1
|
Kramer AG, Bern LR, Ferguson LT, Palillo MB, Malbrue RA, White ME, Kendall GC, Arsuaga-Zorrilla CB, Fehrenbach LA. Evaluation of Tricaine Methanesulfonate Concentrations for Flow Anesthesia in Zebrafish ( Danio rerio). Zebrafish 2025. [PMID: 40265279 DOI: 10.1089/zeb.2025.0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025] Open
Abstract
Zebrafish (Danio rerio) are often anesthetized by immersion in buffered tricaine methanesulfonate (MS-222). Although commonly utilized, immersion anesthesia presents a shortcoming of lethal asphyxiation with increased duration of exposures. A newer technique that circumvents this issue, known as flow anesthesia, has been adapted from larger aquatic species to zebrafish. Flow anesthesia improves safety by delivering oxygen-rich water along with the anesthetic across gill epithelium and allowing fish to be manipulated outside of water. Information on the construction of flow anesthesia apparatuses and parameters are sparse. The goal of this study was to create a flow anesthesia apparatus with materials commonly found within a research facility and to evaluate variable concentrations of MS-222 for anesthesia in zebrafish. Depth of anesthesia was monitored by quantifying respiratory rate and recording responses to physical stimulation. All concentrations of MS-222 evaluated (30-100 ppm) were successful at maintaining surgical anesthesia for up to 30 min. The anesthetic events were demonstrated to be safe, with an observed 97% survival rate. This work demonstrates refinements in zebrafish anesthesia and encourages future studies to evaluate MS-222 flow anesthesia for longer duration and evaluation of other commercially available anesthetics for efficacy in a flow anesthesia setup.
Collapse
Affiliation(s)
- Alexander G Kramer
- Animal Resources Core, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Logan R Bern
- Animal Resources Core, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Lindsey T Ferguson
- Animal Resources Core, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Michael B Palillo
- Center for Comparative Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Raphael A Malbrue
- Center for Comparative Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Mary E White
- Department of Pathology, Midwestern University College of Veterinary Medicine, Glendale, Arizona, USA
| | - Genevieve C Kendall
- Center for Childhood Cancer, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Carmen B Arsuaga-Zorrilla
- Animal Resources Core, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Logan A Fehrenbach
- Animal Resources Core, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| |
Collapse
|
2
|
Malkinson G, Henriques CM. Cerebrovascular ageing: how zebrafish can contribute to solving the puzzle. Front Physiol 2025; 16:1548242. [PMID: 39995479 PMCID: PMC11849178 DOI: 10.3389/fphys.2025.1548242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
The mean life expectancy continues to increase world-wide. However, this extended lifespan trend is not accompanied by health span, or years of healthy life. Understanding the fundamental mechanisms responsible for the switch from health to morbidity with ageing are key to identifying potential therapeutic targets to decrease age-associated morbidity and increase years spent in good health. The leading cause of morbidity in Europe are diseases of the circulatory system and diseases of the nervous system and cognitive disorders are among the top-ten. Cerebrovascular ageing is therefore of particular importance as it links circulatory disease to brain functions, cognition, and behavior. Despite major progress in brain research and related technologies, little is known on how the cerebrovascular network changes its properties as ageing proceeds. Importantly, we do not understand why this is different in different individuals in what concerns rate of dysfunction and its downstream impact on brain function. Here we explore how the zebrafish has evolved as an attractive complementary ageing model and how it could provide key insights to understanding the mechanisms underlying cerebrovascular ageing and downstream consequences.
Collapse
Affiliation(s)
- Guy Malkinson
- Université de Lorraine, Inserm, DCAC, Nancy, France
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - Catarina M. Henriques
- Department of Oncology and Metabolism, Healthy Lifespan Institute and MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, University of Sheffield, Sheffield, United Kingdom
- Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
3
|
Lewis VM, Fernandez RA, Horst SG, Stankunas K. Early exercise disrupts a pro-repair extracellular matrix program during zebrafish fin regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.15.623835. [PMID: 39605604 PMCID: PMC11601382 DOI: 10.1101/2024.11.15.623835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Understanding how mechanical stimulation from exercise influences cellular responses during tissue repair could enhance therapeutic strategies. We explored zebrafish caudal fin regeneration to study exercise impacts on a robust model of tissue regeneration. We used a swim tunnel to determine that exercise initiated during but not after blastema establishment impaired fin regeneration, including of the bony ray skeleton. Long-term tracking of fluorescently labeled cell lineages showed exercise disrupted blastemal mesenchyme formation. Transcriptomic profiling and section staining indicated exercise reduced an extracellular matrix (ECM) gene expression program, including for hyaluronic acid (HA) synthesis. Like exercise, HA synthesis inhibition or blastemal HA depletion disrupted blastema formation. We considered if injury-upregulated HA establishes a pro-regenerative environment facilitating mechanotransduction. HA density across the blastema correlated with nuclear localization of the mechanotransducer Yes-associated protein (Yap). Further, exercise loading or reducing HA decreased nuclear Yap and cell proliferation. We conclude early exercise during fin regeneration disrupts expression of an HA-rich ECM supporting blastema expansion. These results highlight the interface between mechanotransduction and ECM as consideration for timing exercise interventions and developing regenerative therapies. Significance Statement Controlled exercise promotes healing and recovery from severe skeletal injuries. However, properly timed interventions are essential to promote recovery and prevent further damage. We use zebrafish caudal fin regeneration to mechanistically study exercise impacts on a naturally robust and experimentally accessible model of tissue repair. We link detrimental early exercise effects during fin regeneration to impaired ECM synthesis, mechanotransduction, and cell proliferation. These insights could explain the value of delaying the onset of physical therapy and suggest pursuing therapies that maintain ECM integrity for regenerative rehabilitation.
Collapse
|
4
|
Bini F, Missori E, Pucci G, Pasini G, Marinozzi F, Forte GI, Russo G, Stefano A. Preclinical Implementation of matRadiomics: A Case Study for Early Malformation Prediction in Zebrafish Model. J Imaging 2024; 10:290. [PMID: 39590754 PMCID: PMC11595506 DOI: 10.3390/jimaging10110290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Radiomics provides a structured approach to support clinical decision-making through key steps; however, users often face difficulties when switching between various software platforms to complete the workflow. To streamline this process, matRadiomics integrates the entire radiomics workflow within a single platform. This study extends matRadiomics to preclinical settings and validates it through a case study focused on early malformation differentiation in a zebrafish model. The proposed plugin incorporates Pyradiomics and streamlines feature extraction, selection, and classification using machine learning models (linear discriminant analysis-LDA; k-nearest neighbors-KNNs; and support vector machines-SVMs) with k-fold cross-validation for model validation. Classifier performances are evaluated using area under the ROC curve (AUC) and accuracy. The case study indicated the criticality of the long time required to extract features from preclinical images, generally of higher resolution than clinical images. To address this, a feature analysis was conducted to optimize settings, reducing extraction time while maintaining similarity to the original features. As a result, SVM exhibited the best performance for early malformation differentiation in zebrafish (AUC = 0.723; accuracy of 0.72). This case study underscores the plugin's versatility and effectiveness in early biological outcome prediction, emphasizing its applicability across biomedical research fields.
Collapse
Affiliation(s)
- Fabiano Bini
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Eudossiana 18, 00184 Rome, Italy; (F.B.); (E.M.); (F.M.)
| | - Elisa Missori
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Eudossiana 18, 00184 Rome, Italy; (F.B.); (E.M.); (F.M.)
| | - Gaia Pucci
- Institute of Bioimaging and Complex Biological Systems—National Research Council (IBSBC—CNR), Contrada Pietrapollastra-Pisciotto, 90015 Cefalù, Italy; (G.P.); (G.I.F.); (G.R.); (A.S.)
| | - Giovanni Pasini
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Eudossiana 18, 00184 Rome, Italy; (F.B.); (E.M.); (F.M.)
- Institute of Bioimaging and Complex Biological Systems—National Research Council (IBSBC—CNR), Contrada Pietrapollastra-Pisciotto, 90015 Cefalù, Italy; (G.P.); (G.I.F.); (G.R.); (A.S.)
| | - Franco Marinozzi
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Eudossiana 18, 00184 Rome, Italy; (F.B.); (E.M.); (F.M.)
| | - Giusi Irma Forte
- Institute of Bioimaging and Complex Biological Systems—National Research Council (IBSBC—CNR), Contrada Pietrapollastra-Pisciotto, 90015 Cefalù, Italy; (G.P.); (G.I.F.); (G.R.); (A.S.)
| | - Giorgio Russo
- Institute of Bioimaging and Complex Biological Systems—National Research Council (IBSBC—CNR), Contrada Pietrapollastra-Pisciotto, 90015 Cefalù, Italy; (G.P.); (G.I.F.); (G.R.); (A.S.)
| | - Alessandro Stefano
- Institute of Bioimaging and Complex Biological Systems—National Research Council (IBSBC—CNR), Contrada Pietrapollastra-Pisciotto, 90015 Cefalù, Italy; (G.P.); (G.I.F.); (G.R.); (A.S.)
| |
Collapse
|
5
|
Taneja C, George JG, Corsetti S, Wijesinghe P, Bruce GD, Zwart MF, Bhattacharya S, Dholakia K. Sidelobe suppressed Bessel beams for one-photon light-sheet microscopy. BIOMEDICAL OPTICS EXPRESS 2024; 15:6183-6197. [PMID: 39553856 PMCID: PMC11563347 DOI: 10.1364/boe.538253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 11/19/2024]
Abstract
The Bessel beam (BB) has found widespread adoption in various forms of light-sheet microscopy. However, for one-photon fluorescence, the transverse profile of the beam poses challenges due to the detrimental effect of the sidelobes. Here, we mitigate this issue by using a computer-generated phase element for generating a sidelobe suppressed Bessel beam (SSBB). We then progress to perform a comparison of biological imaging using SSBB to standard BB in a light-sheet geometry. The SSBB peak intensity is more than an order of magnitude higher than the first sidelobe. In contrast to a standard BB light-sheet, an SSBB does not need deconvolution. The SSBB propagates to depths exceeding 400 μm in phantom samples maintaining a transverse size of 5 μm. Finally, we demonstrate the advantage of using an SSBB light-sheet for biological applications by imaging fixed early-stage zebrafish larvae. In comparison to the standard BB, we observe a two-fold increase in contrast-to-noise ratio (CNR) when imaging the labelled cellular eye structures and the notochords. Our results provide an effective approach to generating and using SSBB light-sheets to enhance contrast for one-photon light-sheet microscopy.
Collapse
Affiliation(s)
- Chetna Taneja
- SUPA School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, UK
| | | | - Stella Corsetti
- SUPA School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, UK
| | - Philip Wijesinghe
- SUPA School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, UK
| | - Graham D. Bruce
- SUPA School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, UK
| | - Maarten F. Zwart
- School of Psychology and Neuroscience, Centre for Biophotonics, University of St Andrews, St Andrews, Fife KY16 9JP, UK
| | | | - Kishan Dholakia
- SUPA School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, UK
- Centre of Light for Life and School of Biological Sciences, University of Adelaide, Adelaide 5005, Australia
| |
Collapse
|
6
|
Kramer SN, Antarasen J, Reinholt CR, Kisley L. A practical guide to light-sheet microscopy for nanoscale imaging: Looking beyond the cell. JOURNAL OF APPLIED PHYSICS 2024; 136:091101. [PMID: 39247785 PMCID: PMC11380115 DOI: 10.1063/5.0218262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024]
Abstract
We present a comprehensive guide to light-sheet microscopy (LSM) to assist scientists in navigating the practical implementation of this microscopy technique. Emphasizing the applicability of LSM to image both static microscale and nanoscale features, as well as diffusion dynamics, we present the fundamental concepts of microscopy, progressing through beam profile considerations, to image reconstruction. We outline key practical decisions in constructing a home-built system and provide insight into the alignment and calibration processes. We briefly discuss the conditions necessary for constructing a continuous 3D image and introduce our home-built code for data analysis. By providing this guide, we aim to alleviate the challenges associated with designing and constructing LSM systems and offer scientists new to LSM a valuable resource in navigating this complex field.
Collapse
Affiliation(s)
- Stephanie N Kramer
- Department of Physics, Case Western Reserve University, Rockefeller Building, 2076 Adelbert Road, Cleveland, Ohio 44106, USA
| | - Jeanpun Antarasen
- Department of Physics, Case Western Reserve University, Rockefeller Building, 2076 Adelbert Road, Cleveland, Ohio 44106, USA
| | - Cole R Reinholt
- Department of Physics, Case Western Reserve University, Rockefeller Building, 2076 Adelbert Road, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
7
|
Santoso F, De Leon MP, Kao WC, Chu WC, Roan HY, Lee GH, Tang MJ, Cheng JY, Chen CH. Appendage-resident epithelial cells expedite wound healing response in adult zebrafish. Curr Biol 2024; 34:3603-3615.e4. [PMID: 39019037 DOI: 10.1016/j.cub.2024.06.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/10/2024] [Accepted: 06/20/2024] [Indexed: 07/19/2024]
Abstract
Adult zebrafish are able to heal large-sized cutaneous wounds in hours with little to no scarring. This rapid re-epithelialization is crucial for preventing infection and jumpstarting the subsequent regeneration of damaged tissues. Despite significant progress in understanding this process, it remains unclear how vast numbers of epithelial cells are orchestrated on an organismic scale to ensure the timely closure of millimeter-sized wounds. Here, we report an unexpected role of adult zebrafish appendages (fins) in accelerating the re-epithelialization process. Through whole-body monitoring of single-cell dynamics in live animals, we found that fin-resident epithelial cells (FECs) are highly mobile and migrate to cover wounds in nearby body regions. Upon injury, FECs readily undergo organ-level mobilization, allowing for coverage of body surfaces of up to 4.78 mm2 in less than 8 h. Intriguingly, long-term fate-tracking experiments revealed that the migratory FECs are not short-lived at the wound site; instead, the cells can persist on the body surface for more than a year. Our experiments on "fin-less" and "fin-gaining" individuals demonstrated that the fin structures are not only capable of promoting rapid re-epithelialization but are also necessary for the process. We further found that fin-enriched extracellular matrix laminins promote the active migration of FECs by facilitating lamellipodia formation. These findings lead us to conclude that appendage structures in regenerative vertebrates, such as fins, may possess a previously unrecognized function beyond serving as locomotor organs. The appendages may also act as a massive reservoir of healing cells, which speed up wound closure and tissue repair.
Collapse
Affiliation(s)
- Fiorency Santoso
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Marco P De Leon
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Wei-Chen Kao
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Wei-Chen Chu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Hsiao-Yuh Roan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Gang-Hui Lee
- Department of Physiology, Medical College, National Cheng Kung University, Tainan, Taiwan; International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Jer Tang
- Department of Physiology, Medical College, National Cheng Kung University, Tainan, Taiwan; International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
| | - Ji-Yen Cheng
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Chen-Hui Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
8
|
Deng P, Liu S, Zhao Y, Zhang X, Kong Y, Liu L, Xiao Y, Yang S, Hu J, Su J, Xuan A, Xu J, Li H, Su X, Wu J, Jiang Y, Mu Y, Shao Z, Kong C, Li B. Long-working-distance high-collection-efficiency three-photon microscopy for in vivo long-term imaging of zebrafish and organoids. iScience 2024; 27:110554. [PMID: 39184441 PMCID: PMC11342284 DOI: 10.1016/j.isci.2024.110554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/31/2024] [Accepted: 07/17/2024] [Indexed: 08/27/2024] Open
Abstract
Zebrafish and organoids, crucial for complex biological studies, necessitate an imaging system with deep tissue penetration, sample protection from environmental interference, and ample operational space. Traditional three-photon microscopy is constrained by short-working-distance objectives and falls short. Our long-working-distance high-collection-efficiency three-photon microscopy (LH-3PM) addresses these challenges, achieving a 58% fluorescence collection efficiency at a 20 mm working distance. LH-3PM significantly outperforms existing three-photon systems equipped with the same long working distance objective, enhancing fluorescence collection and dramatically reducing phototoxicity and photobleaching. These improvements facilitate accurate capture of neuronal activity and an enhanced detection of activity spikes, which are vital for comprehensive, long-term imaging. LH-3PM's imaging of epileptic zebrafish not only showed sustained neuron activity over an hour but also highlighted increased neural synchronization and spike numbers, marking a notable shift in neural coding mechanisms. This breakthrough paves the way for new explorations of biological phenomena in small model organisms.
Collapse
Affiliation(s)
- Peng Deng
- Department of Neurosurgery, Huashan Hospital, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institutes for Translational Brain Research, Fudan University, Shanghai 200032, China
| | - Shoupei Liu
- Department of Neurosurgery, Huashan Hospital, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institutes for Translational Brain Research, Fudan University, Shanghai 200032, China
| | - Yaoguang Zhao
- Department of Neurosurgery, Huashan Hospital, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institutes for Translational Brain Research, Fudan University, Shanghai 200032, China
| | - Xinxin Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yufei Kong
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children’s Medical Center, Children’s Hospital, Fudan University, Shanghai 200032, China
| | - Linlin Liu
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children’s Medical Center, Children’s Hospital, Fudan University, Shanghai 200032, China
| | - Yujie Xiao
- Department of Neurosurgery, Huashan Hospital, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institutes for Translational Brain Research, Fudan University, Shanghai 200032, China
| | - Shasha Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Jiahao Hu
- Department of Neurosurgery, Huashan Hospital, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institutes for Translational Brain Research, Fudan University, Shanghai 200032, China
| | - Jixiong Su
- Department of Neurosurgery, Huashan Hospital, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institutes for Translational Brain Research, Fudan University, Shanghai 200032, China
| | - Ang Xuan
- Department of Neurosurgery, Huashan Hospital, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institutes for Translational Brain Research, Fudan University, Shanghai 200032, China
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
| | - Jinhong Xu
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children’s Medical Center, Children’s Hospital, Fudan University, Shanghai 200032, China
| | - Huijuan Li
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children’s Medical Center, Children’s Hospital, Fudan University, Shanghai 200032, China
| | - Xiaoman Su
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontiers Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jingchuan Wu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Yuli Jiang
- Department of Neurosurgery, Huashan Hospital, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institutes for Translational Brain Research, Fudan University, Shanghai 200032, China
| | - Yu Mu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhicheng Shao
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children’s Medical Center, Children’s Hospital, Fudan University, Shanghai 200032, China
| | - Cihang Kong
- Department of Neurosurgery, Huashan Hospital, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institutes for Translational Brain Research, Fudan University, Shanghai 200032, China
| | - Bo Li
- Department of Neurosurgery, Huashan Hospital, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institutes for Translational Brain Research, Fudan University, Shanghai 200032, China
| |
Collapse
|
9
|
Greenspan LJ, Cisneros I, Weinstein BM. Dermal Dive: An Overview of Cutaneous Wounding Techniques in Zebrafish. J Invest Dermatol 2024; 144:1430-1439. [PMID: 38752940 PMCID: PMC11218931 DOI: 10.1016/j.jid.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/21/2024] [Accepted: 04/15/2024] [Indexed: 06/24/2024]
Abstract
Cutaneous wounds are common injuries that affect millions of people around the world. In vulnerable populations such as the elderly and those with diabetes, defects in wound healing can lead to the development of chronic open wounds. Although mammalian models are commonly used to study cutaneous wound healing, the challenges of in vivo imaging in mammals have hampered detailed observation of cell coordination and cell signaling during wound healing. The zebrafish is becoming increasingly popular for studying cutaneous wound healing owing to its genetic accessibility, suitability for experimental manipulation, and the ability to perform live, in vivo imaging with cellular or even subcellular resolution. In this paper, we review some of the techniques that have been developed for eliciting cutaneous wounds in the zebrafish, including an economical method we recently developed using a rotary tool that generates consistent and reproducible full-thickness wounds. Combined with the thousands of transgenic lines and experimental assays available in zebrafish, the ability to generate reproducible cutaneous wounds makes it possible to study key cellular and molecular events during wound healing using this powerful experimental model organism.
Collapse
Affiliation(s)
- Leah J Greenspan
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Isabella Cisneros
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Brant M Weinstein
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
10
|
Greenspan LJ, Ameyaw KK, Castranova D, Mertus CA, Weinstein BM. Live Imaging of Cutaneous Wound Healing after Rotary Tool Injury in Zebrafish. J Invest Dermatol 2024; 144:888-897.e6. [PMID: 37979772 PMCID: PMC10960721 DOI: 10.1016/j.jid.2023.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 11/20/2023]
Abstract
Cutaneous wounds are common afflictions that follow a stereotypical healing process involving hemostasis, inflammation, proliferation, and remodeling phases. In the elderly and those suffering from vascular or metabolic diseases, poor healing after cutaneous injuries can lead to open chronic wounds susceptible to infection. The discovery of new therapeutic strategies to improve this defective wound healing requires a better understanding of the cellular behaviors and molecular mechanisms that drive the different phases of wound healing and how these are altered with age or disease. The zebrafish provides an ideal model for visualization and experimental manipulation of the cellular and molecular events during wound healing in the context of an intact, living vertebrate. To facilitate studies of cutaneous wound healing in zebrafish, we have developed an inexpensive, simple, and effective method for generating reproducible cutaneous injuries in adult zebrafish using a rotary tool. We demonstrate that our injury system can be used in combination with high-resolution live imaging to monitor skin re-epithelialization, immune cell recruitment and activation, and vessel regrowth in the same animal over time. This injury system provides a valuable experimental platform to study key cellular and molecular events during wound healing in vivo with unprecedented resolution.
Collapse
Affiliation(s)
- Leah J Greenspan
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Keith K Ameyaw
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel Castranova
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Caleb A Mertus
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Brant M Weinstein
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
11
|
Auclert LZ, Chhanda MS, Derome N. Interwoven processes in fish development: microbial community succession and immune maturation. PeerJ 2024; 12:e17051. [PMID: 38560465 PMCID: PMC10981415 DOI: 10.7717/peerj.17051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/13/2024] [Indexed: 04/04/2024] Open
Abstract
Fishes are hosts for many microorganisms that provide them with beneficial effects on growth, immune system development, nutrition and protection against pathogens. In order to avoid spreading of infectious diseases in aquaculture, prevention includes vaccinations and routine disinfection of eggs and equipment, while curative treatments consist in the administration of antibiotics. Vaccination processes can stress the fish and require substantial farmer's investment. Additionally, disinfection and antibiotics are not specific, and while they may be effective in the short term, they have major drawbacks in the long term. Indeed, they eliminate beneficial bacteria which are useful for the host and promote the raising of antibiotic resistance in beneficial, commensal but also in pathogenic bacterial strains. Numerous publications highlight the importance that plays the diversified microbial community colonizing fish (i.e., microbiota) in the development, health and ultimately survival of their host. This review targets the current knowledge on the bidirectional communication between the microbiota and the fish immune system during fish development. It explores the extent of this mutualistic relationship: on one hand, the effect that microbes exert on the immune system ontogeny of fishes, and on the other hand, the impact of critical steps in immune system development on the microbial recruitment and succession throughout their life. We will first describe the immune system and its ontogeny and gene expression steps in the immune system development of fishes. Secondly, the plurality of the microbiotas (depending on host organism, organ, and development stage) will be reviewed. Then, a description of the constant interactions between microbiota and immune system throughout the fish's life stages will be discussed. Healthy microbiotas allow immune system maturation and modulation of inflammation, both of which contribute to immune homeostasis. Thus, immune equilibrium is closely linked to microbiota stability and to the stages of microbial community succession during the host development. We will provide examples from several fish species and describe more extensively the mechanisms occurring in zebrafish model because immune system ontogeny is much more finely described for this species, thanks to the many existing zebrafish mutants which allow more precise investigations. We will conclude on how the conceptual framework associated to the research on the immune system will benefit from considering the relations between microbiota and immune system maturation. More precisely, the development of active tolerance of the microbiota from the earliest stages of life enables the sustainable establishment of a complex healthy microbial community in the adult host. Establishing a balanced host-microbiota interaction avoids triggering deleterious inflammation, and maintains immunological and microbiological homeostasis.
Collapse
Affiliation(s)
- Lisa Zoé Auclert
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| | - Mousumi Sarker Chhanda
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
- Department of Aquaculture, Faculty of Fisheries, Hajee Mohammad Danesh Science and Technology University, Basherhat, Bangladesh
| | - Nicolas Derome
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| |
Collapse
|
12
|
Lloyd E, Privat M, Sumbre G, Duboué ER, Keene AC. A protocol for whole-brain Ca 2+ imaging in Astyanax mexicanus, a model of comparative evolution. STAR Protoc 2023; 4:102517. [PMID: 37742184 PMCID: PMC10520939 DOI: 10.1016/j.xpro.2023.102517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/17/2023] [Accepted: 07/27/2023] [Indexed: 09/26/2023] Open
Abstract
In this protocol, we describe a comparative approach to study the evolution of brain function in the Mexican tetra, Astyanax mexicanus. We developed surface fish and two independent populations of cavefish with pan-neuronal expression of the Ca2+ sensor GCaMP6s. We describe a methodology to prepare samples and image activity across the optic tectum and olfactory bulb.
Collapse
Affiliation(s)
- Evan Lloyd
- Department of Biology, Texas A&M University, College Station, TX 77840, USA.
| | - Martin Privat
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - German Sumbre
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Erik R Duboué
- Harriet Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Alex C Keene
- Department of Biology, Texas A&M University, College Station, TX 77840, USA.
| |
Collapse
|
13
|
Abstract
Modelling adult diseases to understand their aetiology and progression, and to develop new therapies, is a major challenge for medical biology. We are excited by new efforts in the zebrafish community to develop models of adult diseases that range from cancer to heart, infectious and age-related diseases, and those that relate to toxicology and complex social behaviours. Here, we discuss some of the advances in the field of zebrafish models of adult disease, and where we see opportunities and challenges ahead.
Collapse
Affiliation(s)
- Richard M. White
- Ludwig Cancer Institute, Nuffield Department of Medicine, Old Road Campus Research Building, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - E. Elizabeth Patton
- MRC Human Genetics Unit, CRUK Scotland Centre and Edinburgh Cancer Research, Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH42XU, UK
| |
Collapse
|
14
|
Lam PY. Longitudinal in vivo imaging of adult Danionella cerebrum using standard confocal microscopy. Dis Model Mech 2022; 15:283162. [PMID: 36398624 PMCID: PMC9844135 DOI: 10.1242/dmm.049753] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2022] Open
Abstract
Danionella cerebrum is a new vertebrate model that offers an exciting opportunity to visualize dynamic biological processes in intact adult animals. Key advantages of this model include its small size, life-long optical transparency, genetic amenability and short generation time. Establishing a reliable method for longitudinal in vivo imaging of adult D. cerebrum while maintaining viability will allow in-depth image-based studies of various processes involved in development, disease onset and progression, wound healing, and aging in an intact live animal. Here, a method for both prolonged and longitudinal confocal live imaging of adult D. cerebrum using custom-designed and 3D-printed imaging chambers is described. Two transgenic D. cerebrum lines were created to test the imaging system, i.e. Tg(mpeg1:dendra2) and Tg(kdrl:mCherry-caax). The first line was used to visualize macrophages and microglia, and the second for spatial registration. By using this approach, differences in immune cell morphology and behavior during homeostasis as well as in response to a stab wound or two-photon-induced brain injury were observed in intact adult fish over the course of several days.
Collapse
Affiliation(s)
- Pui-Ying Lam
- Neuroscience Research Center, Medical College of Wisconsin, 53226 Milwaukee, WI, USA,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 53226 Milwaukee, WI, USA,Author for correspondence ()
| |
Collapse
|
15
|
Zvolský M, Schaar M, Seeger S, Rakers S, Rafecas M. Development of a digital zebrafish phantom and its application to dedicated small-fish PET. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac71ee] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/20/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Objective. We are developing a small-fish positron emission tomography (PET) scanner dedicated to small aquatic animals relevant for biomedical and biological research, e.g. zebrafish. We plan to use Monte Carlo simulations to optimize its configuration and the required water-filled imaging chambers. Our objectives were: (1) to create a digital 3D zebrafish phantom using conventional micro-CT, (2) include the phantom into a simulated PET environment based on the framework GATE, and (3) investigate the effects of the water environment on the reconstructed images. Approach. To create the phantom, we performed ex vivo measurements of zebrafish specimen using a tabletop micro-CT and compared three methods to fixate the specimen. From segmented micro-CT images we created digital emission and transmission phantoms which were incorporated in GATE via tessellated volumes. Two chamber sizes were considered. For reference, a simulation with the zebrafish in air was implemented. The simulated data were reconstructed using CASToR. For attenuation correction, we used the exact attenuation information or a uniform distribution (only water). Several realizations of each scenario were performed; the reconstructed images were quantitatively evaluated. Main results. Fixation in formalin led to the best soft-tissue contrast at the cost of some specimen deformation. After attenuation correction, no significant differences were found between the reconstructed images. The PET images reflected well the higher uptake simulated in the brain and heart, despite their small size and surrounding background activity; the swim bladder (no activity) was clearly identified. The simplified attenuation map, consisting only of water, slightly worsened the images. Significance. A conventional micro-CT can provide sufficient image quality to generate numerical phantoms of small fish without contrast media. Such phantoms are useful to evaluate in-silico small aquatic animal imaging concepts and develop imaging protocols. Our results support the feasibility of zebrafish PET with an aqueous environment.
Collapse
|
16
|
Paulissen SM, Castranova DM, Krispin SM, Burns MC, Menéndez J, Torres-Vázquez J, Weinstein BM. Anatomy and development of the pectoral fin vascular network in the zebrafish. Development 2022; 149:dev199676. [PMID: 35132436 PMCID: PMC8959142 DOI: 10.1242/dev.199676] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 01/24/2022] [Indexed: 12/15/2022]
Abstract
The pectoral fins of teleost fish are analogous structures to human forelimbs, and the developmental mechanisms directing their initial growth and patterning are conserved between fish and tetrapods. The forelimb vasculature is crucial for limb function, and it appears to play important roles during development by promoting development of other limb structures, but the steps leading to its formation are poorly understood. In this study, we use high-resolution imaging to document the stepwise assembly of the zebrafish pectoral fin vasculature. We show that fin vascular network formation is a stereotyped, choreographed process that begins with the growth of an initial vascular loop around the pectoral fin. This loop connects to the dorsal aorta to initiate pectoral vascular circulation. Pectoral fin vascular development continues with concurrent formation of three elaborate vascular plexuses, one in the distal fin that develops into the fin-ray vasculature and two near the base of the fin in association with the developing fin musculature. Our findings detail a complex, yet highly choreographed, series of steps involved in the development of a complete, functional, organ-specific vascular network.
Collapse
Affiliation(s)
- Scott M. Paulissen
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Daniel M. Castranova
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Shlomo M. Krispin
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Margaret C. Burns
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Javier Menéndez
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University Langone Medical Center, NY 10016, USA
| | - Jesús Torres-Vázquez
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University Langone Medical Center, NY 10016, USA
| | - Brant M. Weinstein
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| |
Collapse
|