.G.); (A.M.); (H.N.-M.); (M.B.H.); (M.A.); (V.V.M.); (B.B.); (W.K.); (D.P.B.); (R.J.M.); (C.J.W.)
| | - Kevin S. Edgar
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast BT9 7AE, UK; (S.H.P.); (K.M.O.); (K.S.E.); (E.K.G.); (A.M.); (H.N.-M.); (M.B.H.); (M.A.); (V.V.M.); (B.B.); (W.K.); (D.P.B.); (R.J.M.); (C.J.W.)
| | - Eleanor K. Gill
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast BT9 7AE, UK; (S.H.P.); (K.M.O.); (K.S.E.); (E.K.G.); (A.M.); (H.N.-M.); (M.B.H.); (M.A.); (V.V.M.); (B.B.); (W.K.); (D.P.B.); (R.J.M.); (C.J.W.)
| | - Arya Moez
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast BT9 7AE, UK; (S.H.P.); (K.M.O.); (K.S.E.); (E.K.G.); (A.M.); (H.N.-M.); (M.B.H.); (M.A.); (V.V.M.); (B.B.); (W.K.); (D.P.B.); (R.J.M.); (C.J.W.)
| | - Hojjat Naderi-Meshkin
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast BT9 7AE, UK; (S.H.P.); (K.M.O.); (K.S.E.); (E.K.G.); (A.M.); (H.N.-M.); (M.B.H.); (M.A.); (V.V.M.); (B.B.); (W.K.); (D.P.B.); (R.J.M.); (C.J.W.)
| | - Sudhir B. Malla
- Patrick G Johnston Centre for Cancer Research, Queen’s University, Belfast BT9 7AE, UK; (S.B.M.); (P.D.D.)
| | - Michelle B. Hookham
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast BT9 7AE, UK; (S.H.P.); (K.M.O.); (K.S.E.); (E.K.G.); (A.M.); (H.N.-M.); (M.B.H.); (M.A.); (V.V.M.); (B.B.); (W.K.); (D.P.B.); (R.J.M.); (C.J.W.)
| | - Mohammed Alsaggaf
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast BT9 7AE, UK; (S.H.P.); (K.M.O.); (K.S.E.); (E.K.G.); (A.M.); (H.N.-M.); (M.B.H.); (M.A.); (V.V.M.); (B.B.); (W.K.); (D.P.B.); (R.J.M.); (C.J.W.)
| | - Vinuthna Vani Madishetti
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast BT9 7AE, UK; (S.H.P.); (K.M.O.); (K.S.E.); (E.K.G.); (A.M.); (H.N.-M.); (M.B.H.); (M.A.); (V.V.M.); (B.B.); (W.K.); (D.P.B.); (R.J.M.); (C.J.W.)
| | - Bianca Botezatu
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast BT9 7AE, UK; (S.H.P.); (K.M.O.); (K.S.E.); (E.K.G.); (A.M.); (H.N.-M.); (M.B.H.); (M.A.); (V.V.M.); (B.B.); (W.K.); (D.P.B.); (R.J.M.); (C.J.W.)
| | - William King
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast BT9 7AE, UK; (S.H.P.); (K.M.O.); (K.S.E.); (E.K.G.); (A.M.); (H.N.-M.); (M.B.H.); (M.A.); (V.V.M.); (B.B.); (W.K.); (D.P.B.); (R.J.M.); (C.J.W.)
| | - Coy Brunssen
- Division of Vascular Endothelium and Microcirculation, TUD Dresden University of Technology, 01307 Dresden, Germany; (C.B.); (H.M.)
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, TUD Dresden University of Technology, 01307 Dresden, Germany; (C.B.); (H.M.)
| | - Philip D. Dunne
- Patrick G Johnston Centre for Cancer Research, Queen’s University, Belfast BT9 7AE, UK; (S.B.M.); (P.D.D.)
| | - Derek P. Brazil
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast BT9 7AE, UK; (S.H.P.); (K.M.O.); (K.S.E.); (E.K.G.); (A.M.); (H.N.-M.); (M.B.H.); (M.A.); (V.V.M.); (B.B.); (W.K.); (D.P.B.); (R.J.M.); (C.J.W.)
| | - Reinhold J. Medina
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast BT9 7AE, UK; (S.H.P.); (K.M.O.); (K.S.E.); (E.K.G.); (A.M.); (H.N.-M.); (M.B.H.); (M.A.); (V.V.M.); (B.B.); (W.K.); (D.P.B.); (R.J.M.); (C.J.W.)
| | - Chris J. Watson
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast BT9 7AE, UK; (S.H.P.); (K.M.O.); (K.S.E.); (E.K.G.); (A.M.); (H.N.-M.); (M.B.H.); (M.A.); (V.V.M.); (B.B.); (W.K.); (D.P.B.); (R.J.M.); (C.J.W.)
| | - David J. Grieve
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast BT9 7AE, UK; (S.H.P.); (K.M.O.); (K.S.E.); (E.K.G.); (A.M.); (H.N.-M.); (M.B.H.); (M.A.); (V.V.M.); (B.B.); (W.K.); (D.P.B.); (R.J.M.); (C.J.W.)
| |
Collapse
|
4
|
Yi Z, Geng S, Li L. Comparative analyses of monocyte memory dynamics from mice to humans. Inflamm Res 2023; 72:1539-1549. [PMID: 37453943 PMCID: PMC10499745 DOI: 10.1007/s00011-023-01762-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/13/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Innate monocytes can adopt dynamic "memory" states ranging from low-grade inflammation to pathogenic exhaustion, dependent upon signal strength and history of challenges. Low-grade inflammatory monocytes facilitate the pathogenesis of chronic inflammatory diseases, while exhausted monocytes drive the pathogenesis of severe sepsis. Although clinical and basic studies suggest the conservation of key features of exhausted monocytes from human and murine sepsis, systems analyses of monocyte exhaustion among human and murine monocytes are lacking. METHODS We performed cross examination of septic monocytes scRNAseq data recently collected from human sepsis patients as well as experimental septic mice, in reference to monocytes experimentally exhausted in vitro. Furthermore, we performed pseudo-time analyses of in vitro programmed monocytes following prolonged challenges causing either low-grade inflammation or exhaustion. Additional comparative analyses of low-grade inflammatory monocytes were performed with scRNAseq data from selected human patients with chronic low-grade inflammatory diseases. RESULTS Our systems analyses reveal key features of monocyte exhaustion including reduced differentiation, pathogenic inflammation and immune suppression that are highly conserved in human and murine septic monocytes, and captured by in vitro experimental exhaustion. Pseudo-time analyses reveal that monocytes initially transition into a less-differentiated state with proliferative potential. The expansion of proliferative monocytes can be observed not only in experimentally challenged monocytes, but also in tissues of murine sepsis and human septic blood. We observed that monocytes similarly transition into the less-differentiated state when challenged with a subclinical dose endotoxin under chronic inflammatory conditions. Instead of being exhausted, monocytes with prolonged challenges with super-low dose endotoxin bifurcate into the low-grade inflammatory immune-enhancing or the chemotactic/adhesive state, often see in atherosclerosis or auto-immune diseases. CONCLUSIONS Key features of monocyte memory dynamics are identified and conserved in human and murine monocytes, which can be captured by prolonged challenges of innate signals with varying signal strength.
Collapse
Affiliation(s)
- Ziyue Yi
- Department of Biological Sciences, Virginia Tech, 149 Life Science 1 Bldg, Blacksburg, VA, 24061-0910, USA
| | - Shuo Geng
- Department of Biological Sciences, Virginia Tech, 149 Life Science 1 Bldg, Blacksburg, VA, 24061-0910, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, 149 Life Science 1 Bldg, Blacksburg, VA, 24061-0910, USA.
| |
Collapse
|
5
|
Patel JH, Ong DJ, Williams CR, Callies LK, Wills AE. Elevated pentose phosphate pathway flux supports appendage regeneration. Cell Rep 2022; 41:111552. [PMID: 36288713 PMCID: PMC10569227 DOI: 10.1016/j.celrep.2022.111552] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/01/2022] [Accepted: 10/03/2022] [Indexed: 11/18/2022] Open
Abstract
A fundamental step in regeneration is rapid growth to replace lost tissue. Cells must generate sufficient lipids, nucleotides, and proteins to fuel rapid cell division. To define metabolic pathways underlying regenerative growth, we undertake a multimodal investigation of metabolic reprogramming in Xenopus tropicalis appendage regeneration. Regenerating tissues have increased glucose uptake; however, inhibition of glycolysis does not decrease regeneration. Instead, glucose is funneled to the pentose phosphate pathway (PPP), which is essential for full tail regeneration. Liquid chromatography-mass spectrometry (LC-MS) metabolite profiling reveals increased nucleotide and nicotinamide intermediates required for cell division. Using single-cell RNA sequencing (scRNA-seq), we find that highly proliferative cells have increased transcription of PPP enzymes and not glycolytic enzymes. Further, PPP inhibition results in decreased cell division specifically in regenerating tissue. Our results inform a model wherein regenerating tissues direct glucose toward the PPP, yielding nucleotide precursors to drive regenerative cell proliferation.
Collapse
Affiliation(s)
- Jeet H Patel
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Program in Molecular and Cellular Biology, University of Washington School of Medicine, Seattle, WA, USA
| | - Daniel J Ong
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Claire R Williams
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - LuLu K Callies
- Program in Molecular and Cellular Biology, University of Washington School of Medicine, Seattle, WA, USA
| | - Andrea E Wills
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Program in Molecular and Cellular Biology, University of Washington School of Medicine, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|